Найти значение параметра при котором вектор перпендикулярен прямой

Ортогональность векторов. Перпендикулярность векторов.

Вектора a и b называются ортогональными, если угол между ними равен 90°. (рис. 1).

Найти значение параметра при котором вектор перпендикулярен прямой. Смотреть фото Найти значение параметра при котором вектор перпендикулярен прямой. Смотреть картинку Найти значение параметра при котором вектор перпендикулярен прямой. Картинка про Найти значение параметра при котором вектор перпендикулярен прямой. Фото Найти значение параметра при котором вектор перпендикулярен прямой
рис. 1

Примеры задач на ортогональность векторов

Примеры плоских задач на ортогональность векторов

Найдем скалярное произведение этих векторов:

Ответ: так как скалярное произведение равно нулю, то вектора a и b ортогональны.

Найдем скалярное произведение этих векторов:

Ответ: так как скалярное произведение не равно нулю, то вектора a и b не ортогональны.

Найдем скалярное произведение этих векторов:

Примеры пространственных задач на ортогональность векторов

Так в случае пространственной задачи для векторов a = < ax ; ay ; az > и b = < bx ; by ; bz >, условие ортогональности запишется следующим образом:

Найдем скалярное произведение этих векторов:

Ответ: так как скалярное произведение равно нулю, то вектора a и b ортогональны.

Найдем скалярное произведение этих векторов:

Ответ: так как скалярное произведение равно нулю, то вектора a и b ортогональны.

Найдем скалярное произведение этих векторов:

Ответ: вектора a и b будут ортогональны при n = 2.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Нахождение вектора, перпендикулярного данному вектору, примеры и решения

Данная статья раскрывает смысл перпендикулярности двух векторов на плоскости в трехмерном пространстве и нахождение координат вектора, перпендикулярному одному или целой паре векторов. Тема применима для задач, связанных с уравнениями прямых и плоскостей.

Мы рассмотрим необходимое и достаточное условие перпендикулярности двух векторов, решим по методу нахождения вектора, перпендикулярному заданному, затронем ситуации по отысканию вектора, который перпендикулярен двум векторам.

Необходимое и достаточное условие перпендикулярности двух векторов

Применим правило о перпендикулярных векторах на плоскости и в трехмерном пространстве.

При условии значения угла между двумя ненулевыми векторами равным 90 ° ( π 2 радиан) называют перпендикулярными.

Что это значит, и в каких ситуациях необходимо знать про их перпендикулярность?

Установление перпендикулярности возможно через чертеж. При отложении вектора на плоскости от заданных точек можно геометрически измерить угол между ними. Перпендикулярность векторов если и будет установлена, то не совсем точно. Чаще всего данные задачи не позволяют делать это при помощи транспортира, поэтому данный метод применим только в случае, когда ничего больше о векторах неизвестно.

Большинство случаев доказательства перпендикулярности двух ненулевых векторов на плоскости или в пространстве производится с помощью необходимого и достаточного условия перпендикулярности двух векторов.

Вторая часть доказательства

Условие перпендикулярности на координатной плоскости

Применим на практике и рассмотрим на примерах.

Для решения данной задачи необходимо найти скалярное произведение. Если по условию оно будет равным нулю, значит, они перпендикулярны.

Ответ: да, заданные векторы a → и b → перпендикулярны.

Используем условие перпендикулярности двух векторов в пространстве в квадратной форме, тогда получим

Имеются случаи, когда вопрос о перпендикулярности невозможен даже при необходимом и достаточном условии. При известных данных о трех сторонах треугольника на двух векторах, возможно, найти угол между векторами и проверить его.

Нахождение вектора, перпендикулярного данному

Важно научиться находить координаты вектора, перпендикулярного заданному. Это возможно как на плоскости, так и в пространстве при условии перпендикулярности векторов.

Нахождение вектора, перпендикулярного данному в плоскости.

Ненулевой вектор a → может иметь бесконечное количество перпендикулярных векторов на плоскости. Изобразим это на координатной прямой.

Найти значение параметра при котором вектор перпендикулярен прямой. Смотреть фото Найти значение параметра при котором вектор перпендикулярен прямой. Смотреть картинку Найти значение параметра при котором вектор перпендикулярен прямой. Картинка про Найти значение параметра при котором вектор перпендикулярен прямой. Фото Найти значение параметра при котором вектор перпендикулярен прямой

Найти значение параметра при котором вектор перпендикулярен прямой. Смотреть фото Найти значение параметра при котором вектор перпендикулярен прямой. Смотреть картинку Найти значение параметра при котором вектор перпендикулярен прямой. Картинка про Найти значение параметра при котором вектор перпендикулярен прямой. Фото Найти значение параметра при котором вектор перпендикулярен прямой

Рассмотрим доказательство на примере.

Нахождение координат вектора, перпендикулярного двум заданным векторам

При решении применяется понятие векторного произведения векторов.

Разберем подробнее векторное произведение на примере задачи.

Для решения необходимо найти векторное произведение векторов. (Необходимо обратиться к пункту вычисления определителя матрицы для нахождения вектора). Получим :

Источник

Нормальный вектор прямой, координаты нормального вектора прямой

Для изучения уравнений прямой линии необходимо хорошо разбираться в алгебре векторов. Важно нахождение направляющего вектора и нормального вектора прямой. В данной статье будут рассмотрены нормальный вектор прямой с примерами и рисунками, нахождение его координат, если известны уравнения прямых. Будет рассмотрено подробное решение.

Нормальный вектор прямой – определение, примеры, иллюстрации

Чтобы материал легче усваивался, нужно разбираться в понятиях линия, плоскость и определениями, которые связаны с векторами. Для начала ознакомимся с понятием вектора прямой.

Нормальным вектором прямой называют любой ненулевой вектор, который лежит на любой прямой, перпендикулярной данной.

Понятно, что имеется бесконечное множество нормальных векторов, расположенных на данной прямой. Рассмотрим на рисунке, приведенном ниже.

Найти значение параметра при котором вектор перпендикулярен прямой. Смотреть фото Найти значение параметра при котором вектор перпендикулярен прямой. Смотреть картинку Найти значение параметра при котором вектор перпендикулярен прямой. Картинка про Найти значение параметра при котором вектор перпендикулярен прямой. Фото Найти значение параметра при котором вектор перпендикулярен прямой

Используя определение нормального и направляющего векторов, можно прийти к выводу, что нормальный вектор перпендикулярен направляющему. Рассмотрим пример.

Координаты нормального вектора прямой – нахождение координат нормального вектора прямой по известным уравнениям прямой

При рассмотрении прямоугольной системы координат О х у выявим, что уравнение прямой на плоскости соответствует ей, а определение нормальных векторов производится по координатам. Если известно уравнение прямой, а необходимо найти координаты нормального вектора, тогда необходимо из уравнения A x + B y + C = 0 выявить коэффициенты, которые и соответствуют координатам нормального вектора заданной прямой.

Бывают случаи, когда A или В из уравнения равняется нулю. Рассмотрим решение такого задания на примере.

Имеется возможность получения координат нормального вектора при помощи приведения канонического или параметрического уравнений прямой к общему. Тогда получим:

Для решения можно выбирать любой удобный способ.

Второй способ решения сводится к тому, что необходимо прийти к общему виду уравнения из канонического. Для этого преобразуем

Для начала необходимо выполнить преобразование для перехода в общему виду прямой. Выполним:

Источник

Направляющий вектор прямой, координаты направляющего вектора прямой

С понятием прямой линии тесно связано понятие ее направляющего вектора. Часто в задачах бывает удобнее рассматривать его вместо самой прямой. В рамках данного материала мы разберем, что же такое направляющий вектор прямой в пространстве и на плоскости, и расскажем, для чего можно его использовать.

В первом пункте мы сформулируем определение и покажем основные понятия на иллюстрациях, дополнив их конкретными примерами направляющего вектора. Далее мы посмотрим, как прямая и направляющие векторы взаимодействуют в прямоугольной системе координат и как можно вычислить координаты этого вектора, если мы знаем уравнение прямой. Все правила, как всегда, будут проиллюстрированы примерами решений задач.

Что такое направляющий вектор прямой

Для того чтобы понять эту тему, нам нужно хорошо представлять, что такое вообще прямая и как она может размещаться в пространстве и на плоскости. Кроме того, важно вспомнить ранее изученное понятие вектора. Об этом мы уже писали в отдельном материале. Если нужно, найдите и перечитайте эти статьи.

Сформулируем, что такое направляющий вектор.

Направляющим вектором прямой является любой вектор, не равный нулю, который размещается на данной прямой или же на прямой, параллельной ей.

Найти значение параметра при котором вектор перпендикулярен прямой. Смотреть фото Найти значение параметра при котором вектор перпендикулярен прямой. Смотреть картинку Найти значение параметра при котором вектор перпендикулярен прямой. Картинка про Найти значение параметра при котором вектор перпендикулярен прямой. Фото Найти значение параметра при котором вектор перпендикулярен прямой

Как вычислить координаты направляющего вектора по уравнениям прямой

1. Прямую линию в O x y можно описать с помощью уравнения прямой на плоскости. В этом случае координаты направляющих векторов будут соответствовать направляющим векторам исходной прямой. А если нам известно уравнение прямой, как вычислить координаты ее направляющего вектора? Это легко сделать, если мы имеем дело с каноническим или параметрическим уравнением.

Чтобы вычислить координаты направляющего вектора, нам нужно взять числа из знаменателя канонического уравнения прямой.

Приведем пример задачи.

Решение

Если же прямая описана уравнением параметрического типа, то нам нужно смотреть на коэффициенты при параметре. Они будут соответствовать координатам нужного нам направляющего вектора.

Решение

Решение

А как быть в случае, если ни один коэффициент в A x + B y + C = 0 не будет равен 0? Тогда мы можем использовать несколько разных способов.

1. Мы можем переписать основное уравнение так, чтобы оно превратилось в каноническое. Тогда координаты вектора можно будет взять из его значений.

2. Можно вычислить отдельно начальную и конечную точку направляющего вектора. Для этого надо будет взять координаты двух любых несовпадающих точек исходной прямой.

Самым простым является первый подход. Проиллюстрируем его на примере задачи.

Решение

Перепишем исходное уравнение в каноническом виде. Сначала перенесем все слагаемые из левой части, кроме 3 x, в правую с противоположным знаком. У нас получится:

Получившееся равенство преобразовываем и получаем:

Далее мы разберем, как найти эти координаты, если прямая у нас задана не в плоскости, а в пространстве.

Таким образом, для вычисления координат направляющего вектора нужно взять числа из знаменателей или коэффициентов при параметре в соответствующем уравнении.

Рассмотрим конкретную задачу.

Решение

Решение

Из этой записи можно вычленить координаты нужного нам вектора – ими будут коэффициенты перед параметром.

Есть два способа. Можно записать это уравнение в параметрическом виде, где будут видны нужные координаты. Но можно использовать и другой способ. Объясним его.

Вспомним, что такой нормальный вектор плоскости. Он по определению будет лежать на прямой, перпендикулярной исходной плоскости. Значит, любой направляющий вектор прямой, которая в ней находится, будет перпендикулярен ее любому нормальному вектору.

Решим задачу, в которой применяется этот подход.

Решение

В конце статьи отметим, что умение вычислять направляющий вектор пригодится для решения многих задач, таких, как сопоставление двух прямых, доказательство их параллельности и перпендикулярности, вычисление угла между пересекающимися или скрещивающимися прямыми и др.

Источник

Онлайн калькулятор. Коллинеарность векторов.

Этот онлайн калькулятор позволит вам очень просто определить являются ли два вектора коллинеарными.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на проверку коллинеарности двух векторов и закрепить пройденый материал.

Калькулятор для вычисления коллинеарности векторов

Инструкция использования калькулятора для проверки коллинеарности векторов

Ввод даных в калькулятор коллинеарности векторов

В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора коллинеарности векторов

Теория. Коллинеарность векторов

Найти значение параметра при котором вектор перпендикулярен прямой. Смотреть фото Найти значение параметра при котором вектор перпендикулярен прямой. Смотреть картинку Найти значение параметра при котором вектор перпендикулярен прямой. Картинка про Найти значение параметра при котором вектор перпендикулярен прямой. Фото Найти значение параметра при котором вектор перпендикулярен прямой

Вектора коллинеарны если отношения их координаты равны между собой.

ax=ay=az
bxbybz

или

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *