Знак объединения в алгебре что значит

Математика часто оперирует абстрактными объектами, для задания связи между которыми существуют различные операции, такие как пересечение и объединение множеств. Понятие множества является интуитивным, не определяемым. Оно обычно ассоциируется с набором чего-либо, группой каких-то предметов или живых объектов, совокупностью некоторых условий, рассматривается как класс, семейство в некоторой классификации, промежуток числовой прямой. Например, в геометрии рассматриваются линии как множества точек.

То, из чего состоит множество, называется его элементами.

Графическим изображением, служащим для наглядности рассматриваемых объектов, является круг Эйлера.

Что такое пересечение множеств

Для любого набора множеств их пересечением называется множество, состоящее из всех элементов, принадлежащих одновременно каждому из заданных. Другими словами, это совокупность всех общих элементов.

С помощью кругов Эйлера-Венна пересечение можно изобразить так:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Часто применяется для определения решений систем уравнений и неравенств.

Ассоциируется с обычным умножением двух числовых объектов.

Что такое объединение множеств

Изображение кругами Эйлера выглядит следующим образом:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Часто используется при решении уравнений и неравенств, подчёркивая наличие серий корней и решений, нескольких используемых промежутков числовой прямой.

В обычной математике близко по смыслу с операцией, называемой «сложение».

Свойства пересечения и объединения множеств

Для решения задач нужно знать о следующих свойствах:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

1. Коммутативность (перестановочность):

Эти свойства распространяются на любое количество компонентов. Следуют из определения операций.

2. Ассоциативность (расстановка скобок):

Данные свойства также применимы к большому количеству компонентов. Позволяют опускать скобки и упрощать запись.

3. Дистрибутивность (раскрытие скобок):

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C);

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C).

4. Закон идемпотентности (идентичности):

Множество, не содержащее ни одного элемента, называется пустым. Обозначается перечёркнутым нулём: Ø

Выполнение операций с Ø:

Прослеживается аналог со сложением и умножением на ноль.

Операции над множествами

Помимо объединения и пересечения существуют другие операции:

Для двух множеств A и B можно определить их разность как набор элементов, входящих в A и не содержащихся в B:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Рассматривая некоторое множество в качестве содержащего все остальные, можно прийти к понятию «дополнение», как к совокупности всех элементов, не входящих в A:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Благодаря этой операции свойства объединения и пересечения можно расширить/

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Примеры решения задач

Задача №1

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Выписать все элементы множества

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

При поиске M операции выполняются последовательно.

B \ A состоит из всех элементов B, которые не принадлежат A, поэтому:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

B ∪ A включает в себя все элементы, принадлежащие хотя бы одному из множеств A или B. Таким образом:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

M = (B \ A) \ (B ∪ A) состоит из всех элементов B \ A, которые не принадлежат B ∪ A, следовательно, M = Ø.

Задача №2

Доказать методом включений тождество:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Необходимо доказать выполнение включений:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Выбирается произвольный x из (A ∩ B) ∪ C. По определению операции объединения x ∈ B ∩ A или x ∈ C.

Если x ∈ B ∩ A, то по определению пересечения x ∈ B и x ∈ A.

Так как x ∈ A, то x ∈ C ∪ A; так как x ∈ B, то x ∈ C ∪ B, следовательно, x ∈ (A ∪ C) ∩ (B ∪ C).

Если x ∈ C, то x ∈ C ∪ A и x ∈ C ∪ B, а значит: x ∈ (A ∪ C) ∩ (B ∪ C).

Поскольку x ∈ (A ∩ B) ∪ C был выбран произвольно, утверждается, что любой элемент этого множества содержится в (A ∪ C) ∩ (B ∪ C), то есть:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Выбирается произвольный y из (A ∪ C) ∩ (B ∪ C).

По определению операции пересечения y ∈ C ∪ A и y ∈ C ∪ B.

Так как y ∈ C ∪ A, то y ∈ A или y ∈ C; так как y ∈ C ∪ B, то y ∈ C или y ∈ B. Таким образом, y ∈ C или y ∈ A и y ∈ B.

Если y ∈ A и y ∈ B, то y ∈ B ∩ A, а, следовательно, y ∈ (A ∩ B) ∪ C; если y ∈ C, то также y ∈ (A ∩ B) ∪ C.

Поскольку y из (A ∪ C) ∩ (B ∪ C) выбирался произвольно, утверждается, что любой элемент этого множества содержится в (A ∩ B) ∪ C, то есть

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Из пунктов 1 и 2 вытекает, что

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Источник

Пересечение и объединение множеств

Вы будете перенаправлены на Автор24

В результате математических операций над множествами из исходных множеств получается новое множество, причем этот результат однозначен. Примерами таких операций являются пересечение и объединение множеств. Эти операции производятся по определенным правилам, о которых пойдет речь ниже.

Объединение двух множеств представляет собой совокупность таких элементов, что каждый из них является элементом одного из исходных множеств. Пересечение же множеств состоит из всех элементов, общих для исходных множеств.

Обозначения множеств. Знаки объединения и пересечения множеств

В такой форме объединение записывается как

Для графического выражения операций пересечения и объединения применяются знаки пересечения и объединения множеств:

Готовые работы на аналогичную тему

Правила нахождения пересечений и объединений

Правила для нахождения пересечений и объединений множеств заключаются в следующем:

Для нахождения пересечения нескольких конечных множеств, нужно перебрать числа первого из них и выяснить, принадлежит ли текущий элемент каждому из рассматриваемых множеств. Если это условие не соблюдается, он не принадлежит пересечению. В качестве проверочного (элементы которого перебираются) следует выбирать множество с наименьшим числом элементов.

$A \cap B \cap C \cap D = \<1, 2\>$.

Исследование множеств с помощью координатной прямой

С помощью координатной прямой удобно анализировать пересечения и объединения множеств. Они изображаются друг под другом на координатных прямых с совпадающими точками и направлениями отсчета. Для отображения объединения множеств координатные прямые отмечают слева квадратной скобкой, для обозначения пересечения используется фигурная скобка.

Для решения применим графический метод:

Рисунок 1. Графическое решение задачи. Автор24 — интернет-биржа студенческих работ

Ответ:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 05 03 2021

Источник

Нахождение пересечения и объединения числовых множеств, что такое пересечение множеств

Решение некоторых математических задач предполагает нахождение пересечения и объединения числовых множеств. В статье ниже рассмотрим эти действия подробно, в том числе, на конкретных примерах. Полученный навык будет применим для решения неравенств с одной переменной и систем неравенств.

Простейшие случаи

Когда мы говорим о простейших случаях в рассматриваемой теме, то имеем в виду нахождение пересечения и объединения числовых множеств, представляющих из себя набор отдельных чисел. В подобных случаях будет достаточно использования определения пересечения и объединения множеств.

Объединение двух множеств – это множество, в котором каждый элемент является элементом одного из исходных множеств.

Пересечение множеств – это множество, которое состоит из всех общих элементов исходных множеств.

Из указанных определений логически следуют следующие правила:

— чтобы составить объединение двух числовых множеств, имеющих конечное количество элементов, необходимо записать все элементы одного множества и дописать к ним недостающие элементы из второго множества;

— чтобы составить пересечение двух числовых множеств, необходимо элементы первого множества один за другим проверить на принадлежность второму множеству. Те из них, которые окажутся принадлежащими обоим множествам и будут составлять пересечение.

Полученное согласно первому правилу множество будет включать в себя все элементы, принадлежащие хотя бы одному из исходных множеств, т.е. станет объединением этих множеств по определению.

Множество, полученное согласно второму правилу, будет включать в себя все общие элементы исходных множеств, т.е. станет пересечением исходных множеств.

Рассмотрим применение полученных правил на практических примерах.

Решение

Однако на практике, чтобы найти объединение и пересечение трех и более простейших числовых множеств, которые состоят из конечного количества отдельных чисел, удобнее применять правила, аналогичные указанным выше.

Что же касается решения задачи на нахождение пересечения трех и более числовых множеств, которые состоят из конечного количества отдельных чисел, необходимо одно за другим перебрать числа первого множества и поэтапно проверять, принадлежит ли рассматриваемое число каждому из оставшихся множеств. Для пояснения рассмотрим числовые множества:

Координатная прямая и числовые промежутки как объединение их частей

Как определить пересечение и объединение при помощи изображений числовых множеств

С темой нахождения пересечения и объединения множеств возможно наглядно разобраться, если использовать изображения заданных множеств на координатной прямой (если только речь – не о простейших случаях, рассмотренных в самом начале статьи).

Мы рассмотрим общий подход, который позволяет определить результат пересечения и объединения двух числовых множеств. Опишем подход в виде алгоритма. Рассматривать его шаги будем постепенно, каждый раз приводя очередной этап решения конкретного примера.

Решение

В нашем примере для записи пересечения и объединения числовых множеств имеем: Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значити Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значити Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Теперь необходимо поочередно проверить принадлежность каждого из записанных множеств искомому пересечению или объединению. Получаемые выводы поэтапно отмечаются на нижней координатной прямой: когда промежуток является частью пересечения или объединения, над ним рисуется штриховка. Когда точка входит в пересечение или объединение, то штрих заменяется на сплошную точку; если точка не является частью пересечения или объединения – ее делают выколотой. В этих действиях нужно придерживаться таких правил:

-. промежуток становится частью пересечения, если он одновременно является частью множества A и множества B (или иными словами – если есть штриховка над этим промежутком на обеих координатных прямых, отображающих множества А и B );

— точка становится частью пересечения, если она является одновременно частью каждого из множеств А и В (иными словами – если точка является невыколотой или внутренней точкой какого-либо интервала обоих числовых множеств A и B );

— точка становится частью объединения, если она является частью хотя бы одного из множеств A и B (иными словами – точка является невыколотой или внутренней точкой какого-либо интервала хотя бы одного из множеств A и B ).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Оно является частью множества B (над интервалом присутствует штриховка), но не входит в множество A (над интервалом штриховка отсутствует): не будет входить в искомое пересечение, а значит на нижней координатной прямой не появляется никаких новых отметок:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Промежуток входит в оба множества A и B (над промежутком присутствует штриховка), следовательно, становится частью пересечения. Штрихуем место над рассмотренным промежутком:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Имея некий практический опыт применения правил нахождения пересечений и объединений множеств, описанные проверки легко проводятся устно, что позволяет быстро записывать конечный результат. Продемонстрируем на практическом примере, как выглядит его решение без детальных пояснений.

Решение

Отметим заданные числовые множества на координатных прямых, чтобы иметь возможность получить иллюстрацию искомых пересечения и объединения:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значитЗнак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Также понятно, что при достаточном понимании процесса указанный алгоритм возможно подвергнуть оптимизации. К примеру, в процессе нахождения пересечения можно не тратить время на проверку всех промежутков и множеств, представляющих собой отдельные числа, ограничившись рассмотрением только тех промежутков и чисел, которые составляют множество А или В. Прочие промежутки в любом случае не войдут в пересечение, т.к. не являются частью исходных множеств. Составим иллюстрацию сказанного на практическом примере.

Необходимо определить пересечение исходных множеств.

Решение

Геометрически изобразим числовые множества А и В :

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Граничные точки исходных множеств разобьют числовую прямую на несколько множеств:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

В заключении статьи обговорим еще, как решить задачу о нахождении пересечения и объединения нескольких множеств (более 2 ). Сведем ее, как рекомендовалось ранее, к необходимости определения пересечения и объединения первых двух множеств, затем полученного результата с третьим множеством и так далее. А можно использовать описанный выше алгоритм с единственным только отличием, что проверку вхождения промежутков и множеств, представляющих собой отдельные числа, необходимо проводить не по двум, а всем заданным множествам. Рассмотрим на примере.

Решение

Отображаем заданные числовые множества на координатных прямых и ставим с левой от них стороны фигурную скобку, обозначая пересечение, а также квадратную, обозначая объединение. Ниже отобразим координатные прямые с отмеченными штрихами граничными точками числовых множеств:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значитЗнак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Отметим также, что искомое пересечение числовых множеств часто является пустым множеством. Происходит это в тех случаях, когда в заданные множества не включены элементы, одновременно принадлежащие им всем.

Решение

Отобразим исходные множества на координатных прямых и штрихами граничные точки этих множеств на дополнительной прямой.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Ни одно из них не является одновременно элементом всех исходных множеств, следовательно, пересечение заданных множеств есть пустое множество.

Множества удобно изображать в виде кругов, которые называют кругами Эйлера.

На рисунке множество пересечения множеств X и Y закрашено в оранжевый цвет.

Источник

Как легко понять знаки Σ и П с помощью программирования

Для тех, кто подзабыл матешу

Вот говорят, что если ты не закончил Физтех, ФПМ или Бауманку, тебе в программировании делать нечего. Почему так говорят? Потому что, дескать, ты не учил сложную математику, а в программировании без неё никуда.

Это всё чушь, конечно. Если вы плохо знаете математику, вы можете быть блестящим разработчиком. Вы вряд ли напишете драйверы для видеокарты, но вы запросто сделаете мобильное приложение или веб-сервис. А это — основные деньги в этой среде.

Но всё же, чтобы получить некоторое интеллектуальное превосходство, вот вам пара примеров из страшного мира математики. Пусть они покажут вам, что не все закорючки в математике — это ад и ужас. Вот две нестрашные закорючки.

Знак Σ — сумма

Когда математикам нужно сложить несколько чисел подряд, они иногда пишут так:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Σ (читается «сигма») — это знак алгебраической суммы, который означает, что нам нужно сложить все числа от нижнего до верхнего, а перед этим сделать с ними то, что написано после знака Σ.

На картинке выше написано следующее: «посчитать сумму всех чисел от 5 до 15, умноженных на два». То есть:

Давайте для закрепления ещё один пример. На картинке ниже будет сказано «Найди сумму квадратов чисел от 5 до 10». То есть «возьми все числа от 5 до 10, каждое из них возведи в квадрат, а результаты сложи».

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Но мы с вами как программисты видим, что здесь есть повторяющиеся действия: мы много раз складываем числа, которые меняются по одному и тому же правилу. А раз мы знаем это правило и знаем, сколько раз надо его применить, то это легко превратить в цикл. Для наглядности мы показали, какие параметры в Σ за что отвечают в цикле:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Произведение П

С произведением в математике работает точно такое же правило, только мы не складываем все элементы, а перемножаем их друг на друга:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

А если это перевести в цикл, то алгоритм получится почти такой же, что и в сложении:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Что дальше

Сумма и произведение — простые математические операции, пусть они и обозначаются страшными символами. Впереди нас ждут интегралы, дифференциалы, приращения и бесконечные ряды. С ними тоже всё не так сложно, как кажется на первый взгляд.

Источник

math4school.ru

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Математические знаки

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Бесконечность. Дж.Валлис (1655).

Впервые встречается в трактате английского математика Джон Валиса «О конических сечениях».

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Основание натуральных логарифмов. Л.Эй лер (1736).

Математическая константа, трансцендентное число. Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614). Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Саму же константу впервые вычислил швейцарский математик Якоб Бернулли в ходе решения задачи о предельной величине процентного дохода.

Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 1690–1691 годы. Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера. Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a, b, c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Отношение длины окружности к диаметру. У.Джонс (1706), Л.Эйлер (1736).

Математическая константа, иррациональное число. Число «пи», старое название – лудольфово число. Как и всякое иррациональное число, π представляется бесконечной непереодической десятичной дробью:

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Мнимая единица. Л.Эйлер (1777, в печати – 1794).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Единичные векторы. У.Гамильтон (1853).

Единичные векторы часто связывают с координатными осями системы координат (в частности, с осями декартовой системы координат). Единичный вектор, направленный вдоль оси Х, обозначается i, единичный вектор, направленный вдоль оси Y, обозначается j, а единичный вектор, направленный вдоль оси Z, обозначается k. Векторы i, j, k называются ортами, они имеют единичные модули. Термин «орт» ввёл английский математик, инженер Оливер Хевисайд (1892), а обозначения i, j, k – ирландский математик Уильям Гамильтон.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Целая часть числа, антье. К.Гаусс (1808).

Целой частью числа [х] числа х называется наибольшее целое число, не превосходящее х. Так, [5,3]=5, [–3,6]=–4. Функцию [х] называют также «антье от х». Символ функции «целая часть» ввёл Карл Гаусс в 1808 году. Некоторые математики предпочитают использовать вместо него обозначение E(x), предложенное в 1798 году Лежандром.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Угол параллельности. Н.И. Лобачевский (1835).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Неизвестные или переменные величины. Р. Декарт (1637).

В математике переменная – это величина, характеризующаяся множеством значений, которое она может принимать. При этом может иметься в виду как реальная физическая величина, временно рассматриваемая в отрыве от своего физического контекста, так и некая абстрактная величина, не имеющая никаких аналогов в реальном мире. Понятие переменной возникло в XVII в. первоначально под влиянием запросов естествознания, выдвинувшего на первый план изучение движения, процессов, а не только состояний. Это понятие требовало для своего выражения новых форм. Такими новыми формами и явились буквенная алгебра и аналитическая геометрия Рене Декарта. Впервые прямоугольную систему координат и обозначения х, у ввел Рене Декарт в своей работе «Рассуждение о методе» в 1637 году. Вклад в развитие координатного метода внес также Пьер Ферма, однако его работы были впервые опубликованы уже после его смерти. Декарт и Ферма применяли координатный метод только на плоскости. Координатный метод для трёхмерного пространства впервые применил Леонард Эйлер уже в XVIII веке.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Вектор. О.Коши (1853).

С самого начала вектор понимается как объект, имеющий величину, направление и (необязательно) точку приложения. Зачатки векторного исчисления появились вместе с геометрической моделью комплексных чисел у Гаусса (1831). Развитые операции с векторами опубликовал Гамильтон как часть своего кватернионного исчисления (вектор образовывали мнимые компоненты кватерниона). Гамильтон предложил сам термин вектор (от латинского слова vector, несущий) и описал некоторые операции векторного анализа. Этот формализм использовал Максвелл в своих трудах по электромагнетизму, тем самым обратив внимание учёных на новое исчисление. Вскоре вышли «Элементы векторного анализа» Гиббса (1880-е годы), а затем Хевисайд (1903) придал векторному анализу современный вид. Сам знак вектора ввёл в использование французский математик Огюстен Луи Коши в 1853 году.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значитЗнак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Сложение, вычитание. Я.Видман (1489).

Знаки плюса и минуса придумали, по-видимому, в немецкой математической школе «коссистов» (то есть алгебраистов). Они используются в учебнике Яна (Йоханнеса) Видмана «Быстрый и приятный счёт для всех торговцев», изданном в 1489 году. До этого сложение обозначалось буквой p (от латинского plus «больше») или латинским словом et (союз «и»), а вычитание – буквой m (от латинского minus «менее, меньше»). У Видмана символ плюса заменяет не только сложение, но и союз «и». Происхождение этих символов неясно, но, скорее всего, они ранее использовались в торговом деле как признаки прибыли и убытка. Оба символа вскоре получили общее распространение в Европе — за исключением Италии, которая ещё около века использовала старые обозначения.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Умножение. У.Оутред (1631), Г.Лейбниц (1698).

Знак умножения в виде косого крестика ввёл в 1631 году англичанин Уильям Оутред. До него использовали чаще всего букву M, хотя предлагались и другие обозначения: символ прямоугольника (французский математик Эригон, 1634), звёздочка (швейцарский математик Иоганн Ран, 1659). Позднее Готфрид Вильгельм Лейбниц заменил крестик на точку (конец XVII века), чтобы не путать его с буквой x; до него такая символика встречалась у немецкого астронома и математика Региомонтана (XV век) и английского учёного Томаса Хэрриота (1560 –1621).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Деление. И.Ран (1659), Г.Лейбниц (1684).

Уильям Оутред в качестве знака деления использовал косую черту /. Двоеточием деление стал обозначать Готфрид Лейбниц. До них часто использовали также букву D. Начиная с Фибоначчи, используется также горизонтальная черта дроби, употреблявшаяся ещё у Герона, Диофанта и в арабских сочинениях. В Англии и США распространение получил символ ÷ (обелюс), который предложил Иоганн Ран (возможно, при участии Джона Пелла) в 1659 году. Попытка Американского национального комитета по математическим стандартам (National Committee on Mathematical Requirements) вывести обелюс из практики (1923) оказалась безрезультатной.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Процент. М. де ла Порт (1685).

Сотая доля целого, принимаемого за единицу. Само слово «процент» происходит от латинского «pro centum», что означает в переводе «на сто». В 1685 году в Париже была издана книга «Руководство по коммерческой арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращённо от cento). Однако наборщик принял это «cto» за дробь и напечатал «%». Так из-за опечатки этот знак вошёл в обиход.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Степени. Р.Декарт (1637), И.Ньютон (1676).

Современная запись показателя степени введена Рене Декартом в его «Геометрии» (1637), правда, только для натуральных степеней с показателями больших 2. Позднее, Исаак Ньютон распространил эту форму записи на отрицательные и дробные показатели (1676), трактовку которых к этому времени уже предложили: фламандский математик и инженер Симон Стевин, английский математик Джон Валлис и французский математик Альбер Жирар.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Корни. К.Рудольф (1525), Р.Декарт (1637), А.Жирар (1629).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Логарифм, десятичный логарифм, натуральный логарифм. И.Кеплер (1624), Б.Кавальери (1632), А. Принсхейм (1893).

Термин «логарифм» принадлежит шотландскому математику Джону Неперу («Описание удивительной таблицы логарифмов», 1614); он возник из сочетания от греческих слов λογος (слово, отношение) и αριθμος (число). Логарифм у Дж. Непера – вспомогательное число для измерения отношения двух чисел. Современное определение логарифма впервые дано английским математиком Уильямом Гардинером (1742). По определению, логарифм числа b по основанию a (a 1, a > 0) – показатель степени m, в которую следует возвести число a (называемое основанием логарифма), чтобы получить b. Обозначается log ab. Итак, m = log ab, если a m = b.

Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми. Термин «натуральный логарифм» ввели Пьетро Менголи (1659) и Николас Меркатор (1668), хотя лондонский учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов.

До конца XIX века общепринятого обозначения логарифма не было, основание a указывалось то левее и выше символа log, то над ним. В конечном счёте математики пришли к выводу, что наиболее удобное место для основания – ниже строки, после символа log. Знак логарифма – результат сокращения слова «логарифм» – встречается в различных видах почти одновременно с появлением первых таблиц логарифмов, например Log – у И. Кеплера (1624) и Г. Бригса (1631), log – у Б. Кавальери (1632). Обозначение ln для натурального логарифма ввёл немецкий математик Альфред Прингсхейм (1893).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Синус, косинус, тангенс, котангенс. У.Оутред (сер. XVII века), И.Бернулли (XVIII в.), Л.Эйлер (1748, 1753).

Сокращённые обозначения для синуса и косинуса ввёл Уильям Оутред в середине XVII века. Сокращённые обозначения тангенса и котангенса: tg, ctg введены Иоганном Бернулли в XVIII веке, они получили распространение в Германии и России. В других странах употребляются названия этих функций tan, cot предложенные Альбером Жираром ещё ранее, в начале XVII века. В современную форму теорию тригонометрических функций привёл Леонард Эйлер (1748, 1753), ему же мы обязаны и закреплением настоящей символики. Термин «тригонометрические функции» введён немецким математиком и физиком Георгом Симоном Клюгелем в 1770 году.

Линия синуса у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды), затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские переводчики не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали арабскими буквами и стали называть линию синуса «джиба». Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus, имеющим то же значение. Термин «тангенс» (от лат. tangens – касающийся) был введен датским математиком Томасом Финке в его книге «Геометрия круглого» (1583).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Арксинус. К.Шерфер (1772), Ж.Лагранж (1772).

Обратные тригонометрические функции – математические функции, которые являются обратными к тригонометрическим функциям. Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк» (от лат. arc – дуга). К обратным тригонометрическим функциям обычно относят шесть функций: арксинус (arcsin), арккосинус (arccos), арктангенс (arctg), арккотангенс (arcctg), арксеканс (arcsec) и арккосеканс (arccosec). Впервые специальные символы для обратных тригонометрических функций использовал Даниил Бернулли (1729, 1736). Манера обозначать обратные тригонометрических функции с помощью приставки arc (от лат. arcus, дуга) появилась у австрийского математика Карла Шерфера и закрепилась благодаря французскому математику, астроному и механику Жозефу Луи Лагранжу. Имелось в виду, что, например, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: sin –1 и 1/sin, но они не получили широкого распространения.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Гиперболический синус, гиперболический косинус. В.Риккати (1757).

Первое появление гиперболических функций историки обнаружили в трудах английского математика Абрахама де Муавра (1707, 1722). Современное определение и обстоятельное их исследование выполнил итальянец Винченцо Риккати в 1757 году в работе «Opusculorum», он же предложил их обозначения: sh, ch. Риккати исходил из рассмотрения единичной гиперболы. Независимое открытие и дальнейшее исследование свойств гиперболических функций было проведено немецким математиком, физиком и философом Иоганном Ламбертом (1768), который установил широкий параллелизм формул обычной и гиперболической тригонометрии. Н.И. Лобачевский впоследствии использовал этот параллелизм, пытаясь доказать непротиворечивость неевклидовой геометрии, в которой обычная тригонометрия заменяется на гиперболическую.

Подобно тому, как тригонометрические синус и косинус являются координатами точки на координатной окружности, гиперболические синус и косинус являются координатами точки на гиперболе. Гиперболические функции выражаются через экспоненту и тесно связанных с тригонометрическими функциями: sh(x)=0,5(e x –e –x ), ch(x)=0,5(e x +e –x ). По аналогии с тригонометрическими функциями определены гиперболические тангенс и котангенс как отношения гиперболических синуса и косинуса, косинуса и синуса, соответственно.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Дифференциал. Г.Лейбниц (1675, в печати 1684).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Неопределённый интеграл. Г.Лейбниц (1675, в печати 1686).

Слово «интеграл» впервые в печати употребил Якоб Бернулли (1690). Возможно, термин образован от латинского integer – целый. По другому предположению, основой послужило латинское слово integro – приводить в прежнее состояние, восстанавливать. Знак ∫ используется для обозначения интеграла в математике и представляет собой стилизованное изображение первой буквы латинского слова summa – сумма. Впервые он был использован немецким математиком основателем дифференциального и интегрального исчислений Готфридом Лейбницем в конце XVII века. Другой из основателей дифференциального и интегрального исчислений Исаак Ньютон в своих работах не предложил альтернативной символики интеграла, хотя пробовал различные варианты: вертикальную черту над функцией или символ квадрата, который стоит перед функцией или окаймляет её. Неопределённый интеграл для функции y=f(x) — это совокупность всех первообразных данной функции.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Определённый интеграл. Ж.Фурье (1819–1822).

Определённый интеграл функции f(x) с нижним пределом a и верхним пределом b можно определить как разность F(b) – F(a) = a ∫ b f(x)dx, где F(х) – некоторая первообразная функции f(x). Определённый интеграл a ∫ b f(x)dx численно равен площади фигуры, ограниченной осью абсцисс, прямыми x=a и x=b и графиком функции f(x). Оформление определённого интеграла в привычном нам виде предложил французский математик и физик Жан Батист Жозеф Фурье в начале XIX века.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Производная. Г.Лейбниц (1675), Ж.Лагранж (1770, 1779).

Производная – основное понятие дифференциального исчисления, характеризующее скорость изменения функции f(x) при изменении аргумента x. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную в некоторой точке, называют дифференцируемой в данной точке. Процесс вычисления производной называется дифференцированием. Обратный процесс – интегрирование. В классическом дифференциальном исчислении производная чаще всего определяется через понятия теории пределов, однако исторически теория пределов появилась позже дифференциального исчисления.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Частная производная. А. Лежандр (1786), Ж.Лагранж (1797, 1801).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Разность, приращение. И.Бернулли (кон. XVII в. – перв. пол. XVIII в.), Л.Эйлер (1755).

Обозначение приращения буквой Δ впервые употребил швейцарский математик Иоганн Бернулли. В общую практику использования символ «дельта» вошёл после работ Леонарда Эйлера в 1755 году.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Сумма. Л.Эйлер (1755).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Произведение. К.Гаусс (1812).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Факториал. К.Крамп (1808).

Факториал числа n (обозначается n!, произносится «эн факториал») – произведение всех натуральных чисел до n включительно: n! = 1·2·3·. ·n. Например, 5! = 1·2·3·4·5 = 120. По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел. Факториал числа n равен числу перестановок из n элементов. Например, 3! = 6, действительно,

– все шесть и только шесть вариантов перестановок из трёх элементов.

Термин «факториал» ввёл французский математик и политический деятель Луи Франсуа Антуан Арбогаст (1800), обозначение n! – французский математик Кристиан Крамп (1808).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Модуль, абсолютная величина. К.Вейерштрасс (1841).

Модуль, абсолютная величина действительного числа х – неотрицательное число, определяемое следующим образом: |х| = х при х ≥ 0, и |х| = –х при х ≤ 0. Например, |7| = 7, |– 0,23| = –(–0,23) = 0,23. Модуль комплексного числа z = a + ib – действительное число, равное √(a 2 + b 2 ).

Считают, что термин «модуль» предложил использовать английский математик и философ, ученик Ньютона, Роджер Котс. Готфрид Лейбниц тоже использовал эту функцию, которую называл «модулем» и обозначал: mol x. Общепринятое обозначение абсолютной величины введено в 1841 году немецким математиком Карлом Вейерштрассом. Для комплексных чисел это понятие ввели французские математики Огюстен Коши и Жан Робер Арган в начале XIX века. В 1903 году австрийский учёный Конрад Лоренц использовал эту же символику для длины вектора.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Норма – функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или модуля числа. Знак «нормы» (от латинского слово «norma» – «правило», «образец») ввел немецкий математик Эрхард Шмидт в 1908 году.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Предел. С.Люилье (1786), У.Гамильтон (1853), многие математики (вплоть до нач. ХХ в.)

Предел – одно из основных понятий математического анализа, означающее, что некоторая переменная величина в рассматриваемом процессе ее изменения неограниченно приближается к определенному постоянному значению. Понятие предела на интуитивном уровне использовалось ещё во второй половине XVII века Исааком Ньютоном, а также математиками XVIII века, такими как Леонард Эйлер и Жозеф Луи Лагранж. Первые строгие определения предела последовательности дали Бернард Больцано в 1816 году и Огюстен Коши в 1821 году. Символ lim (3 первые буквы от латинского слова limes – граница) появился в 1787 году у швейцарского математика Симона Антуана Жана Люилье, но его использование ещё не напоминало современное. Выражение lim в более привычном для нас оформлении первым использовал ирландский математик Уильям Гамильтон в 1853 году. Близкое к современному обозначение ввёл Вейерштрасс, однако вместо привычной нам стрелки он использовал знак равенства. Стрелка появилась в начале XX века сразу у нескольких математиков – например, у английского математика Годфрида Харди в 1908 году.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Дзета-функция, дзета-функция Римана. Б.Риман (1857).

Аналитическая функция комплексного переменного s = σ + it, при σ > 1 определяемая абсолютно и равномерно сходящимся рядом Дирихле:

При σ > 1 справедливо представление в виде произведения Эйлера:

где произведение берётся по всем простым p. Дзета-функция играет большую роль в теории чисел. Как функция вещественного переменного, дзета-функция была введена в 1737 году (опубликовано в 1744 г.) Л. Эйлером, который и указал её разложение в произведение. Затем эта функция рассматривалась немецким математиком Л. Дирихле и, особенно успешно, российским математиком и механиком П.Л. Чебышевым при изучении закона распределения простых чисел. Однако наиболее глубокие свойства дзета-функции были обнаружены позднее, после работы немецкого математика Георга Фридриха Бернхарда Римана (1859), где дзета-функция рассматривалась как функция комплексного переменного; им же введено название «дзета-функция» и обозначение ζ(s) в 1857 году.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Гамма-функция, Γ-функция Эйлера. А.Лежандр (1814).

Гамма-функция – математическая функция, которая расширяет понятие факториала на поле комплексных чисел. Обычно обозначается Γ(z). Г-функция впервые введена Леонардом Эйлером в 1729 году; она определяется формулой:

Через Г-функцию выражается большое число интегралов, бесконечных произведений и сумм рядов. Широко используется в аналитической теории чисел. Название «Гамма-функция» и обозначение Γ(z) предложено французским математиком Адриеном Мари Лежандром в 1814 году.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Бета-функция, В-функция, В-функция Эйлера. Ж.Бине (1839).

Функция двух переменных p и q, определяемая при p>0, q>0 равенством:

В(p, q) = 0 ∫ 1 х р–1 (1–х) q–1 dx.

Бета-функцию можно выразить через Γ-функция: В(p, q) = Γ(p)Г(q)/Г(p+q). Подобно тому как гамма-функция для целых чисел является обобщением факториала, бета-функция, в некотором смысле, является обобщением биномиальных коэффициентов.

Название «бета-функция» и обозначение В(p, q) ввёл в 1839 году французский математик, механик и астроном Жак Филипп Мари Бине.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Оператор Лапласа, лапласиан. Р.Мёрфи (1833).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Оператор Гамильтона, набла-оператор, гамильтониан. О.Хевисайд (1892).

Векторный дифференциальный оператор вида

∇ = ∂/∂x · i + ∂/∂y · j + ∂/∂z · k,

где i, j, и k – координатные орты. Через оператор набла естественным способом выражаются основные операции векторного анализа, а так же оператор Лапласа.

В 1853 году ирландский математик Уильям Роуэн Гамильтон ввёл этот оператор и придумал для него символ ∇ в виде перевёрнутой греческой буквы Δ (дельта). У Гамильтона острие символа указывало налево, позже в работах шотландского математика и физика Питера Гатри Тэйта символ приобрёл современный вид. Гамильтон назвал этот символ словом «атлед» (слово «дельта», прочитанное наоборот). Позднее английские учёные, в том числе Оливер Хевисайд, стали называть этот символ «набла», по названию буквы ∇ в финикийском алфавите, где она и встречается. Происхождение буквы связано с музыкальным инструментом типа арфы, ναβλα (набла) по-древнегречески означает «арфа». Оператор получил название оператора Гамильтона, или оператора набла.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Функция. И.Бернулли (1718), Л.Эйлер (1734).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Равенство. Р.Рекорд (1557).

Знак равенства предложил уэльский врач и математик Роберт Рекорд в 1557 году; начертание символа было намного длиннее нынешнего, так как имитировало изображение двух параллельных отрезков. Автор пояснил, что нет в мире ничего более равного, чем два параллельных отрезка одинаковой длины. До этого в античной и средневековой математике равенство обозначалось словесно (например est egale). Рене Декарт в XVII веке при записи стал использовать æ (от лат. aequalis), а современный знак равенства он использовал чтобы указать, что коэффициент может быть отрицательным. Франсуа Виет знаком равенства обозначал вычитание. Символ Рекорда получил распространение далеко не сразу. Распространению символа Рекорда мешало то обстоятельство, что с античных времён такой же символ использовался для обозначения параллельности прямых; в конце концов было решено символ параллельности сделать вертикальным. В континентальной Европе знак » = » был введён Готфридом Лейбницем только на рубеже XVII–XVIII веков, то есть более чем через 100 лет, после смерти впервые использовавшего его для этого Роберта Рекорда.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Примерно равно, приблизительно равно. А.Гюнтер (1882).

Знак » ≈ » ввёл в использование как символ отношения «примерно равно» немецкий математик и физик Адам Вильгельм Зигмунд Гюнтер в 1882 году.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Больше, меньше. Т.Гарриот (1631).

Эти два знака ввёл в использование английский астроном, математик, этнограф и переводчик Томас Гарриот в 1631 году, до этого использовали слова «больше» и «меньше».

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Сравнимость. К.Гаусс (1801).

Сравнение – соотношение между двумя целыми числами n и m, означающее, что разность n–m этих чисел делится на заданное целое число а, называемое модулем сравнения; пишется: n≡m(mod а) и читается «числа n и m сравнимы по модулю а». Например, 3≡11(mod 4), так как 3–11 делится на 4; числа 3 и 11 сравнимы по модулю 4. Сравнения обладают многими свойствами, аналогичными свойствам равенств. Так, слагаемое, находящееся в одной части сравнения можно перенести с обратным знаком в другую часть, а сравнения с одним и тем же модулем можно складывать, вычитать, умножать, обе части сравнения можно умножать на одно и то же число и др. Например,

3≡9+2(mod 4) и 3–2≡9(mod 4)

– одновременно верные сравнения. А из пары верных сравнений 3≡11(mod 4) и 1≡5(mod 4) следует верность следующих:

В теории чисел рассматриваются методы решения различных сравнений, т.е. методы отыскания целых чисел, удовлетворяющих сравнениям того или иного вида. Cравнения по модулю впервые использовались немецким математиком Карлом Гауссом в его книге «Арифметические исследования» 1801 года. Он же предложил утвердившуюся в математике символику для сравнений.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Тождество. Б.Риман (1857).

Тождество – равенство двух аналитических выражений, справедливое для любых допустимых значений входящих в него букв. Равенство a+b = b+a справедливо при всех числовых значениях a и b, и поэтому является тождеством. Для записи тождеств в некоторых случаях с 1857 года применяется знак » ≡ » (читается «тождественно равно»), автором которого в таком использовании, является немецкий математик Георг Фридрих Бернхард Риман. Можно записать a+b ≡ b+a.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Перпендикулярность. П.Эригон (1634).

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Параллельность. У.Оутред (посмертное издание 1677 года).

Параллельность – отношение между некоторыми геометрическими фигурами; например, прямыми. Определяется по-разному в зависимости от различных геометрий; например, в геометрии Евклида и в геометрии Лобачевского. Знак параллельности известен с античных времён, его использовали Герон и Папп Александрийский. Сначала символ был похож на нынешний знак равенства (только более протяжённый), но с появлением последнего, во избежание путаницы, символ был повёрнут вертикально ||. В таком виде он появился впервые в посмертном издании работ английского математика Уильяма Оутреда в 1677 году.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Пересечение, объединение. Дж.Пеано (1888).

Пересечение множеств – это множество, которому принадлежат те и только те элементы, которые одновременно принадлежат всем данным множествам. Объединение множеств – множество, содержащее в себе все элементы исходных множеств. Пересечением и объединением называются и операции над множествами, ставящие в соответствие некоторым множествам новые по указанным выше правилам. Обозначаются ∩ и ∪, соответственно. Например, если

Автором знаков ∩ и ∪ является итальянский математик Джузеппе Пеано. Впервые они были использованы в 1888 году.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Содержится, содержит. Э.Шрёдер (1890).

Если А и В – два множества и в А нет элементов, не принадлежащих В, то говорят что А содержится в В. Пишут А⊂В или В⊃А (В содержит А). Например,

Символы «содержится» и «содержит» появились в 1890 году у немецкого математика логика Эрнста Шрёдера.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Принадлежность. Дж.Пеано (1895).

Если а – элемент множества А, то пишут а∈А и читают «а принадлежит А». Если а не является элементом множества А, пишут а∉А и читают «а не принадлежит А». Вначале отношения «содержится» и «принадлежит» («является элементом») не различали, но со временем эти понятия потребовали разграничения. Знак принадлежности ∈ впервые стал использовать итальянский математик Джузеппе Пеано в 1895 году. Символ ∈ происходит от первой буквы греческого слова εστι – быть.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Квантор всеобщности, квантор существования. Г.Генцен (1935), Ч.Пирс (1885).

Квантор – общее название для логических операций, указывающих область истинности какого-либо предиката (математического высказывания). Философы давно обращали внимание на логические операции, ограничивающие область истинности предиката, однако не выделяли их в отдельный класс операций. Хотя кванторно-логические конструкции широко используются как в научной, так и в обыденной речи, их формализация произошла только в 1879 году, в книге немецкого логика, математика и философа Фридриха Людвига Готлоба Фреге «Исчисление понятий». Обозначения Фреге имели вид громоздких графических конструкций и не были приняты. Впоследствии было предложено множество более удачных символов, но общепринятыми стали обозначения ∃ для квантора существования (читается «существует», «найдётся»), предложенное американским философом, логиком и математиком Чарльзом Пирсом в 1885 году, и ∀ для квантора всеобщности (читается «любой», «каждый», «всякий»), образованное немецким математиком и логиком Герхардом Карлом Эрихом Генценом в 1935 году по аналогии с символом квантора существования (перевёрнутые первые буквы английских слов Existence (существование) и Any (любой)). Например, запись

читается так: «для любого ε>0 существует δ>0 такое, что для всех х, не равных х0 и удовлетворяющих неравенству |x–x0|

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Пустое множество. Н.Бурбаки (1939).

Множество, не содержащее ни одного элемента. Знак пустого множества был введён в книгах Николя Бурбаки в 1939 году. Бурбаки – коллективный псевдоним группы французских математиков, созданной в 1935 году. Одним из участников группы Бурбаки был Андре Вейль – автор символа Ø.

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Знак объединения в алгебре что значит. Смотреть фото Знак объединения в алгебре что значит. Смотреть картинку Знак объединения в алгебре что значит. Картинка про Знак объединения в алгебре что значит. Фото Знак объединения в алгебре что значит

Что и требовалось доказать. Д.Кнут (1978).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *