Какие параметры термодинамической системы называют интенсивными

Термодинамические параметры

Что такое термодинамические параметры

Термодинамические параметры — явления, описывающие макроскопические движения системы. С греческого слово «parametron» переводится как «отмеривающий» или «соразмеряющий». Таким образом, термодинамические параметры это то, что измеряет систему.

Для описания обычно достаточно трех величин. К примеру, чтобы определить состояние газа, необходимо знать его давление, температуру и удельный объём. Параметры состояния термодинамической системы не зависят от того, каким образом она пришла в данное положение.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Если оно равновесное, то это описывается строго определенным набором величин. Зависимость между ними определяется уравнением состояния, которое и позволяет классифицировать системы.

Классификация величин

Явления, которые характеризируют всю систему целиком, называют макроскопическими. В разных источниках классификация величин отличается, но основные группы все же можно выделить.

В некоторых случаях в литературе используются также такие определения, как внешние и внутренние величины. К первым относят экстенсивные свойства, а ко вторым — внутреннюю энергию, температуру или химсостав.

Термодинамическими параметрами называют и величины, которые поддаются и не поддаются измерению приборами. Давление, температура и объем легко измеряется, а внутреннюю энергию уже нужно вычислять по формулам.

Наряду с термическими параметрами свойств в термодинамике также широко используются и калорические. К ним относятся, в частности энтальпия и энтропия.

Основные величины

К основным термодинамическим параметрам относятся: удельный объем, давление и температура. Если меняется хотя бы одна из этих величин, происходит процесс. Совокупность генеральных свойств системы соответственно определяет ее состояние.

Основные термодинамические параметры состояния:

Основным термодинамическим параметром являются также удельная теплоемкость вещества (объем теплоты, поглощаемой в процессе нагревания на 1 кельвин).

Интенсивные и экстенсивные параметры

Термодинамические параметры состояния делятся на две группы: экстенсивные (суммирующиеся) и интенсивные (выравнивающиеся). В первом случае свойство прямо пропорционально массе системы и обладает аддитивностью. Во втором: параметры таким свойством не обладают и не зависят от массы.

Экстенсивные или аддитививные параметры при фиксированных значениях интенсивных параметров пропорциональны числу частиц в системе (или ее массе). Интенсивные параметры принимают одинаковые значения для любой части равновесной системы, даже когда она не является пространственно однородной.

Экстенсивные величины — величины, значения которых для всей системы равны аналогичному показателю для отдельных ее частей.

Интенсивные величины — величины, которые не изменяются при разделении системы на части.

В отличие от них экстенсивные величины зависят от размеров системы и ее массы.

Интенсивные термодинамические параметры:

Разновидности по свойствам веществ, вступающих в реакцию

Любая химическая реакция сопровождается изменениями функций состояния системы, определяющихся переменными состояниями системы (объемом, давлением и температурой, количеством молей химических компонентов). Реакция возможна, если вещества имеют более низкую свободную энергию, чем реагенты.

К характеристикам параметров состояния термодинамической системы относятся разные величины (в том числе температура, состав или плотность и многое другое). Именно они описывают ее в определенный момент времени в зависимости от набора состояний.

Источник

Какие параметры термодинамической системы называют интенсивными

Термодинамическая система характеризуется определенными значениями ее свойств. Эти свойства термодинамического тела (системы) называются параметрами состояния.

Параметры состояния – любая величина, присущая телу, изменение которой определяется только начальным и конечным состоянием тела и не зависит от характера процесса изменения его состояния, при переходе его из первого состояния во второе. Параметры можно разделить на две группы:

Интенсивные – которые не зависят от количества вещества и при взаимодейтсвии тел выравниваются (температура, давление и т.п.);

Экстенсивные – зависящие от количества вещества, следующие закону сложения или, как говорят математики, закону аддитивности (масса, обьем, внутренняя энергия и т.п.).

Измерение экстенсивной величины производится сравнением ее с такой же по природе величиной, выбранной за единицу – эталон (метр, килограмм и т.п.). Измерение интенсивной величины основано на использовании объективной связи между изменениями этой интенсивной величины и какой-либо экстенсивной величины. Например, связь температуры и объема жидкости в термометре приводит к измерению температуры с помощью длины столбика жидкости в термометре.

Некоторые экстенсивные величины приобретают свойства интенсивных, если их рассматривают применительно к единице массы данного вещества (удельные объем, энтальпия и т.п.).

Все термодинамические параметры введены человеком для удобства изучения окружающего мира. Однако не все параметры поддаются измерению приборами. Ряд параметров, не поддающихся измерению, человек ввел для удобства расчета термодинамических процессов. Эти параметры получаются расчетным путем и имеют в размерности величину работы (энергии) Дж или кал. Например, к ним относятся энтальпия и энтропия. Такие параметры получили название – энергетических или калорических параметров, или функций состояния. Параметры, которые возможно измерить приборами, называются термическими. Например, к этим параметрам относятся температура и давление.

Общая схема разделения термодинамических параметров состояния на основые виды дана на рис. 2.4.

Источник

ИНТЕНСИВНЫЕ ПАРАМЕТРЫ

Смотреть что такое «ИНТЕНСИВНЫЕ ПАРАМЕТРЫ» в других словарях:

интенсивные параметры — интенсивные термодинамические параметры; интенсивные параметры Термодинамические параметры, не зависящие от массы термодинамической системы … Политехнический терминологический толковый словарь

ИНТЕНСИВНЫЕ ПАРАМЕТРЫ — см. Параметры состояния … Химическая энциклопедия

интенсивные термодинамические параметры — интенсивные термодинамические параметры; интенсивные параметры Термодинамические параметры, не зависящие от массы термодинамической системы … Политехнический терминологический толковый словарь

Параметры — [гр. parametron отмеривающий] – величина, характеризующая какое либо свойство вещества, процесса, устройства и т. п.: состояния термодинамические физические величины, характеризующие состояние системы, температура, давление, удельный объем … Энциклопедия терминов, определений и пояснений строительных материалов

ПАРАМЕТРЫ СОСТОЯНИЯ — (от греч. parametron отмеривающий, соразмеряющий) (термодинамич. параметры, термодинамич. переменные), физ. величины, характеризующие состояние термодинамич. системы в условиях термодинамического равновесия. Различают экстенсивные П. с.… … Химическая энциклопедия

Параметры состояния — термодинамические параметры, физические величины, характеризующие состояние термодинамической системы (например, температура, давление, удельный объём, намагниченность, электрическая поляризация и др.). Различают экстенсивные П. с.,… … Большая советская энциклопедия

ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ — ф ции параметров состояния макроскопич. системы (т ры Т, давления р, объема V, энтропии S, чисел молей компонентов хим. потенциалов компонентов m, и др.), применяемые гл. обр. для описания термодинамического равновесия. Каждому Т. п.… … Химическая энциклопедия

Гиббс, Джозайя Уиллард — В Википедии есть статьи о других людях с такой фамилией, см. Гиббс. Джозайя Уиллард Гиббс англ. Josiah Willard Gibbs … Википедия

КОМПОНЕНТЫ СИСТЕМЫ ПОДВИЖНЫЕ — по Коржинскому, К. с. п. могут обмениваться с окружающей средой, т. е. факторами равновесия системы в данном случае являются не массы компонентов, а их хим. потенциалы (или интенсивные параметры). Конечное количество К. с. п. не связано с их… … Геологическая энциклопедия

КОСМИЧЕСКИЕ ЛУЧИ — поток элем. ч ц высокой энергии, преим. протонов, приходящих на Землю прибл. изотропно со всех направлений косм. пр ва, а также рождённое ими в атмосфере Земли в результате вз ствия с ат. ядрами воздуха вторичное излучение, в к ром встречаются… … Физическая энциклопедия

Источник

интенсивные термодинамические параметры

Смотреть что такое «интенсивные термодинамические параметры» в других словарях:

интенсивные параметры — интенсивные термодинамические параметры; интенсивные параметры Термодинамические параметры, не зависящие от массы термодинамической системы … Политехнический терминологический толковый словарь

Параметры состояния — термодинамические параметры, физические величины, характеризующие состояние термодинамической системы (например, температура, давление, удельный объём, намагниченность, электрическая поляризация и др.). Различают экстенсивные П. с.,… … Большая советская энциклопедия

Параметры — [гр. parametron отмеривающий] – величина, характеризующая какое либо свойство вещества, процесса, устройства и т. п.: состояния термодинамические физические величины, характеризующие состояние системы, температура, давление, удельный объем … Энциклопедия терминов, определений и пояснений строительных материалов

ПАРАМЕТРЫ СОСТОЯНИЯ — (от греч. parametron отмеривающий, соразмеряющий) (термодинамич. параметры, термодинамич. переменные), физ. величины, характеризующие состояние термодинамич. системы в условиях термодинамического равновесия. Различают экстенсивные П. с.… … Химическая энциклопедия

ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ — ф ции параметров состояния макроскопич. системы (т ры Т, давления р, объема V, энтропии S, чисел молей компонентов хим. потенциалов компонентов m, и др.), применяемые гл. обр. для описания термодинамического равновесия. Каждому Т. п.… … Химическая энциклопедия

ПОТЕНЦИАЛЫ ТЕРМОДИНАМИЧЕСКИЕ — определённые функции объёма (V), давления (р), темп ры (Т), энтропии (S), числа ч ц системы (N) и др. макроскопич. параметров (xi), характеризующих состояние термодинамической системы. К П. т. относятся: внутренняя энергия U=U(S, V, N, xi),… … Физическая энциклопедия

СССР. Технические науки — Авиационная наука и техника В дореволюционной России был построен ряд самолётов оригинальной конструкции. Свои самолёты создали (1909 1914) Я. М. Гаккель, Д. П. Григорович, В. А. Слесарев и др. Был построен 4 моторный самолёт… … Большая советская энциклопедия

Окись этилена — Окись этилена … Википедия

Шаровая молния — У этого термина существуют и другие значения, см. Шаровая молния (значения). Шаровая молния Шаровая молния светящийся плавающий в воздухе шар, уникально редкое природное явление, единой физической … Википедия

ПВРД — Воздушно реактивный двигатель (ВРД) тепловой реактивный двигатель, в качестве рабочего тела которого используется атмосферный воздух, нагреваемый за счёт химической реакции окисления горючего кислородом, содержащимся в самом рабочем теле. Впервые … Википедия

Источник

Термодинамика

Лекция 1. Предмет технической термодинамики и ее методы

1. Предмет термодинамики

2. Основные параметры состояния тела

3. Понятие о термодинамическом процессе

4. Гомогенные и гетерогенные термодинамические системы

5. Термодинамическое равновесие

1. Предмет термодинамики

Термодинамика наука о превращениях различных видов энергии из одного в другой, и о наиболее общих макроскопических свойствах материи. Она изучает различные как физические, так и химические явления, обусловленные превращениями энергии. Применение закономерностей термодинамики позволяет анализировать свойства веществ, предсказывать их поведение в различных условиях. Термодинамика дает возможность исследовать различные процессы от простых в однородных средах до сложных с физическими и химическими превращениями, биологических и др.

Слово «термодинамика» происходит от греч. «therme» – тепло и «dynamis» – сила. Название науки возникло в период ее основания – в начале XIX в. В настоящее время слово «термодинамика» трактуют так: наука «о силах, связанных с теплотой».

Термодинамика основана на двух, экспериментально установ­ленных законах (началах).

Первый закон (начало) является по существу законом преобразования и сохранения энергии применительно к процессам, изучаемым в термодинамике; невозможен процесс возникновения или исчезновения энергии.

Второй закон (начало) – определяет направление течения реальных (неравновесных) процессов; невозможен процесс, имеющий единственным своим результатом превращение теплоты в работу.

Термодинамический метод исследования основан на законах (началах) термодинамики и представляет собой их логическое и математическое развитие.

Объект исследования в термодинамике называют термодинамической системой или, в простом случае, термодинамическим телом. Одна из особенностей метода термодинамики состоит в том, что система (тело) противопоставляется всем другим телам, которые называют окружающей средой. Термодинамика построена дедуктивно: частные выводы получены из общих законов (начал).

Принято разделять термодинамику на физическую, или общую, химическую и техническую.

Физическая термодинамика разрабатывает метод термодинамики и применяет его для изучения фазовых превращений термоэлектрических и магнитных явлений, излучения, поверхностных явлений и т. п.

Химическая термодинамика изучает процессы с физическими и химическими превращениями с помощью метода термодинамики.

Техническая термодинамика устанавливает закономерности взаимного преобразования теплоты и работы, для чего изучает свойства газов и паров (рабочих тел) и процессы изменения их состояния; устанавливает взаимосвязь между тепловыми, механическими и химическими процессами, протекающими в тепловых двигателях и холодильных установках. Одна из основных ее задач – отыскание наиболее рациональных способов взаимного превращения теплоты, и работы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *