какие виды мышечных сокращений вы знаете

Виды мышечных сокращений

Содержание

Механика мышечных сокращений [ править | править код ]

какие виды мышечных сокращений вы знаете. Смотреть фото какие виды мышечных сокращений вы знаете. Смотреть картинку какие виды мышечных сокращений вы знаете. Картинка про какие виды мышечных сокращений вы знаете. Фото какие виды мышечных сокращений вы знаете

Если мышцу стимулировать коротким электрическим импульсом, спустя небольшой латентный период происходит ее сокращение. Такое сокращение называется «одиночное сокращение мышцы». Одиночное мышечное сокращение длится около 10-50 мс, причем оно достигает максимальной силы через 5-30 мс.

Каждое отдельное мышечное волокно подчиняется закону «все или ничего», т. е. при силе раздражения выше порогового уровня происходит полное сокращение с максимальной для данного волокна силой, а ступенчатое повышение силы сокращения по мере увеличения силы раздражения невозможно. Поскольку смешанная мышца состоит из множества волокон с различным уровнем чувствительности к возбуждению, сокращение всей мышцы может быть ступенчатым в зависимости от силы раздражения, при этом при сильных раздражениях происходит активация глубжележащих мышечных волокон.

Суперпозиция и тетанус [ править | править код ]

Однократное электрическое раздражение (рис. 1, вверху) ведет к единичному мышечному сокращению (рис. 1, внизу). Два близко друг за другом следующих раздражения накладываются друг на друга (это называется «суперпозиция», или суммация сокращений), что ведет к более сильному мышечному ответу, близкому к максимальному. Серия часто повторяющихся электрических раздражений вызывает возрастающие по силе мышечные сокращения, в результате чего не происходит должного расслабления мышцы. Если частота электрических импульсов выше частоты слияния, то единичные раздражения сливаются в одно и вызывают тетанус мышцы (тетаническое сокращение) — устойчивое достаточно длительное напряжение сокращенной мышцы.

Формы сокращений [ править | править код ]

какие виды мышечных сокращений вы знаете. Смотреть фото какие виды мышечных сокращений вы знаете. Смотреть картинку какие виды мышечных сокращений вы знаете. Картинка про какие виды мышечных сокращений вы знаете. Фото какие виды мышечных сокращений вы знаете

Выделяют различные функциональные формы мышечных сокращений (рис. 2).

Использованные здесь термины нетипичны для русской литературы по мышечной активности. В отечественной литературе принято выделять следующие типы сокращений.

Источник

Виды мышечных сокращений

Содержание

Механика мышечных сокращений [ править | править код ]

какие виды мышечных сокращений вы знаете. Смотреть фото какие виды мышечных сокращений вы знаете. Смотреть картинку какие виды мышечных сокращений вы знаете. Картинка про какие виды мышечных сокращений вы знаете. Фото какие виды мышечных сокращений вы знаете

Если мышцу стимулировать коротким электрическим импульсом, спустя небольшой латентный период происходит ее сокращение. Такое сокращение называется «одиночное сокращение мышцы». Одиночное мышечное сокращение длится около 10-50 мс, причем оно достигает максимальной силы через 5-30 мс.

Каждое отдельное мышечное волокно подчиняется закону «все или ничего», т. е. при силе раздражения выше порогового уровня происходит полное сокращение с максимальной для данного волокна силой, а ступенчатое повышение силы сокращения по мере увеличения силы раздражения невозможно. Поскольку смешанная мышца состоит из множества волокон с различным уровнем чувствительности к возбуждению, сокращение всей мышцы может быть ступенчатым в зависимости от силы раздражения, при этом при сильных раздражениях происходит активация глубжележащих мышечных волокон.

Суперпозиция и тетанус [ править | править код ]

Однократное электрическое раздражение (рис. 1, вверху) ведет к единичному мышечному сокращению (рис. 1, внизу). Два близко друг за другом следующих раздражения накладываются друг на друга (это называется «суперпозиция», или суммация сокращений), что ведет к более сильному мышечному ответу, близкому к максимальному. Серия часто повторяющихся электрических раздражений вызывает возрастающие по силе мышечные сокращения, в результате чего не происходит должного расслабления мышцы. Если частота электрических импульсов выше частоты слияния, то единичные раздражения сливаются в одно и вызывают тетанус мышцы (тетаническое сокращение) — устойчивое достаточно длительное напряжение сокращенной мышцы.

Формы сокращений [ править | править код ]

какие виды мышечных сокращений вы знаете. Смотреть фото какие виды мышечных сокращений вы знаете. Смотреть картинку какие виды мышечных сокращений вы знаете. Картинка про какие виды мышечных сокращений вы знаете. Фото какие виды мышечных сокращений вы знаете

Выделяют различные функциональные формы мышечных сокращений (рис. 2).

Использованные здесь термины нетипичны для русской литературы по мышечной активности. В отечественной литературе принято выделять следующие типы сокращений.

Источник

Физиология человека и животных

Разделы

11. Виды и режимы мышечных сокращений. Работа и сила мышц. Типы нервных волокон

Существует два вида мышечных сокращений – одиночное и тетаническое. Одиночное мышечное сокращение является единственным видом сокращений для сердечной мышцы, а в скелетной мускулатуре оно носит искусственную этиологию и возникает в ответ на одиночный электрический сигнал и возникновение потенциала действия (ПД). Такое сокращение, длящееся » 100 мс, имеет форму волны (см. рис.) и включает три фазы: 1 – латентный период (от 2-3 до 10 мс), длящийся от момента нанесения раздражения до начала сокращения, 2 – фаза укорочения или сокращения (40-50 мс) и 3 – фаза расслабления (около 50мс). В естественных условиях импульсы поступают не одиночно, а сериями не менее 15-50 имп/с, на что мышца отвечает возникновением тетанического сокращения (тетануса). В его основе лежит явление суммации нескольких одиночных сокращений. В зависимости от частоты импульсов различают зубчатый и гладкий тетанус.

какие виды мышечных сокращений вы знаете. Смотреть фото какие виды мышечных сокращений вы знаете. Смотреть картинку какие виды мышечных сокращений вы знаете. Картинка про какие виды мышечных сокращений вы знаете. Фото какие виды мышечных сокращений вы знаете

Рисунок 5 – Виды мышечных сокращений:

А – фазы одиночного сокращения; Б – одиночное и тетанические сокращения

какие виды мышечных сокращений вы знаете. Смотреть фото какие виды мышечных сокращений вы знаете. Смотреть картинку какие виды мышечных сокращений вы знаете. Картинка про какие виды мышечных сокращений вы знаете. Фото какие виды мышечных сокращений вы знаете

Зубчатый тетанус (неполный) возникает в том случае, когда каждый последующий импульс приходит в фазу расслабления мышцы.

какие виды мышечных сокращений вы знаете. Смотреть фото какие виды мышечных сокращений вы знаете. Смотреть картинку какие виды мышечных сокращений вы знаете. Картинка про какие виды мышечных сокращений вы знаете. Фото какие виды мышечных сокращений вы знаете

Если частота раздражения выше, и каждый последующий импульс приходит в фазу укорочения мышцы, то происходит полная суммация, и тетаническое сокращение носит слитный характер – гладкий тетанус (полный).

какие виды мышечных сокращений вы знаете. Смотреть фото какие виды мышечных сокращений вы знаете. Смотреть картинку какие виды мышечных сокращений вы знаете. Картинка про какие виды мышечных сокращений вы знаете. Фото какие виды мышечных сокращений вы знаете

Увеличение ответа при действии субмаксимальных раздражителей до определенного (максимального) уровня происходит за счет вовлечения в процесс возбуждения новых, не задействованных ранее, волокон. В случае дальнейшего возрастания раздражения (сверхмаксимальный уровень), ответ уже не увеличивается, и наоборот, при очень сильных раздражителях (5-10 и более порогов), можно достичь пессимального ответа.

В целостном организме мотонейроны посылают пачки потенциалов действия к двигательным единицам, которые в ответ сокращаются тетанически. Скелетные мышцы находятся в состоянии постоянного тонуса вследствие постоянной фоновой импульсации из моторных зон ЦНС.

Работа мышцы (А) – произведение груза (F) на расстояние (h). А = F*h, или А = F*dl, где dl – величина укорочения мышцы.

Относительная сила мышцы определяет максимальный груз, который мышца способна поднять. Данная величина гораздо более зависит от толщины мышцы, чем от ее длины.

Для оценки функциональной активности мышц говорят об их тонусе и фазических сокращениях.

Тонус – состояние длительного непрерывного напряжения.

Фазическими сокращениями мышцы называют кратковременное укорочение мышцы, сменяющееся ее расслаблением.

Величина сокращения (степень укорочения) мышцы зависит от ее морфологических свойств и физиологического состояния. Чем больше толщина мышцы, тем больший груз она может поднять при своем сокращении. Длинные мышцы сокращаются на большую величину, чем короткие. Умеренное растяжение мышцы увеличивает ее сократительный эффект, при сильном растяжении сокращение мышцы ослабевает.

Правило средних нагрузок: максимальная работа мышц осуществляется при средних, а не максимальных величинах нагрузки, так как

при более высоких нагрузках быстро развивается утомление.

какие виды мышечных сокращений вы знаете. Смотреть фото какие виды мышечных сокращений вы знаете. Смотреть картинку какие виды мышечных сокращений вы знаете. Картинка про какие виды мышечных сокращений вы знаете. Фото какие виды мышечных сокращений вы знаете

Режимы мышечных сокращений:

1) изотоническое – сокращение, при котором происходит укорочение мышечных волокон, но сохранятся то же напряжение (например, при поднятии груза);

2) изометрическое – сокращение, при котором длина мышечных волокон не меняется, но увеличивается напряжение в ней (например, при сопротивлении давлению);

3) ауксотоническое – сокращение, при котором меняется и напряжение, и длина мышцы.

Сила сокращения мышц определяется числом активных мышечных волокон, участвующих в сокращении, частотой нервных импульсов и наличием синхронизации активности отдельных мышечных волокон во времени. Даже в покое скелетные мышцы редко бывают полностью расслабленными. Обычно в них сохраняется некоторое напряжение – тонус. Тонус мышц увеличивается после тяжелых физических упражнений и во время психоэмоционального напряжения.

При регулярных физических тренировках количество мышечных волокон не меняется, но увеличивается их диаметр за счет увеличения количества миофибрилл в волокнах.

Мышечная работа связана со значительными энергетическими затратами и, следовательно, требует повышенного притока кислорода. Это достигается путем активизации деятельности органов дыхательной и сердечно-сосудистой систем. Усиление обменных процессов при мышечной работе приводит к необходимости усиленного выделения продуктов обмена, а, соответственно, усиленной деятельности почек и потовых желез. Следовательно, физические нагрузки повышают деятельность физиологических систем, оказывают стимулирующее влияние на двигательную систему, приводят к совершенствованию двигательных навыков, развитию психических функций. При гиподинамии у детей страдают обменные процессы, снижается иммунитет, работоспособность, в том числе и умственная.

Утомляемость мышцы зависит от снабжения ее кислородом и кровью. КПД использования О2 мышцей составляет 20-25 %, а по мере тренированности может достигать 30 %.

В каждой мышце различают множество двигательных, или моторных единиц – определенное число мышечных клеток, иннервируемых одной нервной клеткой, причем каждый миоцит имеет свое нервное окончание.

Среди моторных единиц различают: быстрые, в состав которых входит в среднем около 50, и медленные – от нескольких сотен до тысяч мышечных клеток.

Типы нервных волокон:

1) медленные, неутомляемые (красные, статические, тонические) – это тонкие, богатые кровеносными сосудами и миоглобином мышцы, во время работы проявляют большую силу, долго не утомляются, но скорость их сокращений небольшая. Например, они сохраняют вертикальную статику, удерживают в определенном положении отдельные части тела, т.е. осуществляют опорную функцию. К ним также относятся наружные мышцы глазного яблока. Медленные фазические сокращения обеспечивают тонус мышц, и поэтому такие сокращения называются тоническими. Они необходимы для поддержания равновесия в статике и динамике. Медленные мышечные клетки составляют основную массу двигательных единиц. В них много миоглобина и миозина, где происходит окисление. Такие мышцы имеют красный цвет и мало утомляются.

2) быстрые, легко утомляемые (белые, динамические, фазические): они имеют толстые мышечные пучки, меньше кровеносных сосудов и миоглобина, скорость сокращений их велика так же, как и утомляемость. Уступая в силе, они способны производить разнообразные мелкие быстрые движения. Быстрые фазические аэробные мышцы немного бледнее, поскольку в них меньше миоглобина, но сохраняется еще достаточно большое количество миозина, а следовательно, интенсивно протекают процессы окисления. В таких мышцах утомление развивается быстрее, чем в выше описанных. По количеству мышечных клеток в моторной единице быстрые фазические мышцы занимают второе место после медленных. Анаэробные мышцы обеспечивают самые быстрые сокращения. В них мало миоглобина и миозина. Клетки, входящие в состав быстрых анаэробных мышц имеют белый цвет. В таких мышцах протекает анаэробный гликолиз, поэтому, в результате накопления недоокисленных продуктов (молочной кислоты), развивается кислородный долг, и как следствие, самое быстрое утомление. Примером таких мышц могут служить мышцы пальцев рук и глаза.

3) быстрые, устойчивые к утомлению (промежуточные).

Все три типа волокон могут содержаться в одной и той же мышце, и соотношение их числа определяется в значительной степени наследственностью. Например, в четырехглавой мышце бедра человека процент медленных волокон может составлять от 40 до 98 %. Чем больше медленных волокон, тем больше мышца приспособлена к работе на выносливость. И наоборот, люди с высоким процентом быстрых сильных волокон более способны к работе, требующей большой силы и скорости сокращения мышц.

какие виды мышечных сокращений вы знаете. Смотреть фото какие виды мышечных сокращений вы знаете. Смотреть картинку какие виды мышечных сокращений вы знаете. Картинка про какие виды мышечных сокращений вы знаете. Фото какие виды мышечных сокращений вы знаете

Сила сокращения мышц определяется числом активных мышечных волокон, участвующих в сокращении, частотой нервных импульсов и наличием синхронизации активности отдельных мышечных волокон во времени. Даже в покое скелетные мышцы редко бывают полностью расслабленными. Обычно в них сохраняется некоторое напряжение – тонус. Тонус мышц увеличивается после тяжелых физических упражнений и во время психоэмоционального напряжения.

Источник

Какие виды мышечных сокращений вы знаете

1. Роль мышечного сокращения в организации поведенческой деятельности человека. Классификация мышц и их функции. Виды и режимы мышечных сокращений.

2. Гладкие мышцы, их морфологические и физиологические особенности.

3. Одиночное мышечное сокращение, его фазы. Суммация сокращений.

4. Тетаническое сокращение, его виды. Оптимум и пессимум по Введенскому

5. Сократительный аппарат мышечного волокна. Механизм мышечного сокращения.

6. Синапс. Классификация. Особенности строения. Механизм передачи возбуждения в химическом синапсе. Свойства синапсов.

7. Медиатор. Виды медиаторов. Свойства медиаторов.

8. Электрические и тормозные синапсы. Особенности передачи сигнала.

9. Пути фармакологической регуляции синаптической передачи возбуждения.

1. Роль мышечного сокращения в организации поведенческой деятельности человека. Классификация мышц и их функции. Виды и режимы мышечных сокращений.

Общим свойством всего живого и основой активного поведения является движение.

Органом движения является мышечный аппарат, который включает 3 вида мышц: скелетные, гладкие и сердечную мышцы.

Они выполняют следующие функции:

1. Создание позы и удержание тела в пространстве, преодоление инерции.

1. Двигательная функция внутренних органов (моторная функция кишечника, сократительная функция сердца, обеспечение дыхания за счет сокращения дыхательных мышц).

2. Эффекторный механизм мыслительной (произносимая речь) и поведенческой деятельности.

3. Преобразование химической энергии макроэргических соединений в механическую, тепловую, электрическую энергию.

Составляют 35-40% массы тела, их количество достигает 600.

Состоят из пучков мышечных волокон, заключенных в общую соединительно-тканную оболочку.

Мышечное волокно – это гигантская, многоядерная мышечная клетка (диаметр от 1 до 100 мкм, длина от 5 до 400 мм), содержащая сотни миофибрилл, которые являются структурной единицей и представляют сократительный аппарат мышечного волокна. Миофибриллы включают актин и миозин.

Скелетные волокна подpазделяются на фазные волокна (они генерируют потенциал действия) и тонические (не способны генерировать распространяющееся возбуждение).

Фазные волокна делятся на быстрые волокна (белые, гликолитические) и медленные волокна (красные, окислительные).

Физические свойства скелетных мышц.

Растяжимость – это способность мышцы изменять свою длину под действием растягивающей силы.

Эластичность – способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы.

Сила – определяется максимальным грузом, который мышца в состоянии поднять.

Способность совершать работу – определяется произведением массы поднятого груза на высоту подъема.

Физиологические свойства скелетных мышц: возбудимость, проводимость, сократимость, лабильность.

Для скелетной мышцы характерны три основных режима сокращения:

ИЗОТОНИЧЕСКИЙукорочение мышцы без изменения ее тонического напряжения (когда мышце не приходится перемещать груз, например, сокращение мышц языка).

ИЗОМЕТРИЧЕСКИЙдлина мышечных волокон остается постоянной на фоне увеличения напряжения (попытка поднять непосильный груз)

АУКСОТОНИЧЕСКИЙизменение длины сопровождается изменением напряжения (работа мышцы при выполнении трудовых, спортивных и других двигательных актов).

Для скелетной мышцы характерны два вида сокращений:

ОДИНОЧНОЕ сокращение – возникает при действии одиночным стимулом (раздражителем) непосредственно на мышцу (прямое раздражение), или через иннервирующий ее двигательный нерв (непрямое).

ТЕТАНИЧЕСКОЕ (суммированное) сокращение – длительное сокращение мышцы в ответ на ритмическое раздражение.

(В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, следующих друг за другом с определенными интервалами).

2. Гладкие мышцы, их морфологические и физиологические особенности

Гладкие мышцы находятся:

· во внутренних органах (пишеварительный тракт, мочевой пузырь);

· в сосудах, коже, глазе (мышцы радужной оболочки, цилиарная мышца).

Тоническиене способны развивать «быстрые» сокращения.

Фазно-тонические – способны быстро сокращаться и подразделяются на обладающие автоматией и не обладающие автоматией.

1. Образованы гладкомышечными клетками веретенообразной формы.

2. Хаотично расположены и окружены соединительной тканью (поэтому лишены поперечной исчерченности).

3. Контактируют друг с другом при помощи нексусов.

4. Сократительный аппарат представлен миофибриллами, состоящими в основном из актина. Миозин представлен только в дисперсной и агрегированной формах.

1. В основе сокращения – процесс превращения энергии АТФ в механическую энергию сокращения.

2. Сокращения медленные с использованием скользящего механизма.

3. Сокращение протекает с малыми энерготратами.

4. Обладают выраженной пластичностью (длительное сохранение измененной длины).

5. Обладают автоматией.

1. Быстрое и сильное растяжение гладких мышц.

2. Химические вещества (особенно гормоны и медиаторы, к которым гладкие мышцы обладают высокой чувствительностью).

Особенности электрических процессов.

1. Потенциал покоя в гладких мышцах меньше, чем в скелетных.

В клетках не обладающих автоматией он стабилен и =– 60–70 мВ.

В клетках, обладающих автоматией, он неустойчивый с колебаниями от –30 до –70 мВ.

Потенциал действия имеет длительный латентный период.

Ниже, чем в скелетных мышцах.

Бывает двух типов: пикоподобная форма и форма «плато».

Связан с повышением проницаемости для ионов Са.

Несколько опережает сокращение.

2. Проведение возбуждения возникает, если приложенный стимул одновременно возбуждает некоторое минимальное количество мышечных клеток.

Может распространяться на соседние мышечные волокна (из-за малого сопротивления в области контактов) распространяется лишь на определенное расстояние, которое зависит от силы раздражителя скорость значительно меньше, чем в скелетной мышце и составляет от 2 до 15 см/с.

3. Одиночное мышечное сокращение, его фазы. Суммация сокращений

Одиночное мышечное сокращение продолжается около 100 мс и развивается по фазам:

Латентный (скрытый) период продолжается до 3 мс и представляет время от начала действия раздражителя до начала видимого ответа (сокращения) мышцы.

Фаза сокращения продолжается 40-50 мс характеризуется укорочением длины мышечного волокна, что связано с увеличением концентрации Сa 2+ в протофибриллярных пространствах и образованием актин-миозиновых связей.

Фаза расслабления продолжается 50-60 мс характеризуется увеличением (восстановлением) длины волокна. Возникает при снижении концентрации Ca 2+ в протофибриллярных пространствах и ослаблением актин-миозиновых связей.

Если на мышцу наносятся два и более раздражений с интервалом менее продолжительности одиночного сокращения, но более продолжительности рефрактрного периода ПД, то происходит суммация сокращений, в результате которой сократительный эффект усиливается.

Существует два типа суммации: частичная и полная

Частичная (или неполная) суммация возникает, если

· интервал между раздражениями меньше продолжительности одиночного мышечного сокращения;

· больше продолжительности фазы сокращения, т.е. если второе раздражение попадает в фазу расслабления.

В результате амплитуда мышечного сокращения возрастает с образованием двух вершин.

Полная суммация возникает, если:

· интервал между раздражениями меньше продолжительности фазы сокращения, но больше продолжительности рефрактерного периода;

· второе раздражение попадает в фазу сокращения.

В результате амплитуда мышечного сокращения изменяется (увеличивается или уменьшается относительно одиночного сокращения) с образованием одной вершины

Увеличение или уменьшение амплитуды связано с изменением возбудимости в процессе возбуждения и зависит от того в какую фазу измененной возбудимости наносится следующее раздражение.

Известно, что в период формирования пикового потенциала возбудимость ткани снижена (фаза абсолютной и фаза относительной рефрактерности). Поэтому, если следующее раздражение будет наноситься в этот период, то амплитуда мышечного сокращения будет снижена.

Период возбуждения в скелетной мышце завершается следовой деполяризацией, продолжающейся от 20 до 40 мс.

В этот период возбудимость, а, следовательно, и сократимость повышена. Поэтому, если следующее раздражение будет приходиться на этот период, то амплитуда мышечного сокращения будет возрастать (тем больше, чем больше повышена возбудимость).

3. Тетаническое сокращение, его виды. Оптимум и пессимум по Введенскому

Различают два вида тетануса: зубчатый и гладкий.

В их основе лежат механизмы частичной или полной суммации.

Вид тетанического сокращения определяется Механическим состоянием мышцы в момент повторного возбуждения. Состоянием возбудимости мышцы в момент повторного возбуждения.

Зубчатый тетанус развивается на ряд последовательных раздражений, интервал между которыми больше продолжительности фазы сокращения, но меньше продолжительности одиночного мышечного сокращения (интервал от 100 до 50 мс при частоте раздражений от 10 до 20 Гц).

При этом каждое новое сокращение формируется на фоне не завершившегося расслабления мышцы, образуя новые вершины последующих сокращений («зубцы»). Высота суммарного сокращения зависит от ритма и силы раздражений и определяется исходным уровнем формирования каждого следующего сокращения (чем выше уровень, тем больше амплитуда).

В начале фазы расслабления этот уровень выше, чем в конце.

Гладкий тетанус развивается на ряд последовательных раздражений, интервал между которыми меньше длительности фазы сокращения, но больше продолжительности потенциала действия (интервал от 50 до 5 мс при частоте 20 до 200 Гц).

Каждое новое сокращение формируется на фоне не завершившегося сокращения мышцы, образуя единую, гладкую вершину. Ее высота определяется уровнем измененной возбудимости в процессе возбуждения.

Если каждый следующий раздражитель попадает в фазу экзальтации (повышенной возбудимости), то амплитуда сокращения будет большой.

Если импульсы попадают в период сниженной возбудимости (относительная рефрактерность), то амплитуда будет снижена.

Явление изменения амплитуды в зависимости от возбудимости мышцы объяснил H.Е.Введенский, введя понятие оптимума и пессимума.

Оптимальная частота – максимальная частота раздражений, при которой возникает максимальная амплитуда тетанического ответа.

Пессимум – снижение амплитуды тетанического сокращения при увеличении частоты раздражений (выше оптимальной величины).

Пессимальная частота – максимальная частота (сверх оптимальной), при которой возникает минимальная амплитуда тетанического ответа.

4. Сократительный аппарат мышечного волокна. Механизм мышечного сокращения

Структурной единицей мышечного волокна являются миофибриллы.

Они разделены на чередующиеся участки (диски), которые обладают различными оптическими свойствами.

Диски, обладающие двойным лучепреломлением, получили название анизотропные (А) диски.

Диски, которые не обладают двойным лучепреломлением, названы изотропные (I) диски.

Анизотропные диски в обыкновенном свете выглядят темными и состоят из двух темных полосок, разделенных светлой «H» полоской.

Изотропные диски в обыкновенном свете выглядят светлыми и в середине имеют темную «Z» полоску.

Z полоска – эта тонкая мембрана, которая является продолжением поверхностной мембраны вглубь мышечного волокна.

Она выполняет опорную функцию, поскольку через ее поры проходят протофибриллы.

В зоне Z мембраны также находятся триады или Т-системы триады представляют выпячивания плазматической мембраны с образованием поперечных трубочек в виде ярусов и цисцерн.

Они предсталяют саркоплазматический ретикулум, который содержит высокую концентрацию ионов Ca.

При возбуждении Z мембраны кальций по концентрационному градиенту выходит из саркоплазматического ретикулума в протофибриллярное пространство, вызывая процесс сокращения Активная реабсорбция ионов Са в саркоплазматический ретикулум за счет работы Са-насоса, приводит к расслаблению мышечного волокна.

Структурной единицей миофибриллы являются протофибриллы

Протофибриллы включают белковые нити актина и миозина, а также белки тропонин и тропомиозин.

Нити миозина – это толстые и короткие нити, которые входят только в состав анизотропного диска.

Нити актина – это тонкие и длинные нити, входящие в состав как изотропного, так и анизотропного дисков. Они вставлены между нитями миозина. От них свободна только H-полоска анизотропного диска.

Процесс сокращения происходит в результате скольжения нитей актина относительно нитей миозина, который запускается накоплением Са, при этом образуются актино-миозиновые комплексы (мостики) и нити актина вдвигаются в промежутки между нитями миозина.

Нити актина сближаются друг с другом.

Ширина H-полоски и анизотропных дисков уменьшается, изотропный диск своего не изменяет своего размера.

Механизм мышечного сокращения и расслабления.

2. Возникновение потенциала действие.

3. Проведение возбуждения вдоль клеточной мембраны до Z мембраны, а далее вглубь волокна по трубочкам саркоплазматического ретикулума.

4. Освобождение Са из триад.

5. Диффузия Са к протофибриллам.

6. Взаимодействие Са с тропонином.

7. Конформационное изменение комплекса тропомиозин-тропонин.

8. Освобождение активных центров актина.

9. Присоединение актина к миозину.

10. В присутствии белка актомиозина распад АТФ с освобождением энергии.

11. Скольжение нитей актина относительно миозина.

12. Укорочение миофибриллы.

13. Активация кальциевого насоса.

15. Понижение концентрации свободных ионов Са в саркоплазме.

16. Разрушение актин-миозиновых комплексов.

17. Обратное скольжение нитей актина относительно миозина.

18. Увеличение (восстановление) миофибриллы.

5. Синапс. Классификация. Особенности строения. Механизм передачи возбуждения в химическом синапсе. Свойства синапсов

Синапс (соединять, смыкать, связывать) – это структурное образование, которое обеспечивает переход возбуждения с нервного волокна на инервируемую клетку.

Классификация и особенности строения по учебнику.

Механизм синоптической передачи возбуждения.

1. Деполяризация (возбуждение) пресинаптической мембраны.

2. Изменение проницаемости для ионов кальция.

3. Ионы кальция или его ионизированные комплексы по концентрационному градиенту поступают в нервное окончание (антагонистами кальция являются ионы магния и токсины ботулинуса).

4. Уменьшение электростатических влияний (одноименных зарядов) между пресинаптической мембраной и везикулами.

5. Приближение и слияние везикул с пресинаптической мембраной.

6. Изменение поверхностного натяжения везикул.

8. Выход медиатора в синоптическую щель.

9. Медиатор (возбуждающий в нервно-мышечном синапсе: ацетилхолин) диффундирует через синоптическую щель к рецепторам постсинап­тической мембраны.

10. Ацетилхолин вступает во взаимодействие с холинорецепторами (обладают избирательной чувствительностью к ацетилхолину).

11. При одновременном участии ионов кальция и макроэргического фосфата происходят конформационные изменения белковых молекул рецептора.

12. Открываются каналы постсинаптической мембраны для Na или Са.

13. Ионы Na по концентрационному градиенту поступают внутрь воспринимающей возбуждение клетки.

14. Развивается деполяризация – возбуждающий постсинаптический потенциал, который носит местный характер, по форме и свойствам напоминает локальный ответ (не подчиняется закону «все или ничего» и способен суммироваться).

15. Суммация возбуждающих постсинаптических потенциалов

16. Потенциал концевой пластинки.

17. Когда он достигает определенной (критической величины) возникают местные токи между возбужденными участками постсинаптической мембраны и невозбужденными участками прилегающей к ней обычной (электровозбудимой) мембраной.

18. На прилегающем участке электровозбудимой мембраны возникает потенциал действия.

Свойства химических синапсов.

1. Нервно-химический механизм передачи возбуждения (передача возбуждения осуществляется с помощью специфического химического вещества – медиатора, который выделяется нервным окончанием и количество которого пропорционально частоте приходящей нервной импульсации).

2. Принцип Дейла (во всех синапсах, образованных нервными окончаниями одного нейрона, выделяется только один вид медиатора – либо возбуждающий, либо тормозный).

3. Одностороннее проведение возбуждения (возбуждение передается только в одном направлении – от пресинаптической мембраны к постсинаптической мембране).

4. Синаптическая задержка (скорость проведения возбуждения в синапсе значительно медленнее, чем в нервном и мышечном волокне).

5. Низкая функциональная лабильность синапса.

6. Трансформация ритма возбуждения (при большой частоте нервных импульсов в пресинаптичоском окончании происходит уменьшение частоты возбуждений в постсинаптических образованиях).

7. Высокая утомляемость (временная потеря работоспособности в результате несоответствия синтеза и расхода медиатора).

Вопросы для самостоятельной подготовки (по учебнику).

1. Медиатор. Виды медиаторов. Свойства медиаторов.

2. Электрические и тормозные синапсы. Особенности передачи сигнала.

3. Пути фармакологической регуляции синаптической передачи возбуждения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *