частота сэмплирования какую ставить

Бит против килогерца: что важнее?

Размышления об успехе 12-битной драм-машины E-Mu SP-1200 и довольно узкая динамика поп/рок-репертуара зародил еретические мысли. Оптимальны ли характеристики наших цифровых протоколов?

Любители студийного мастер-звука могут сердиться сколько угодно, но факт остается фактом. Формат Red Book при немыслимом для цифровых технологий возрасте 35 лет все еще остается основным контейнером для коммерческих фонограмм. Даже если вы слушаете ощипанный трек в MP3 или iTunes, его пропорции описаны в тех же 16 битах на опорные 44,1 кГц дискретизации. Много это или мало? Смотря что мерить.

Компакт-диск или файл в аналогичном формате в состоянии обеспечить 16 х 6 = 96 дБ между самым тихим и громким пассажем. Это очень даже немало. Техническим сигналом для лабораторных испытаний можно заставить ЦАП выдать такой показатель, но я не знаю реальных музыкальных событий с подобным размахом. Даже тот самый «1812» с пушечкой — там 60 дБ в самых пиковых моментах и чуть больше 20 дБ в среднем. В современной фонограмме показатели динамического диапазона сужены обычно раза в три.

По преданиям, Philips сначала хотела остановиться на 14-битном разрешении; умножаем 14 на 6 = 84 дБ, это по-прежнему выше уровня рокота самых дорогих виниловых трактов. Первое поколение ЦАПов Philips TDA1540 оперировало именно с 14 бит и ничего, многие винтажисты очень довольны этим чипом по сей день.

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставитьПервое поколение CD-плееров использовало 14-битный ЦАП Philips TDA1540

В общем, CD-качества вроде бы хватает с головой для самых смелых аудиозадач. И все-таки, когда сравниваешь мастер в Hi-Res и полученный из него стандартный Red Book CD, кажется, что-то утеряно. Где-то больше, где-то не очень — зависит от контента. Но и не забывайте, что ресемплинг и понижение битности понижается различными алгоритмами, так что итоговое качество для CD-печати получается гадательным.

Мой личный опыт возни с записью, редактированием и воспроизведением цифрового аудио по большому счету имеет две точки мнительности. Первая выглядит вполне технически обоснованной.

Мне категорически не нравится, что на аудиопотоке с дискретностью 44,1 кГц граничная частота лежит слишком низко, в области 20 кГц. Вроде бы там особо и не должно быть слышно, но как показывают графики работы цифровой фильтрации ЦАПа, в окрестностях творится черт знает что. Жесткий срез спектра записи, хотя в жизни имеет место пологое падение. Или наоборот, ранний завал из-за специфики фильтра. А еще какие-то паразитные гармоники на высоких частотах. Удельный вес относительно общего сигнала у них не очень большой, но все равно картинка получается неприглядная. Все вот эти оверсемплинги требуются из-за невозможности установить на 22,05 кГц нормальный аналоговый фильтр.

Было бы прекрасно, если бы в начале 80-х стандартом оставили дискретизацию 50 кГц первых цифровых рекордеров Soundstream. А еще лучше, если бы она составила примерно 60 кГц. Таким образом, мы бы получили достаточно протяженную АЧХ, обеспечивающую плавный спад всех музыкальных штрихов и нюансов до 30 кГц, как в хорошем магнитофоне или SACD. Вот выше уже действительно ничего нет. Но в итоге получилось по-другому.

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставитьДо анонса компакт-диска цифровые рекордеры Soundstream записывали звук с параметрами 16 бит / 50 кГц

Sony выбрала значение 44,1 кГц из-за совместимости со стандартом PAL. Профессиональные видеомагнитофоны Betacam и VHS позволяли делать запись PCM-кода аудио. Три значения укладывались в каждую из 588 строк видеосигнала PAL, передаваемого с частотой 25 кадров в секунду: 3 х 588 х 25 = 44100. Вот такая арифметика.

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставитьВидеомагнитофон Sony с помощью процессора PCM-F1 мог записывать цифровой аудиокод

Дальнейшее развитие цифровых технологий записи и воспроизведения использовало кратное умножение базовых форматов CD и DAT — 44,1 и 48 кГц: т.е. 88,2, 96 кГц и так далее. Конечно, появилась возможность отодвинуть помехи квантования подальше в ультразвук, но ведь и кратно росли размеры аудиофайлов. А еще прибавка в полтора раза при переходе с 16 на 24 бит. А если это будет 32 бит? И при попытке сделать этот огромный аудиомассив чуть меньше меня добивает вторая мнительность.

Казалось бы, разрешение 24 бит и выше подразумевает выборку далеко за пределами человеческого слуха. Шутка ли, 24 х 6: нет такой ни техники, ни фонограмм, чтобы они плясали в диапазоне 144 дБ. Для того 24 бит и затевались в студиях — вынести любые ошибки наложения при редактуре куда подальше. Но стоит подвергнуть такой файл децимации, даже просто ресемплингу из 192 в 96 кГц, и что-то неуловимо меняется. Чуть другие уровни, чуть более плоский и тупой саунд, который мне не очень нравится в сравнении. Поэтому я выбираю оригинальные хайрезы не за абстрактную частотку, а лишь за отсутствие шрамов, которыми обрастает мастер-файл по пути вниз. Попытаемся оценить эти увечья.

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить

Для экспериментов был выбран питомец лейбла 2L, который предлагает некоторые свои DXD-записи для свободного скачивания. Надо сказать, репертуар, как это бывает у аудиофильских контор, довольно тягостный и медлительный. Но, к счастью, там нашлась и выручила «Детская увертюра» Эжена Бозза. Эта фонограмма довольно энергично брякает, чтобы судить об изменении саунда при трансформации мастер-файла.

Изначально 5 с половиной минут DXD-оригинала «Детской увертюры» с характеристиками 24 бит / 352,8 кГц занимает целых 437 мегабайт. И это еще сжатое во FLAC, практически размер целого CD! На чем будем экономить?

На заре цифрового звука еще не существовало эффективных моделей борьбы с ошибками квантования. Да и вычислительным мощностям процессоров было многое не под силу. Шкворчание 8-битного саунда первых компьютерных игр стало стереотипом на долгие поколения вперед, но сейчас вы сами убедитесь, что 8 бит сегодня может играть вполне прилично. Чудодейственной панацеей стал так называемый дизеринг (dither), а если еще точнее — его разновидность, нойз-шейпинг (noise shaping).

В весьма толковой статье разработчика iZotope Алексея Лукина дается наглядный пример, как подмешивание горстки шума выручает картинку при снижении разрешения до 4 бит с 16-ю градациями яркости. Просто чудо, когда видишь, как ошибки квантования (так называемая постеризация изображения) практически сходят на нет. То же самое происходит и со звуком.

В отличие от общего случая дизеринга, нойз-шейпинг генерируется не во всей полосе полос, а лишь на высокочастотной области, что менее заметно на слух. Рассуждения о заметности схожи с помыслами разработчиков MP3-алгоритма, с той лишь разницей, что эти в частотный диапазон добавляют, а не режут. Нойз-шейпинг позволяет увеличить динамический диапазон фонограммы, от души его применяют в DSD кодировании и также видны следы его работы при записи «Детской увертюры».

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить

Итак, с помощью ресемплера и фирменного нойз-шейпинга iZotope MBIT+ был сгенерирован целый ворох «Детских увертюр». Получилась стопочка FLAC-ов с разрядностью 8, 12, 16, 20 и 24 бит на кратной дискретизации 44,1 или 88,2 кГц. Также не обошлось без пары образцов МР3 битрейтом 320 кб/с. Один был опрокинут из файла 24 бит / 88,2 кГц, другой из 16 бит / 44,1 кГц, которые также представлены в этом списке. Архив можно скачать и самостоятельно решить, кому что нравится.

Понятное дело, четче и лучше всех отыграла самая полная версия 24/88, практически неотличимо от оригинала. Я надеялся, что понижение до 20 бит не скажется на качестве, но не тут-то было. Значит, начнем двигаться с другой стороны списка.

Сортировка в папке по размеру показала, что самым маленьким оказался образец 8 бит / 44,1 кГц. Менее 12 мегабайт после 400! Несмотря на слышимый шумок, звучит он весьма задорно и это не иллюзия — после всей математики уровень фонограммы немного подрос. Следующими по объему ожидаемо шли МР3. Не знаю как вам, но мне из всего набора проверять их было скучнее всего. И это при том, что в паузе у таких файлов было все чисто и аккуратно. Ну не мое, и все тут. Скомканный серый звук без огонька. Приятнее слушать пусть шумноватый, но лосслесс с низкой битностью, напоминает кассету. Вот на них и выруливаем дальше.

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить

В полтора раза больше чем МР3 оказалась пара образцов на 12 бит / 44,1 кГц и 8 бит / 88,2 кГц. Размер — 19,7 и 23,5 Мб соответственно. По сравнению с базовым CD-разрешением (28,5 Мб) дополнительный шум заметен разве что в 8-битном треке, да и то в наушниках. Я не смог отдать однозначное предпочтение какой-то одной версии.

Субъективно файл более высокой битности играет быстрее, напористей, особенно это касается 24 бит / 44,1 кГц. Но и у 8- и 12-битного аудио на более высокой частоте дискретизации 88,2 кГц имеются несомненные плюсы. Более «гибкие» послезвучия, глубже строится сцена в отсутствие цифрового фильтра в слышимой области. Вы также можете сгруппировать треки по размерам и сравнить их самостоятельно.

По коэффициенту качество/размер я бы выделил следующую тройку, и вся она, увы, опирается на повышенную частоту дискретизации 88,2 кГц:

• 12 бит / 88,2 кГц (13-кратное уменьшение оригинала)

• 8 бит / 88,2 кГц (18,5-кратное уменьшение оригинала)

• 16 бит / 88,2 кГц (10-кратное уменьшение оригинала)

Подытоживая этот обзор, если можно было перезапустить всю цифровую индустрию заново, я бы предпочел использовать следующую градацию PCM-протоколов:

• Частота дискретизации 60 кГц в качестве индустриального стандарта

• Частота дискретизации 120 кГц для ответственных High-End задач

• Длина разряда в 10 бит для потокового аудио (10 бит / 60 кГц)

• Длина разряда в 14 бит для стандартной дистрибуции музыки (14 бит / 60 кГц)

• 22 бит для студийной работы и аудиофильских изданий музыки (22 бит / 60 кГц или 22 бит / 120 кГц)

Источник

Теория звука. Что нужно знать о звуке, чтобы с ним работать. Опыт Яндекс.Музыки

Звук, как и цвет, люди воспринимают по-разному. Например, то, что кажется слишком громким или некачественным одним, может быть нормальным для других.

Для работы над Яндекс.Музыкой нам всегда важно помнить о разных тонкостях, которые таит в себе звук. Что такое громкость, как она меняется и от чего зависит? Как работают звуковые фильтры? Какие бывают шумы? Как меняется звук? Как люди его воспринимают.

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить

Мы довольно много узнали обо всём этом, работая над нашим проектом, и сегодня я попробую описать на пальцах некоторые основные понятия, которые требуется знать, если вы имеете дело с цифровой обработкой звука. В этой статье нет серьёзной математики вроде быстрых преобразований Фурье и прочего — эти формулы несложно найти в сети. Я опишу суть и смысл вещей, с которыми придётся столкнуться.

Поводом для этого поста можете считать то, что мы добавили в приложения Яндекс.Музыки возможность слушать треки в высоком качестве (320kbps). А можете не считать. Итак.

Оцифровка, или Туда и обратно

Прежде всего разберёмся с тем, что такое цифровой сигнал, как он получается из аналогового и откуда собственно берётся аналоговый сигнал. Последний максимально просто можно определить как колебания напряжения, возникающие из-за колебаний мембраны в микрофоне.

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 1. Осциллограмма звука

Это осциллограмма звука — так выглядит аудио сигнал. Думаю, каждый хоть раз в жизни видел подобные картинки. Для того чтобы понять, как устроен процесс преобразования аналогового сигнала в цифровой, нужно нарисовать осциллограмму звука на миллиметровой бумаге. Для каждой вертикальной линии найдем точку пересечения с осциллограммой и ближайшее целое значение по вертикальной шкале — набор таких значений и будет простейшей записью цифрового сигнала.

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 2. Интерактивный пример сложения волн и оцифровки сигнала.
Источник: www.desmos.com/calculator/aojmanpjrl

Воспользуемся этим интерактивным примером, чтобы разобраться в том, как накладываются друг на друга волны разной частоты и как происходит оцифровка. В левом меню можно включать/выключать отображение графиков, настраивать параметры входных данных и параметры дискретизации, а можно просто двигать контрольные точки.

На аппаратном уровне это, разумеется, выглядит значительно сложнее, и в зависимости от аппаратуры сигнал может кодироваться совершенно разными способами. Самым распространённым из них является импульсно-кодовая модуляция, при которой записывается не конкретное значение уровня сигнала в каждый момент времени, а разница между текущим и предыдущим значением. Это позволяет снизить количество бит на каждый отсчёт примерно на 25%. Этот способ кодирования применяется в наиболее распространённых аудио-форматах (WAV, MP3, WMA, OGG, FLAC, APE), которые используют контейнер PCM WAV.

В реальности для создания стерео-эффекта при записи аудио чаще всего записывается не один, а сразу несколько каналов. В зависимости от используемого формата хранения они могут храниться независимо. Также уровни сигнала могут записываться как разница между уровнем основного канала и уровнем текущего.

Обратное преобразование из цифрового сигнала в аналоговый производится с помощью цифро-аналоговых преобразователей, которые могут иметь различное устройство и принципы работы. Я опущу описание этих принципов в данной статье.

Дискретизация

Как известно, цифровой сигнал — это набор значений уровня сигнала, записанный через заданные промежутки времени. Процесс преобразования непрерывного аналогового сигнала в цифровой сигнал называется дискретизацией (по времени и по уровню). Есть две основные характеристики цифрового сигнала — частота дискретизации и глубина дискретизации по уровню.

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 3. Дискретизация сигнала.
Источник: https://en.wikipedia.org/wiki/Sampling_(signal_processing)

Частота дискретизации указывает на то, с какими интервалами по времени идут данные об уровне сигнала. Существует теорема Котельникова (в западной литературе её упоминают как теорему Найквиста — Шеннона, хотя встречается и название Котельникова — Шеннона), которая утверждает: для возможности точного восстановления аналогового сигнала из дискретного требуется, чтобы частота дискретизации была минимум в два раза выше, чем максимальная частота в аналоговом сигнале. Если брать примерный диапазон воспринимаемых человеком частот звука 20 Гц — 20 кГц, то оптимальная частота дискретизации (частота Найквиста) должна быть в районе 40 кГц. У стандартных аудио-CD она составляет 44.1 кГц

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 4. Квантование сигнала.
Источник: https://ru.wikipedia.org/wiki/Квантование_(обработка сигналов)

Глубина дискретизации по уровню описывает разрядность числа, которым описывается уровень сигнала. Эта характеристика накладывает ограничение на точность записи уровня сигнала и на его минимальное значение. Стоит специально отметить, что данная характеристика не имеет отношения к громкости — она отражает точность записи сигнала. Стандартная глубина дискретизации на audio-CD — 16 бит. При этом, если не использовать специальную студийную аппаратуру, разницу в звучании большинство перестаёт замечать уже в районе 10-12 бит. Однако большая глубина дискретизации позволяет избежать появления шумов при дальнейшей обработке звука.

В цифровом звуке можно выделить три основных источника шумов.

Джиттер

Это случайные отклонения сигнала, как правило, возникающие из-за нестабильности частоты задающего генератора или различной скорости распространения разных частотных составляющих одного сигнала. Данная проблема возникает на стадии оцифровки. Если описывать «на пальцах» «на миллиметровке», это происходит из-за немного разного расстояния между вертикальными линиями.

Шум дробления

Он напрямую связан с глубиной дискретизации. Так как при оцифровке сигнала его реальные значения округляются с определённой точностью, возникают слабые шумы, связанные с её потерей. Эти шумы могут появляться не только на стадии оцифровки, но и в процессе цифровой обработки (например, если сначала уровень сигнала сильно понижается, а затем — снова повышается).

Алиасинг

При оцифровке возможна ситуация, при которой в цифровом сигнале могут появиться частотные составляющие, которых не было в оригинальном сигнале. Данная ошибка получила название Aliasing. Этот эффект напрямую связан с частотой дискретизации, а точнее — с частотой Найквиста. Проще всего понять, как это происходит, рассмотрев вот эту картинку:

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 5. Алиас. Источник: ru.wikipedia.org/wiki/Алиасинг

Зелёным показана частотная составляющая, частота которой выше частоты Найквиста. При оцифровке такой частотной составляющей не удаётся записать достаточно данных для её корректного описания. В результате при воспроизведении получается совершенно другой сигнал — жёлтая кривая.

Уровень сигнала

Поначалу бывает тяжело разобраться с тем, как соотносятся децибелы и реальный уровень сигнала. На самом деле всё просто. Каждые

6 dB (точнее 20 log(2)

N.B. Стоит упомянуть, что логарифм в данном случае берётся десятичный, в то время как большинство библиотек под функцией с названием log подразумевает натуральный логарифм.

96.33 dB, для 24 бит

144.49 dB. Это означает, что самый большой перепад уровня, который можно описать с 24-битной глубиной дискретизации (144.49 dB), на 48.16 dB больше, чем самый большой перепад уровня с 16-битной глубиной (96.33 dB). Плюс к тому — шум дробления при 24 битах на 48 dB тише.

Восприятие

Когда мы говорим о восприятии звука человеком, следует сначала разобраться, каким образом люди воспринимают звук. Очевидно, что мы слышим с помощью ушей. Звуковые волны взаимодействуют с барабанной перепонкой, смещая её. Вибрации передаются во внутреннее ухо, где их улавливают рецепторы. То, насколько смещается барабанная перепонка, зависит от такой характеристики, как звуковое давление. При этом воспринимаемая громкость зависит от звукового давления не напрямую, а логарифмически. Поэтому при изменении громкости принято использовать относительную шкалу SPL (уровень звукового давления), значения которой указываются всё в тех же децибелах. Стоит также заметить, что воспринимаемая громкость звука зависит не только от уровня звукового давления, но ещё и от частоты звука:

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 6. Зависимость воспринимаемой громкости от частоты и амплитуды звука.
Источник: ru.wikipedia.org/wiki/Громкость_звука

Громкость

Простейшим примером обработки звука является изменение его громкости. При этом происходит просто умножение уровня сигнала на некоторое фиксированное значение. Однако даже в таком простом деле, как регулировка громкости, есть один подводный камень. Как я уже отметил ранее, воспринимаемая громкость зависит от логарифма звукового давления, а это значит, что использование линейной шкалы громкости оказывается не очень эффективным. При линейной шкале громкости возникает сразу две проблемы — для ощутимого изменения громкости, когда ползунок находится выше середины шкалы приходится достаточно далеко его сдвигать, при этом ближе к самому низу шкалы сдвиг меньше, чем на толщину волоса, может изменить громкость в два раза (думаю, с этим каждый сталкивался). Для решения данной проблемы используется логарифмическая шкала громкости. При этом на всей её длине передвижение ползунка на фиксированное расстояние меняет громкость в одинаковое количество раз. В профессиональной записывающей и обрабатывающей аппаратуре, как правило, используется именно логарифмическая шкала громкости.

Математика

Тут я, пожалуй, немного вернусь к математике, потому что реализация логарифмической шкалы оказывается не такой простой и очевидной вещью для многих, а найти в интернете данную формулу не так просто, как хотелось бы. Заодно покажу, как просто переводить значения громкости в dBFS и обратно. Для дальнейших объяснений это будет полезным.

Цифровая обработка

Из того, что сигнал имеет верхнее ограничение уровня, следует, что нельзя безопасно увеличивать громкость выше единицы. При этом пики, которые окажутся выше границы, будут «срезаны» и произойдёт потеря данных.

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 7. Клиппинг.
Источник: https://en.wikipedia.org/wiki/Clipping_(audio)

На практике всё это означает, что стандартные для Audio-CD параметры дискретизации (16 бит, 44,1 кГц) не позволяют производить качественную обработку звука, потому что имеют очень малую избыточность. Для этих целей лучше использовать более избыточные форматы. Однако стоит учитывать, что общий размер файла пропорционален параметрам дискретизации, поэтому выдача таких файлов для он-лайн воспроизведения — не лучшая идея.

Измерение громкости

Для того чтобы сравнивать громкость двух разных сигналов, её для начала нужно как-то измерить. Существует по меньшей мере три метрики для измерения громкости сигналов — максимальное пиковое значение, усреднённое значение уровня сигнала и метрика ReplayGain.

Максимальное пиковое значение достаточно слабая метрика для оценки громкости. Она никак не учитывает общий уровень громкости — например, если записать грозу, то большую часть времени на записи будет тихо шелестеть дождь и лишь пару раз прогремит гром. Максимальное пиковое значение уровня сигнала у такой записи будет довольно высоким, но большая часть записи будет иметь весьма низкий уровень сигнала. Однако эта метрика всё равно является полезной — она позволяет вычислить максимальное усиление, которое можно применить к записи, при котором не будет потерь данных из-за «обрезания» пиков.

Усреднённое значение уровня сигнала — более полезная метрика и легко вычислимая, но всё же имеет существенные недостатки, связанные с тем, как мы воспринимаем звук. Визг циркулярной пилы и рокот водопада, записанные с одинаковым средним уровнем сигнала, будут восприниматься совершенно по-разному.

ReplayGain наиболее точно передает воспринимаемый уровень громкости записи и учитывает физиологические и психические особенности восприятия звука. Для промышленного выпуска записей многие звукозаписывающие студии используют именно её, также она поддерживается большинством популярных медиа-плееров. (Русская статья на WIKI содержит много неточностей и фактически не корректно описывает саму суть технологии)

Нормализация громкости

Иногда нормализацию громкости производят в рамках одной записи — при этом различные части записи усиливают на разные величины, чтобы их воспринимаемая громкость была одинаковой. Такой подход очень часто применяется в компьютерных видео-плеерах — звуковая дорожка многих фильмов может содержать участки с очень сильно отличающейся громкостью. В такой ситуации возникают проблемы при просмотре фильмов без наушников в позднее время — при громкости, на которой нормально слышен шёпот главных героев, выстрелы способны перебудить соседей. А на громкости, при которой выстрелы не бьют по ушам, шёпот становится вообще неразличим. При внутри-трековой нормализации громкости плеер автоматически увеличивает громкость на тихих участках и понижает на громких. Однако этот подход создаёт ощутимые артефакты воспроизведения при резких переходах между тихим и громким звуком, а также порой завышает громкость некоторых звуков, которые по задумке должны быть фоновыми и еле различимыми.

Также внутреннюю нормализацию порой производят, чтобы повысить общую громкость треков. Это называется нормализацией с компрессией. При этом подходе среднее значение уровня сигнала максимизируется за счёт усиления всего сигнала на заданную величину. Те участки, которые должны были быть подвергнуты «обрезанию», из-за превышения максимального уровня усиливаются на меньшую величину, позволяя избежать этого. Этот способ увеличения громкости значительно снижает качество звучания трека, но, тем не менее, многие звукозаписывающие студии не брезгуют его применять.

Фильтрация

Я не стану описывать совсем все аудио-фильтры, ограничусь только стандартными, которые присутствуют в Web Audio API. Самым простым и распространённым из них является биквадратный фильтр (BiquadFilterNode) — это активный фильтр второго порядка с бесконечной импульсной характеристикой, который может воспроизводить достаточно большое количество эффектов. Принцип работы этого фильтра основан на использовании двух буферов, каждый с двумя отсчётами. Один буфер содержит два последних отсчёта во входном сигнале, другой — два последних отсчёта в выходном сигнале. Результирующее значение получается с помощью суммирования пяти значений: текущего отсчёта и отсчётов из обоих буферов перемноженных на заранее вычисленные коэффициенты. Коэффициенты данного фильтра задаются не напрямую, а вычисляются из параметров частоты, добротности (Q) и усиления.

Lowpass

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 8. Фильтр lowpass.

Пропускает только частоты ниже заданной частоты. Фильтр задаётся частотой и добротностью.

Highpass

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 9. Фильтр highpass.

Действует аналогично lowpass, за исключением того, что он пропускает частоты выше заданной, а не ниже.

Bandpass

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 10. Фильтр bandpass.

Этот фильтр более избирателен — он пропускает только определённую полосу частот.

Notch

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 11. Фильтр notch.

Является противоположностью bandpass — пропускает все частоты вне заданной полосы. Стоит, однако, отметить разность в графиках затухания воздействия и в фазовых характеристиках данных фильтров.

Lowshelf

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 12. Фильтр lowshelf.

Является более «умной» версией highpass — усиливает или ослабляет частоты ниже заданной, частоты выше пропускает без изменений. Фильтр задаётся частотой и усилением.

Highshelf

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 13. Фильтр highshelf.

Более умная версия lowpass — усиливает или ослабляет частоты выше заданной, частоты ниже пропускает без изменений.

Peaking

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 14. Фильтр peaking.

Это уже более «умная» версия notch — он усиливает или ослабляет частоты в заданном диапазоне и пропускает остальные частоты без изменений. Фильтр задаётся частотой, усилением и добротностью.

Фильтр allpass

частота сэмплирования какую ставить. Смотреть фото частота сэмплирования какую ставить. Смотреть картинку частота сэмплирования какую ставить. Картинка про частота сэмплирования какую ставить. Фото частота сэмплирования какую ставить
Рис. 15. Фильтр allpass.

Allpass отличается ото всех остальных — он не меняет амплитудные характеристики сигнала, вместо чего делает фазовый сдвиг заданных частот. Фильтр задаётся частотой и добротностью.

Фильтр WaveShaperNode

Вейвшейпер (en) применяется для формирования сложных эффектов звуковых искажений, в частности с помощью него можно реализовать эффекты «дисторшна», «овердрайва» и «фузза». Данный фильтр применяет к входному сигналу специальную формирующую функцию. Принципы построения подобных функций довольно сложные и тянут на отдельную статью, поэтому я опущу их описание.

Фильтр ConvolverNode

Фильтр, производящий линейную свёртку входного сигнала с аудио-буфером, задающим некую импульсную характеристику. Импульсная характеристика — это ответ некой системы на единичный импульс. Простым языком это можно назвать «фотографией» звука. Если реальная фотография содержит информацию о световых волнах, о том, насколько они отражаются, поглощаются и взаимодействуют, то импульсная характеристика содержит аналогичную информацию о звуковых волнах. Свёртка аудио-потока с подобной «фотографией» как бы накладывает эффекты окружения, в котором была сняла импульсная характеристика на входной сигнал.

Для работы данного фильтра требуется разложение сигнала на частотные составляющие. Это разложение производится с помощью быстрого преобразования Фурье (к сожалению, в русскоязычной Википедии совершенно несодержательная статья, написанная, судя по всему, для людей, которые и так знают, что такое БПФ и сами могут написать такую же несодержательную статью). Как я уже говорил во вступлении, не стану приводить в данной статье математику БПФ, однако не упомянуть краеугольный алгоритм для цифровой обработки сигналов было бы неправильно.

Данный фильтр реализует эффект реверберации. Существует множество библиотек готовых аудио-буферов для данного фильтра, которые реализуют различные эффекты (1, 2), подобные библиотеки хорошо находятся по запросу [impulse response mp3].

Материалы

Большое спасибо моим коллегам, которые помогали собирать материалы для этой статьи и давали полезные советы.

Отдельное спасибо Тарасу Audiophile Ковриженко за описание алгоритмов нормализации и максимизации громкости и Сергею forgotten Константинову за большое количество пояснений и советов по данной статье.

UPD. Поправил раздел про фильтрацию и добавил ссылки по разным типам фильтров. Спасибо Денису deniskreshikhin Крешихину и Никите merlin-vrn Киприянову за то, что обратили внимание.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *