За что отвечает ядрышко

Ядрышки – компонент ядра эукариотической клетки

Ядрышки – обязательный компонент ядра эукариотической клетки. Они наблюдаются в ядрах практически всех клеток, но это правило имеет небольшое количество исключений, которые лишь подчеркивают роль ядрышка в жизненном цикле клетки. К таким исключениям относятся клетки яиц, на стадии дробления, здесь ядрышки отсутствуют на ранних этапах эмбриогенеза, и клетки, которые проходят специализацию, как, например, некоторые клетки крови.

Впервые ядрышки были описаны в конце XIX столетия, когда в научных исследованиях стали активно использоваться разнообразные методы окраски ядра. Настоящий прогресс в этом направлении был достигнут при разработке и использовании в цитологии специальных ядрышковых красителей и методов, связанных с применением азотнокислого серебра [1, 2]. В шестидесятых годах прошлого столетия было показано, что ядрышко является основным местом биогенеза рибосом. С этого времени ядрышки стали объектом многих исследований.

В клеточном цикле ядрышки, присутствуют в течение всей интерфазы; в период митоза, в профазе, во время компактизации хромосом, они постепенно исчезают. В метафазе и анафазе ядрышки отсутствуют. Первые признаки новых ядрышек появляются после стадии средней телофазы, когда уже достаточно разрыхлились хромосомы дочерних ядер. В это время близ хромосом, которые деконденсируются, появляются плотные тельца – первичные ядрышки [3]. Обычно, их количество больше, чем в интерфазе. Позднее, в G1-периоде клеточного цикла первичные ядрышки растут, начинают объединяться одно за другим, их общее количество уменьшается, но возрастает объем. Общий объем ядрышка увеличивается вдвое в S- G2- периодах клеточного цикла [4].

Образование ядрышек топографически связано с определенными зонами на ядрышкообразующих хромосомах. Эти зоны называются ядрышковыми организаторами, или ядрышкообразующими районами (ЯОР) хромосом, которые локализованы в области вторичных перетяжек хромосом. В интерфазных ядрах в структуре ядрышка выделяют следующие составляющие: фибриллярные центры, плотный фибриллярный и гранулярный компоненты, ядрышковые вакуоли, и ассоциированный с ядрышком хроматин [4, 5]. Фибриллярные центры окружены плотными фибриллярными и гранулярными компонентами и содержат расплетенную рДНК и рассматриваются как интерфазные “двойники” митотических ЯОР [6]. Исследования последних лет показали, что число и размеры фибриллярных центров существенно варьирует в клетках, и зависит от их (клеток) функционального состояния, в частности, от интенсивности транскрипции рДНК [5, 7]. Что касается гранулярного компонента ядрышка, то принята точка зрения, что он, прежде всего, представлен дозревающими прерибосомами [4, 5]. В состав ядрышка входят также ферменты: РНК-полимераза-1, РНК-метилаза, топоизомераза-1; ядрышковые протеины, наиболее изученными из которых являются нуклеолин, протеины Р80 и Р105, и фосфопротеины С23 и Р100, все они локализуются преимущественно в зоне фибриллярного центра [4, 7]. На протяжении последних лет в ядрышках идентифицировано более чем 400 белков. Исследования молекулярного строения и содержимого ядрышек продолжаются сегодня и помогают понять широкий спектр ядрышковых функций.

Ядрышко представляет собой комплекс амплифицированных генов рРНК и продуктов – предшественников рибосом, и является источником основной массы цитоплазматической РНК, представленной, главным образом, рибосомной РНК.

Структурная организация ядрышка тесно связана с его функциональной активностью, и зависит от интенсивности транскрипции рДНК, скорости процессинга и выхода зрелых субъединиц рибосом из ядрышка в нуклеоплазму [4]. Поэтому, когда транскрипция и/или обработка рРНК замедлены, ядрышко частично, или полностью теряет структурную целостность. Когда транскрипция блокирована, отмечают сегрегацию ядрышковых компонентов [8]. Когда обработка и созревание рРНК ослаблены, но транскрипция рДНК все еще активна, т.е. когда утрачена связь между транскрипцией рДНК и обработкой рРНК, наблюдают рассеивание ядрышек по всей кариоплазме.

Лабильность морфологических показателей ядрышка (числа, формы, размера, микроскопического строения) считают одним из основных его функциональных свойств [4, 5]. Изменчивость морфологических и химических свойств ядрышек определяется основной их функцией – синтезом клеточной РНК, которая была отмечена Т. Касперсоном [2]. Им было показано, что количество РНК и белка в цитоплазме зависит от объема ядрышка и концентрации в нем РНК. Этот вывод позволяет связать изменения морфологических параметров ядрышек с метаболическими особенностями синтеза РНК и белка в клетке. Так, клетки, которые синтезируют большое количество белка, имеют большое ядрышко или много ядрышек [1, 6]. В малоактивных клетках ядрышко маленькое или его вообще тяжело обнаружить. При обычной функциональной нагрузке, которая отвечает нуждам определенной популяции клеток, структура ядрышка остается практически неизменной. Но в ходе клеточного цикла, в процессе дифференцирования и дедифференцирования, при угнетении или активации синтеза рРНК происходят значительные перестройки ядрышка [4].

Согласно литературным данным количество ядрышек в клетке может изменяться, но их число зависит от генного баланса клетки. Он определяется числом ядрышковых организаторов и увеличивается согласно плоидности ядра [1, 7]. Чаще всего в клетках количество ядрышек меньше, чем число ядрышковых организаторов. Это связано с тем, что при новообразовании они могут сливаться одно с другим, таким образом, в образовании одного ядрышка принимают участие несколько ядрышкообразующих районов (ЯОР) хромосом.

Ряд авторов [8-10,] считает, что увеличение количества ядрышек свидетельствует об амплификации рибосомной ДНК, а некоторые утверждают, что количество ядрышек может быть критерием дифференцирования клетки. Отмечена значительная корреляция между общим объемом ядрышек в клетках и их митотической активностью. При угнетении синтеза рРНК значительно снижается количество ядрышек на клетку, а сами ядрышки резко уменьшаются в размере и уплотняются. Подобную реакцию наблюдают, как при действии на клетки разных ингибиторов синтеза рРНК, так и в процессе естественной инактивации рыбосомных генов 10.

Чаще всего для визуализации ядрышек используется методика Ховела и Блэка [12] – она отличается от других применением коллоида желатина, который выступает в качестве стабилизатора и катализатора реакции, которая проходит в слабокислой среде. Разработаны многочисленные модификации данного метода, позволяющие использовать его при исследовании клеток и тканей, разнообразных организмов [13].

Экспериментальные исследования показали, что реакция серебрения базируется на выборочном связывании нитрата серебра с негистоновыми белками хромосом, которые образуют рибонуклеопротеиновые комплексы из только что синтезированной рРНК. Считают, что в ходе реакции происходит восстановление ионов Ag + до металлического серебра, однако при этом нет единой точки зрения относительно того, какие компоненты белков осуществляют процесс восстановления ионов. Наибольшую родственность к серебру проявляют сульфгидрильные и карбоксильные группы [14]. Есть мнение, что взаимодействие с серебром может осуществляться за счет фосфатных групп, которые связаны с серином и треонином в фосфорилированных белках [13].

При окраске препаратов интерфазных клеток методом Ховела и Блека, ядрышковые организаторы видны в виде черных точек (гранул) на желтом фоне ядер или слабоокрашенных хромосом. Сами ядрышки в интерфазных ядрах окрашиваются в коричневый цвет. Специфичность окраски достигается лишь при соблюдении определенных условий (рН, температуры, времени окрашивания и концентрации AgNO3). В связи с тем, что родственность к серебру проявляют практически все компоненты хроматина, изменение условий проведения реакции ведет к выявлению, кроме ЯОР, других структур. Так, при более продолжительном крашении азотнокислым серебром проявляются центромеры хромосом и центриоли [15].

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышкоМикрофотография. Ядрышки в клетках плавника рыб и в клетках гидры. Увеличение 10х100. Окраска азотнокислым серебром.

Нитратом серебра окрашиваются лишь те ядрышковые организаторы, которые в данный момент активно функционируют [14, 15]. Поэтому данный метод не только позволяет выявить ЯОР, но и дает возможность оценить функциональное состояние рыбосомных генов в клетке.

Степень аргентофильности ядрышек тесно связана с пролиферативным потенциалом клеток и уровнем их дифференцирования. Это дает возможность использовать явление аргентофильности ядрышек для изучения роста, дифференцирования и других клеточных процессов, при которых происходит изменение функционального состояния клетки, опосредствованное вариацией функциональной активности рыбосомных генов [13]. Вывод о том, что азотнокислым серебром окрашиваются лишь активные ЯОР, получил подтверждение в экспериментах по искусственному усилению и угнетению синтеза рРНК, эмбриогенеза у мышей и птиц, гаметогенеза у млекопитающих, в том числе и человека [14]. С помощью иммуноцитогенетических методов показано, что интерфазные ядрышки и хромосомные ЯОР млекопитающих, которые окрашиваются серебром, прямо отражают транскрипционную активность генов рРНК [15]. Показано, что способность определенного сайта данной хромосомы окрашиваться серебром постоянна у данного индивидуума, но существуют индивидуальные вариации в числе и распределении ЯОР, что заметно при крашении азотнокислым серебром. Установлено, что способность данного сайта окрашиваться серебром или, другими словами, способность данной хромосомы образовывать ядрышко передается наследственно. В связи с этим метод окраски азотнокислым серебром успешно применяют в кариосистематике.

Имеется много работ посвященных изучению изменения ядрышковых характеристик растительных и животных организмов в разных условиях, при влиянии естественных и антропогенных факторов [16].

Показано изменение структуры ядрышек под воздействием цитостатических препаратов в культуре клеток и в экспериментах на лабораторных животных [18]. Авторы отмечают, что данные эффекты характерны для агентов, которые угнетают транскрипцию и процессинг рРНК, блокируют обособление прерыбосом от ядрышка.

Показано увеличение объема ядрышкового материала в клетках растений при воздействии неблагоприятных экологических условий [19]. Более высокую активность ядрышкового аппарата в условиях естественной и антропогенной нагрузок связывают с действием адаптивных механизмов в условиях экстремальности, вызванной природными и антропогенными факторами.

Отмечено влияние малых доз ионизирующей радиации на ядрышковый аппарат зародышей карпа [20]. Показано стимулирующее свойство низких концентраций некоторых мутагенных факторов на гонады рыб и ооциты млекопитающих, следствием, которого является образование большого количества дополнительных ядрышек и усиление биосинтеза белка [21].

При исследовании влияния растворов солей кадмия и хрома на клетки жабр и гепатоцитов рыб Odontesthes bonariensis, показано значительное изменение объема ядрышек в этих клетках в зависимости от концентрации тяжелых металлов [22]. В экспериментах по влиянию растворов кадмия на клетки представителя миксомицет, Physarum polycephalum, отмечено изменение структуры ядрышка, описана его сегрегация, появление множественных ядрышкоподобных телец в ядре и образование кольцевидного ядрышка, при этом наблюдалось значительное снижение синтеза РНК [23]. Подобные изменения наблюдались и при влиянии кадмия на клетки корневой меристемы лука [24]

Приведенный выше обзор, позволяет заключить, что ядрышко – это обязательная структура ядра интерфазной клетки, оно занимает одно из центральных мест в синтезе белка клеткой, и отображает как уровень биосинтетической активности клетки на разных стадиях клеточного цикла, так и функциональное состояние клетки в нормальных условиях и в условиях патологии, или влияния токсичных веществ и других факторов.

Литература:

Фотоматериалы из личного архива автора.

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышко Веялкина Наталия Николаевна

© Наталия Веялкина, кандидат биологических наук, заведующая лабораторией экспериментальных биологических моделей

Источник

Размер имеет значение

Размер имеет значение

Ядрышко (Nucleolus) под электронным микроскопом

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Функционирование любого компонента живой клетки контролируется обширной и сложной регуляторной сетью. Не является исключением и ядрышко. Однако механизмы, приводящие к его гипертрофии, были плохо изучены до недавнего времени. Исследование на данную тему представила группа учёных из США и Канады: им удалось выяснить, какие гены влияют на изменение размеров ядрышка.

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышко

Конкурс «био/мол/текст»-2013

Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2013 в номинации «Лучшее новостное сообщение».

Спонсор конкурса — дальновидная компания Thermo Fisher Scientific. Спонсор приза зрительских симпатий — фирма Helicon.

Что такое ядрышко

Ядрышко — это небольшой субкомпартмент, расположенный в ядре клетки, который осуществляет транскрипцию и процессинг рРНК, а также сборку рибосом. Важность роли, исполняемой ядрышком, можно осознать, обратившись к следующему примеру: активно растущие клетки млекопитающих содержат от 5 до 10 миллионов рибосом каждая, и они должны быть синтезированы всякий раз, как клетка делится [1].

Ядрышки расположены вокруг особых регионов хромосом, гены которых кодируют различные по длине и массе рРНК (5,8S, 18S и 28S рРНК). Эти участки хромосом, пространственно ассоциированные с ядрышком, называют ядрышковыми организаторами. Каждый ядрышковый организатор представляет собой кластер тандемно повторяющихся генов рРНК. Сосредоточенность таких генов в определённом месте ядра, а также интенсивность их транскрипции, обусловливает характерную морфологию ядрышка [2]. ДНК, кодирующую различные варианты рибосомальной РНК, принято называть рДНК. Стоить отметить, что 5,8S, 18S и 28S рРНК транскрибируются в виде единого длинного предшественника, который затем подвергается «разрезанию» на более мелкие (уже функциональные) молекулы, из которых в дальнейшем и собираются сами рибосомы. Реакция эта катализируется ферментом РНК-полимеразой I. 5S же рРНК транскрибируется за пределами ядрышка, а реакция катализируется другим ферментом — РНК-полимеразой III [1].

Однако ядрышко — это не просто транскрибирующаяся рРНК; это рибонуклеопротеиновая частица. Проще говоря, в его состав входят как РНК, так и белок. В структуре ядрышка можно выделить три основные части: гранулярный компонент — это созревающие субъединицы рибосом; фибриллярный компонент — здесь происходит инициация процессинга рРНК; и плотный фибриллярный компонент, где и происходит транскрипция рРНК.

То, что ядрышко способно варьировать в размерах, было известно достаточно давно. К примеру, оно увеличивается в быстрорастущих клетках дрожжей. Что более интересно, гипертрофия ядрышка наблюдается и в раковых клетках человека — это стало одним из основных признаков, характеризующих злокачественную опухоль [3].

Но наблюдаемый размер ядрышка — это лишь вершина айсберга; на деле он прямо зависит от концентрации пре-рРНК в клетке, которая, в свою очередь, положительно коррелирует с активностью РНК-полимеразы I. Синтез рРНК требует больших затрат энергии, и когда клетка испытывает недостаток питания, транскрипция генов рДНК тормозится, и ядрышко уменьшается в размерах. Напротив, в благоприятных условиях клетка начинает активный синтез белка, готовясь к последующему делению, и ей требуется большее число рибосом [4]. Из-за этого она усиливает продукцию рРНК, и ядрышко увеличивает размер. Если мы хотим ответить на вопрос «что влияет на размер ядрышка?», нам стоит понять, что же контролирует активность полимеразы I.

Механизмы регуляции размеров ядрышка

Этим же вопросом задались и биологи из США и Канады, и, чтобы ответить на него, они провели ряд экспериментов. В качестве модельных организмов учёные использовали дрожжи и дрозофилу. Методики исследования для каждого объекта были индивидуальны. Так, для дрожжей была создана генно-инженерная линия, отличная от дикого типа по множеству генов. Гены, не являющиеся жизненно важными, содержали делеции — т.е. они были нерабочими. Жизненно важные же гены состояли из температурно-чувствительных аллелей, и при повышении температуры функционирование их белковых продуктов нарушалось. Для дрозофилы была использована другая методика — здесь гены «глушились» путём РНК-интерференции [5], [6]. Регистрация изменений размера ядрышек производилась схожим образом: в оба организма вводились флуоресцентные белки (посредством репортерных генов), каждый из которых окрашивал цитоплазму, ядро и ядрышко в определённый цвет. Получение и обработка данных осуществлялись посредством автоматизированной конфокальной микроскопии [4].

В ходе эксперимента у дрожжей было выявлено 113 генов, мутации в которых вызывали значимые изменения фенотипа ядрышка. И целых 78 из них оказались жизненно важными! Это свидетельствует о том, что корректная регуляция активности полимеразы I крайне важна для жизнеспособности клетки. Если говорить о мухе, то у неё ответственными за изменение размеров ядрышка оказались целых 757 генов. С функциональной точки зрения, белки, кодируемые этими генами, оказались схожими у обоих видов. Более того, белки со схожими функциями, будучи «выключенными», оказывали схожее воздействие на фенотип ядрышка как у дрозофилы, так и у дрожжей (рис. 1).

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышко

Рисунок 1. Сравнение мутаций в белках дрожжей (квадраты) и дрозофилы (круги) и их воздействие на фенотип ядрышка. poly(A)+ mRNA export from the nucleus — полиаденилирование и экспорт мРНК из ядра; Histone acetyltransferase activity — ацетилирование гистонов; ER—to—Golgi vesicle—mediated transport — везикулярный транспорт из ЭПР в аппарат Гольджи; TRAMP complex — белковый комплекс, участвующий в процессинге 3′-конца рРНК.
Синим цветом обозначены белки, «выключение» которых уменьшало ядрышко; красным — увеличивало. Интенсивность цвета соответствует степени изменения размеров.
Хорошо заметно, что белки, ответственные за полиаденилирование, экспорт мРНК, ацетилирование гистонов и транспорт, в большинстве случаев вызывают уменьшение размеров ядрышка, в то время как TRAMP увеличивает его. Из этого можно сделать вывод, что TRAMP играет роль супрессора транскрипции рРНК.

К примеру, к увеличению размеров ядрышка приводили мутации в генах, ответственных за регуляцию клеточного цикла, процессинг рибосомальной и матричной РНК и репликацию ДНК. Утрата же функций белками, участвующими в таких фундаментальных процессах, как везикулярный транспорт из ЭР в Гольджи, синтез рРНК, сборка нуклеосом, регуляция транскрипции и ацетилирование гистонов, приводила к фенотипу с уменьшенным ядрышком. Основываясь на этих фактах, можно сделать вывод о том, что регуляция активности полимеразы I — высоко консервативный процесс, который регулируется функционально идентичными белками даже у эволюционно удаленных организмов.

Однако исследователей не удовлетворил этот ответ, и они решили выяснить, имеются ли видоспецифичные регуляторы ядрышкового размера. Таким кандидатом стал белковый комплекс HIR, чьи ортологи содержатся в большинстве эукариотических организмов: от дрожжей до человека. Данный комплекс участвует в целом ряде процессов: сборке нуклеосом, регуляции транскрипции, элонгации, сайленсинге генов и даже старении. Но участие этого белка в транскрипции именно рДНК ранее не было доказано, и исследователи предположили, что HIR в дрожжах обладает такой функцией, и она является видоспецифичной. Учёным удалось найти доказательства своим предположениям: мутации в генах, кодирующих субъединицы комплекса, приводили к повышению концентрации пре-РНК и увеличению ядрышка. Подобный опыт был проведён и для дрозофилы, где мишенью стал HIRA — аналог HIR. Однако в этом случае никакого влияния на размер ядрышка обнаружено не было [4]. Несмотря на высокую консервативность механизмов регуляции активности РНК-полимеразы I, за этот процесс могут быть ответственны и белковые комплексы, часть функций которых специфична для конкретного вида.

Помимо выяснения функций белков, связанных с активностью полимеразы I, учёные попытались выяснить и их внутриклеточную локализацию. Как оказалось, бóльшая часть из тех, что связана с размером ядрышка, локализована в ядре, ядрышке, эндоплазматическом ретикулуме и аппарате Гольджи (рис. 2), — значит, деятельность этих органелл связана с корректной работой РНК-полимеразы I.

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышко

Рисунок 2. Регуляторы транскрипции рДНК у S. cerevisiae. а — Внутриклеточное распределение белков, влияющих на размер ядрышка (на примере дрожжей). Такие белки располагаются во многих органеллах, но больше всего их в ядре и ядрышке. Это согласуется с идеей о том, что варьирование размеров ядрышка вызвано изменением активности РНК-полимеразы I. б — Некоторые белки дрожжей, мутации в которых влияют на фенотип ядрышка. HIR complex — мультифункциональный белковый комплекс, регулирующий транскрипцию, опосредованную полимеразой I. Covalent chromatin modification — белки, ответственные за модификацию хроматина. RNA polymerase II transcriptional preinitiation complex assembly — белки, участвующие в сборке комплекса, необходимого для инициации транскрипции РНК-полимеразой II. FACT—NEK9 complex — белковый комплекс, взаимодействующий с гистонами и влияющий на транскрипцию, осуществляемую РНК-полимеразой II [7].
Легко заметить, что к увеличению ядрышка приводят мутации в тех белках, чьи функции связаны с регуляцией состояния хроматина. В то же время «выключение» белков, влияющих на активность РНК-полимеразы II и, как следствие, на уровень биосинтеза белка, вызывают уменьшение размеров ядрышка.

Как уже отмечалось, для быстрорастущих и делящихся клеток характерно гипертрофированное ядрышко. Здесь учёные и решили выяснить: а всегда ли увеличение размеров ядрышка означает заодно и возрастание скорости роста и деления клеток до аномальных значений? Чтобы ответить на этот вопрос, учёные взяли 50 линий дрожжей с мутациями по не жизненно важным генам, и одну контрольную линию дикого типа. Во время наблюдения не удалось установить никаких значимых различий в скоростях роста и деления между мутантами и диким типом. Из этого можно сделать следующий вывод: увеличенное ядрышко и повышенная активность полимеразы I не являются достаточными факторами для перерождения клетки в раковую.

Фундаментальные исследования — это хорошо, но большинству людей интересно прикладное применение знаний. Так каким же образом данная замечательная работа поможет на практике? Прежде всего, стоит помнить, что не всякое повышение активности РНК-полимеразы I приводит к злокачественному фенотипу, но каждый злокачественный фенотип содержит гиперактивный фермент. Значит, мишенью может служить как сама полимераза, так и гены, контролирующие её работу. К примеру, посредством всё той же РНК-интерференции можно заглушить гены, которые после утраты функций приводят к уменьшению размеров ядрышка, а значит, и к ослаблению синтеза рРНК. Другой путь — непосредственное ингибирование работы РНК-полимеразы I. И такой ингибитор был найден: это препарат CX-3543, обладающий противоопухолевой активностью и проходящий в настоящее время клинические испытания. Действительно, описанная нами работа американских и канадских учёных имеет ценность не только в области фундаментальных исследований, но и помогает найти новые способы терапии рака.

Источник

Научная электронная библиотека

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышко

§ 3.1.4. Строение клетки

Размеры клетки широко варьируют от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса). У всех клеток, независимо от их формы, размеров, функциональной нагрузки обнаруживается сходное строение (рис. 3.13).

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышко

Рис. 3.13. Схема строения живой клетки: 1 – оболочка; 2 – мембрана; 3 – цитоплазма; 4 – ядро; 4а – ядрышко; 5 – рибосомы; 6 – эндоплазматическая сеть (ЭПС); 7 – митохондрии; 8 – комплекс гольджи; 9 – лизосомы; 10 – пластиды; 11 – клеточные включения

Снаружи клетка одета мембраной. Внутренняя часть клетки содержит многочисленные органоиды – структурные образования клетки, выполняющие определенные функции жизнедеятельности клетки.

1. Оболочка. Присутствует только у растительных клеток. Состоит из волокон целлюлозы. Функции оболочки: защита клетки от внешних повреждений, придает стабильную форму клетки, эластичность растительным тканям.

Повреждение наружной оболочки приводит к гибели клетки (цитолиз).

2. Мембрана. Тончайшая структура (75 Ǻ), состоит из двойного слоя молекул липидов и одного слоя белков. Такая структура обеспечивает уникальную эластичность и прочность мембране

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышкоучастие в обмене веществ. Эта функция связана с избирательной проницаемостью в клетку определенных веществ и выведение из нее продуктов обмена. В процессе питания в клетку могут проникать определенные растворы веществ (пиноцитоз) и твердые частицы (фагоцитоз).

Явление фагоцитоза – поглощение клеткой твердых частиц – впервые было описано русским врачом Мечниковым. Фагоцитарная особенность лежит в основе процесса иммунитета. Особенно развита у лейкоцитов, клеток костного мозга, лимфатических узлов, селезенки, надпочечников и гипофиза.

Пиноцитоз – поглощение клеткой растворов – состоит в том, что мельчайшие пузырьки жидкости втягиваются через образующуюся воронку, проникают через мембрану и усваиваются клеткой.

3. Цитоплазма – внутренняя среда клетки. Представляет собой гелеобразную жидкость (коллоидная система), состоит на 80 % из воды, в которой растворены белки, липиды, углеводы, неорганические вещества. Цитоплазма живой клетки находится в постоянном движении (циклоз).

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышкотранспортировка питательных веществ и утилизация продуктов обмена клетки;

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышкобуферность цитоплазмы (постоянство физико-химических свойств) обеспечивает гомеостаз клетки, поддерживает постоянные нужные параметры жизнедеятельности;

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышкоподдержание тургора (упругость) клетки;

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышковсе биохимические реакции происходят только в водных растворах, что обеспечивается в среде цитоплазмы.

4. Ядро – обязательный органоид эукариотических клеток. Впервые было исследовано и описано Р. Броуном в 1831 г. В молодых клетках расположено в центре клетки, в старых – смещается в сторону. Снаружи ядро окружено мембраной с крупными порами, способными пропускать крупные макромолекулы. Внутри ядро заполнено клеточным соком – кариоплазмой, основная часть ядра заполнена хроматином – ядерным веществом, содержащим ДНК и белок. Перед делением хроматин образует палочковидные хромосомы. Причём, хромосомы одинакового строения (но содержащие разные ДНК!) образуют пары, зрительно воспринимаемые как одно целое (рис. 3.14).

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышко

Рис. 3.14. Хромосомный набор человеческой клетки перед началом деления

Структурирование всех хромосом в пары свидетельствует о том, что число хромосом – чётное. Поэтому, его часто обозначают 2n, где n – количество хромосомных пар, а соответствующий набор хромосом называют диплоидным. Например, у голубей n = 40 (80 хромосом), у мухи n = 6 (12 хромосом), у собаки n = 39 (78 хромосом), у аскариды n = 1 (2 хромосомы). У человека n = 23 (46 хромосом). Однако, в половых клетках число хромосом в два раза меньше. Поэтому набор хромосом в половых клетках называется гаплоидным. Клетки, не являющиеся половыми называются соматическими. Иногда клетки с гаплоидным набором хромосом называют гаплоидными клетками, а с диплоидным набором хромосом – диплоидными клетками.

При слиянии двух родительских гаплоидных половых клеток образуется диплоидная клетка, дающая начало новому организму с набором генов отца и матери

Совокупность всех хромосом ядра (а значит и генов) клетки называется генотип. Именно генотип определяет все внешние и внутренние признаки конкретного организма.

В соматических клетках 44 Х-образные хромосомы (22 пары) у женщин и мужчин идентичны (сходны по строению), их называют аутосомами. А 23-я пара имеет конфигурацию ХХ – у женщин и ХY – у мужчин. Эти пары хромосом именуются половыми хромосомами.

В половых клетках 22 хромосомы также одинаковые у яйцеклеток и у сперматозоидов, а 23-я хромосома конфигурации Х – у яйцеклетки и Х или Y – у сперматозоидов. Поэтому при слиянии половых клеток и образовании пар хромосом, 23-я пара будет ( <ХY>или <ХХ>) определять пол будущего ребенка.

Необходимо помнить, что хотя в соматических клетках набор хромосом диплоидный (2n), однако, перед началом деления клеток происходит репликация ДНК, то есть, удвоение их количества, а, значит, и удвоение
количества хромосом. Поэтому перед началом деления соматической клетки в ней насчитывается 4n хромосом (рис. 16). Она становится тетраплоидной.

– хранение генетической информации;

– контроль за всеми процессами, происходящими в клетке: делением, дыханием, питанием и др.

4а. Ядрышко – структура, содержащаяся в ядре. Ядро может содержат 1, 2 или более ядрышек. Функция ядрышка – формирование рибосом.

Следует отметить, что не все клетки имеют оформленное ядро. Клетки, имеющие ядро называются эукариотическими или эукариотами. Клетки, не имеющие ядра, называются прокариотическими или прокариотами. Функции ядра у прокариот несёт одна нить ДНК (именуется хромосома), в которой хранится вся генетическая информация. К прокариотам относятся бактерии и сине-зеленые водоросли. Как правило, у прокариотов отсутствуют и некоторые другие органоиды. Размеры прокариотических клеток меньше, чем размеры эукариот.

5. Рибосомы – самые мелкие органоиды клетки. Были обнаружены в 1954 г. Французским ученым Паладом. Рибосомы были обнаружены в цитоплазме, а также на гранулярной ЭПС и в ядре.

Функция рибосом: обеспечение биосинтеза белка.

6. Эндоплазматическая сеть. Представляет собой каналы и полости, ограниченные мембраной. Различают две разновидности ЭПС: гранулярная ЭПС и агранулярная ЭПС. Гранулярная ЭПС морфологически отличается от агранулярной наличием на ее поверхности многочисленных рибосом (на агранулярной ЭПС рибосомы отсутствуют).

Функции эндоплазматической сети:

– участие в синтезе органических веществ: на гранулярной ЭПС синтезируются белки, на агранулярной – липиды и углеводы;

– транспортировка продуктов синтеза ко всем частям клетки.

Несложно уяснить, что гранулярная ЭПС характерна для клеток, синтезирующих белки (например клетки желез внутренней секреции), агранулярная ЭПС характерна для клеток-производителей углеводов и липидов (например клетки жировой ткани).

7. Митохондрии – крупные органоиды, состоящие из двойного слоя мембран: наружная – гладкая, внутренняя образует многочисленные гребнеобразные складки – кристы. Внутри митохондрии заполнены жидкостью (матрикс).

Функции митохондрий: основная функция митохондрий – обеспечение клетки энергией. Этот процесс происходит за счет синтеза аденозинтрифосфорной кислоты (АТФ) (рис. 3.15), в которой фрагмент

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышко

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышко

Рис. 3.15. Структурная формула аденозинфосфорных кислот. Для аденозинтрифосфорной кислоты n = 3, для аденозиндифосфорной кислоты n = 2, для аденозинмонофосфорной кислоты n = 1

При взаимодействии молекулы аденозинтрифосфорной кислоты с водой отщепляется один остаток фосфорной кислоты, в результате чего образуется аденозиндифосфорная кислота – АДФ и выделяется огромное количество энергии:

АТФ + Н2О = АДФ + Н3РО4 + 10 000 калорий.

Впоследствии от АДФ может отщепляться еще один остаток фосфорной кислоты, образуя АМФ – аденозинмонофосфорную кислоту.

АДФ + Н2О = АМФ + Н3РО4 + 10 000 калорий[37].

Освободившаяся энергия используется для жизнедеятельности клетки (КПД процесса превышает 80 %!).

Наряду с распадом АТФ и выделением энергии в клетке постоянно происходит синтез АТФ и накопление энергии (обратные реакции).

Количество митохондрий в клетке зависит от потребности последней в энергии. Так, в клетках кожи человека находится в среднем 5–6 митохондрий, в клетках мышц – до 1000, в клетках печени – до 2500!

8. Комплекс Гольджи. Итальянский ученый Гольджи обнаружил и описал структуру клетки, напоминающую стопки мембран, цистерны, пузырьки и трубочки. Расположена эта система чаще всего возле ядра.

Функции комплекса Гольджи: в полостях комплекса накапливаются всевозможные продукты обмена клетки, которые по каким-либо причинам не вывелись наружу. В последствии эти продукты могут быть использованы клеткой для процессов жизнедеятельности. Из пузырьков и цистерночек комплекса Гольджи в растительных клетках образуются вакуоли, заполненные клеточным соком.

9. Лизосомы – мелкие органоиды. Представляют собой пузырьки, окруженные мембраной. Внутри лизосомы заполнены пищеварительными ферментами (обнаружено 12 ферментов), которые расщепляют и переваривают крупные макромолекулы (белки, полисахариды, нуклеиновые кислоты).

Функции лизосом: растворение и переваривание макромолекул. Лизосомы участвуют в фагоцитозе. Понятно, что основная функция по перевариванию поступающих в клетку частиц принадлежит лизосомам.

10. Пластиды. Эти органоиды характерны только для растительных клеток. Форма напоминает двояковыпуклую линзу. Структура пластид напоминает таковую у митохондрий: двойной слой мембраны. Наружная – гладкая, внутренняя образует складки, называемые тилакоидами. На тилакоидах происходит основной жизненно важный для всех зеленых растений процесс – фотосинтез:

За что отвечает ядрышко. Смотреть фото За что отвечает ядрышко. Смотреть картинку За что отвечает ядрышко. Картинка про За что отвечает ядрышко. Фото За что отвечает ядрышко

Пластиды бывают трех типов:

1) Хлоропласты – зеленые пластиды. Их цвет обусловлен наличием хлорофилла. Хлорофилл – основное вещество хлоропластов (имеет зеленый цвет). Только благодаря хлорофиллу возможен процесс фотосинтеза (см. раздел 4.2). Хлоропласты придают зеленый цвет растительным организмам.

2) Хромопласты – пластиды, имеющие различные окраски: от ярко-желтого до пурпурно-багряного. Наличие различных пигментов окрашивают плоды, цветки и осенние листья растений в соответствующие цвета. Этот факт особенно важен для привлечения насекомых к цветкам, как природный индикатор созревания плодов и др.

3) Лейкопласты – бесцветные пластиды, в которых происходит накопление запасных питательных веществ (например, крахмала).

Некоторые виды пластид могут переходить друг в друга: например, переход хлоропластов в хромопласты: созревание томатов, яблок, вишни, и т. д.; изменение окраски листьев в осенний период времени. Лейкопласты могут переходить в хлоропласты: позеленение картофеля на свету. Это доказывает общность происхождения пластид.

11. Клеточные включения. Вакуоли. Это непостоянные и необязательные составляющие клетки. Они могут появляться и исчезать в течение всей жизни клетки. К ним относятся капли жира, зерна крахмала и гликогена, кристаллы щавелево-кислого кальция и др. Жидкие продукты обмена называются клеточным соком и накапливаются они в вакуолях. В клеточном соке растворены сахара, минеральные соли, пигменты и т. д. Чем старше клетка, тем больше клеточного сока накапливает клетка. Молодые клетки практически не содержат вакуолей.

Помимо перечисленного некоторые специализированные клетки обладают специальными органоидами. К ним относятся:

– реснички и жгутики, представляющие собой выросты мембраны клетки, осуществляющие движения клетки. Они имеются у одноклеточных организмов и многоклеточных (кишечный эпителий, сперматозоиды, эпителий дыхательных путей);

– миофибриллы – тонкие нити мышечных клеток, участвующие в сокращении мышц;

– нейрофибриллы – органоиды, характерные для нервных клеток и участвующие в проведении нервных импульсов. Кроме того, в состав клеток входят центриоли – две (иногда более) цилиндрические структуры диаметром около 0,1 мкм и длиной 0,3 мкм. Место расположения центриолей в период между делениями клетки считается серединой клеточного центра. При делении клетки центриоли расходятся в противоположные стороны – к полюсам, определяя ориентацию веретена деления (рис. 16).

Следует иметь в виду, что, хотя животные и растительные клетки имеют много общего, но между ними существуют и серьёзные различия (табл. 3.1).

Более общая классификация клеток представлена на рис. 3.16.

Одно из основных отличий бактерий от архей, состоит в химическом составе мембраны. Бактерии отделены от внешней среды двойным слоем липидов (жиров и жироподобных веществ). Мембраны архей состоят из терпеновых спиртов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *