частота сэмплов какая лучше

Проверяем на практике бессмысленность высоких частот дискретизации

Много чего написано про ненужность частоты дискретизации 192000 Гц в звуковых файлах, предназначенных для прослушивания. Но аргументы обычно ссылаются на теоремы, для правильного понимания которых нужно довольно хорошо разбираться в математике. Но есть другой способ проверки некоторых утверждений — провести соответствующие эксперименты много раз.

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

Для начала необходимо сформулировать утверждение, которое будет проверяться в дальнейшем. Если частота 192000 Гц избыточна, то должна существовать более низкая частота дискретизации, при которой происходит корректное восстановление звукового сигнала. Предположим, что это частота 44100 Гц. Если при 192000 Гц происходит корректное восстановление, и при 44100 Гц происходит корректное восстановление, то в обоих случаях результат на выходе должен быть одинаковым. Чтобы проверить это на практике, нужно дорогое оборудование, которое есть далеко не у каждого. Поэтому пойдём немного другим путём. Если в файлах 44100 Гц и 192000 Гц содержится одинаковое количество информации о звуке, то это означает, что преобразование из 192000 Гц в 44100 Гц является сжатием без потерь, следовательно, должен существовать способ восстановления из файла 44100 Гц исходного файла 192000 Гц. Вот это уже может проверить каждый на любом современном компьютере.

В качестве исходника я выбрал музыкальный фрагмент с частотой дискретизации 192000 Гц. Если мне попался какой-то неправильный материал, в котором изначально не было чего-то важного, что должно потеряться при преобразовании из 192000 Гц в 44100 Гц, то любой желающий может проделать описанное в этой статье с любым другим файлом. Все действия будут производиться в свободном редакторе Audacity со стандартными эффектами. Все получаемые в процессе файлы будут сохраняться в формате FLAC с разрядностью 24 бит.

Исходный файл хранится в файле «A.FLAC» и выглядит вот так:

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

А вот так выглядит его спектр:

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

Нас интересует только звуковая информация, поэтому ультразвук удалим с помощью эквалайзера.

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

И получим такой спектр:

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

Экспортируем результат в файл «B.FLAC» — именно с ним мы будем сравнивать файл, который получится в конце всех преобразований.

Перед преобразованием частоты дискретизации убедимся, что в настройках выставлено максимальное качество:

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

Далее выбираем новую частоту дискретизации проекта и его экспортируем в файл «C.FLAC»

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

Затем открываем файл «C.FLAC», устанавливаем частоту дискретизации проекта 192000 Гц и экспортируем в файл «D.FLAC».

И остался самый главный этап: открыть файлы «B.FLAC», «D.FLAC» и сравнить их:

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

Разницы нет. Сравним получше — инвертируем одну из дорожек

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

И сведём всё в одну дорожку:

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

Тишина! Полная тишина!

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

А чтобы всё же увидеть разницу, надо увеличить амплитуду на 96 дБ!

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

Разница настолько тихая, что её невозможно услышать, а это значит, что при преобразовании из 192000 Гц в 44100 Гц в звуковом диапазоне информация не теряется. Вот так без глубоких познаний в математике с помощью доступного каждому программного обеспечения можно проверить достаточность частоты дискретизации 44100 Гц для хранения музыкальных файлов.

Источник

К вопросу о выборе частоты дискретизации при сэмплировании аудио.

Статья взята из открытых источников. Интересны ваши мнения!

К вопросу о выборе частоты дискретизации при сэмплировании аудио.

К вопросу о выборе частоты дискретизации при сэмплировании аудио. Конечно, ничего нового и неизведанного в этом нет, какой частотой дискретизации пользоваться при записи музыкальной композиции (подразумеваем, что стремимся мы что-то записать как можно качественней, а не только для информационной наполненности).

Конечно, здесь немалое значение будет иметь сама, на то компьютера способность своевременно обрабатывать входящий аудиопоток, а также свойства аудиокарты.

Но суть, наверное, не в том, «хорошо ли курить или нет», а в самом «виде вывернутых лёгких» — недолгом и наглядном исследовании формы волны, после того, когда возникла полемика насчёт того, насколько лучше качество оцифровки в 96 кГц относительно стандартных 44-х…

После этого приятель «закачал» файл формата DVD-AUDIO на мой компьютер, а я сделал экстракт в «wave» и поместил полученный файл под микроскоп, с названием «Adobe Audition»,
Но об этом чуть позже…

До визуального исследования я полагал (предвзято), что если и будет наблюдаться какое-либо улучшение восприятия подобного звучания, то совсем незначительное, ввиду того, что с увеличением частоты за гранью восприятия звука она (частота) будет почти недосягаемой для «фиксации» мозгом и одел предложенные приятелем наушники (Zennheiser PMX 100) подключенные просто к выходу “дефолтной” звуковой карты компьютера.

Так вот я слушал и слушал, и убеждался в том, что разницу ещё нужно постараться поймать и пошёл к своему компьютеру загружать принятый недавно по «локале» файл. Преобразовал исходный файл в стандарт «wav», сохранив исходные 96 кГц. Теперь сигнал был подан уже через усилитель Pioneer и такие же Zennheiser PMX 100.

…И вот тут-то почувствовал, как преобразился звук, (а ещё я любитель приподнять немного высоких и низких частот…) звук казался «аналоговым». Сразу после этого включаю конвертированный до 44 кГц тот же файл, и… четко понимаю, что это не MP3, а «wave», причём стандарта качества CD-AUDIO, и, тем не менее, контрастом стало ощущение 44 кГц относительно 96-ти. Причём напоминало звучание MP3. И это даже не через высококлассные студийные мониторы и усилители…

А вот и сами «вывернутые лёгкие», загруженные в Аудишн:

Пример 44 кГц. Скачать (4,5 мег.)

Пример 96 кГц. Скачать (14,5 мег.)

Видим чётко, что попадает к нам в уши в обоих вариантах. Сколько нюансов теряется («домысливается», «дорисовывается (кротчайший, вероятный) путь» между соседними сэмплами) и упрощается по известным алгоритмам звуковой волны, где «были» те нюансы, которых мы теперь не слышим… (я про 44..).

Ещё важный момент: не обязательно впадать в фанатизм по поводу качества исходников. Хотя, это безусловно важно, но Оцифрована должна быть прежде всего Ваша идея… я о золотой середине… во всяком случае исходники (например в работе с мультитреком) ниже 48 кГц нежелательны. Если мощность компьютера заведомо недостаточна, то и устанавивать, к примеру, 192 кГц в новой сессии, конечно же неразумно.

Наш сегодняшний пример пришёл на исследование после оцифровки виниловой грамзаписи в формат DVD-AUDIO (понятно, что звуковой картой, «что надо» и «головой» соответствующей) и переконвертированный из этого формата в формат WAV.

Частота дискретизации

На сегодняшний день даже бюджетные аудио интерфейсы поддерживают частоту дискретизации 192 кГц. Но на различных музыкальных форумах по прежнему ведутся споры о том, стоит ли переходить с частоты дискретизации 44.1 кГц на 48, 88.2 или 96 кГц. Многие музыканты придерживаются комбинации 24-бит/44.1 кГц, потому как продолжают создавать музыку в основном с помощью внешних MIDI клавиатур и программных семплеров, которые работают с семплами 44.1 кГц. Так что они не видят никакого смысла в увеличении частоты дискретизации, тем более что окончательным носителем музыки все равно становится 16-бит/44.1 кГц аудио диск. Однако даже те, кто используют электронные инструменты, оценят более аккуратную компрессию и ограничение пиков на повышенной частоте дискретизации, да и эквалайзер будет работать более точно и звучать приближеннее к аналогу. Музыканты, использующие программные синтезаторы и генераторы формы волны также отметят более чистое звучание.

Для записи живой классической и любой другой акустической музыки большинство серьезных звукоинженеров используют режим 24-бит/96 кГц. В этом особенно есть смысл, если конечным носителем музыки оказывается DVD релиз с частотой дискретизации 48 или 96 кГц (в зависимости от количества каналов). Высокая частота дискретизации гарантирует Вам отличное качество записи на высоких частотах, детали звучания инструментов и пространственную локализацию (возможность различать на записи положение в пространстве каждого инструмента), чем при частоте дискретизации 44.1 кГц или 48 кГц. Также при большой частоте дискретизации высокочастотные сигналы выше 20 кГц делают звучание более натуральным. Однако помните, что качество звука определяется самым худшим звеном в цепи, так что если остальные устройства у Вас не высшего класса, то увеличение частоты дискретизации может Вам абсолютно ничего не дать.

Также стоит помнить, что при использовании частоты дискретизации, например, 192 кГц все плагины и программные синтезаторы будут потреблять в 4 раза больше ресурсов компьютера, занимать в 4 раза больше места на диске и в 4 раза уменьшать возможное время записи в отличие от использования частоты дискретизации 44.1 кГц.

Источник

Бит против килогерца: что важнее?

Размышления об успехе 12-битной драм-машины E-Mu SP-1200 и довольно узкая динамика поп/рок-репертуара зародил еретические мысли. Оптимальны ли характеристики наших цифровых протоколов?

Любители студийного мастер-звука могут сердиться сколько угодно, но факт остается фактом. Формат Red Book при немыслимом для цифровых технологий возрасте 35 лет все еще остается основным контейнером для коммерческих фонограмм. Даже если вы слушаете ощипанный трек в MP3 или iTunes, его пропорции описаны в тех же 16 битах на опорные 44,1 кГц дискретизации. Много это или мало? Смотря что мерить.

Компакт-диск или файл в аналогичном формате в состоянии обеспечить 16 х 6 = 96 дБ между самым тихим и громким пассажем. Это очень даже немало. Техническим сигналом для лабораторных испытаний можно заставить ЦАП выдать такой показатель, но я не знаю реальных музыкальных событий с подобным размахом. Даже тот самый «1812» с пушечкой — там 60 дБ в самых пиковых моментах и чуть больше 20 дБ в среднем. В современной фонограмме показатели динамического диапазона сужены обычно раза в три.

По преданиям, Philips сначала хотела остановиться на 14-битном разрешении; умножаем 14 на 6 = 84 дБ, это по-прежнему выше уровня рокота самых дорогих виниловых трактов. Первое поколение ЦАПов Philips TDA1540 оперировало именно с 14 бит и ничего, многие винтажисты очень довольны этим чипом по сей день.

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучшеПервое поколение CD-плееров использовало 14-битный ЦАП Philips TDA1540

В общем, CD-качества вроде бы хватает с головой для самых смелых аудиозадач. И все-таки, когда сравниваешь мастер в Hi-Res и полученный из него стандартный Red Book CD, кажется, что-то утеряно. Где-то больше, где-то не очень — зависит от контента. Но и не забывайте, что ресемплинг и понижение битности понижается различными алгоритмами, так что итоговое качество для CD-печати получается гадательным.

Мой личный опыт возни с записью, редактированием и воспроизведением цифрового аудио по большому счету имеет две точки мнительности. Первая выглядит вполне технически обоснованной.

Мне категорически не нравится, что на аудиопотоке с дискретностью 44,1 кГц граничная частота лежит слишком низко, в области 20 кГц. Вроде бы там особо и не должно быть слышно, но как показывают графики работы цифровой фильтрации ЦАПа, в окрестностях творится черт знает что. Жесткий срез спектра записи, хотя в жизни имеет место пологое падение. Или наоборот, ранний завал из-за специфики фильтра. А еще какие-то паразитные гармоники на высоких частотах. Удельный вес относительно общего сигнала у них не очень большой, но все равно картинка получается неприглядная. Все вот эти оверсемплинги требуются из-за невозможности установить на 22,05 кГц нормальный аналоговый фильтр.

Было бы прекрасно, если бы в начале 80-х стандартом оставили дискретизацию 50 кГц первых цифровых рекордеров Soundstream. А еще лучше, если бы она составила примерно 60 кГц. Таким образом, мы бы получили достаточно протяженную АЧХ, обеспечивающую плавный спад всех музыкальных штрихов и нюансов до 30 кГц, как в хорошем магнитофоне или SACD. Вот выше уже действительно ничего нет. Но в итоге получилось по-другому.

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучшеДо анонса компакт-диска цифровые рекордеры Soundstream записывали звук с параметрами 16 бит / 50 кГц

Sony выбрала значение 44,1 кГц из-за совместимости со стандартом PAL. Профессиональные видеомагнитофоны Betacam и VHS позволяли делать запись PCM-кода аудио. Три значения укладывались в каждую из 588 строк видеосигнала PAL, передаваемого с частотой 25 кадров в секунду: 3 х 588 х 25 = 44100. Вот такая арифметика.

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучшеВидеомагнитофон Sony с помощью процессора PCM-F1 мог записывать цифровой аудиокод

Дальнейшее развитие цифровых технологий записи и воспроизведения использовало кратное умножение базовых форматов CD и DAT — 44,1 и 48 кГц: т.е. 88,2, 96 кГц и так далее. Конечно, появилась возможность отодвинуть помехи квантования подальше в ультразвук, но ведь и кратно росли размеры аудиофайлов. А еще прибавка в полтора раза при переходе с 16 на 24 бит. А если это будет 32 бит? И при попытке сделать этот огромный аудиомассив чуть меньше меня добивает вторая мнительность.

Казалось бы, разрешение 24 бит и выше подразумевает выборку далеко за пределами человеческого слуха. Шутка ли, 24 х 6: нет такой ни техники, ни фонограмм, чтобы они плясали в диапазоне 144 дБ. Для того 24 бит и затевались в студиях — вынести любые ошибки наложения при редактуре куда подальше. Но стоит подвергнуть такой файл децимации, даже просто ресемплингу из 192 в 96 кГц, и что-то неуловимо меняется. Чуть другие уровни, чуть более плоский и тупой саунд, который мне не очень нравится в сравнении. Поэтому я выбираю оригинальные хайрезы не за абстрактную частотку, а лишь за отсутствие шрамов, которыми обрастает мастер-файл по пути вниз. Попытаемся оценить эти увечья.

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

Для экспериментов был выбран питомец лейбла 2L, который предлагает некоторые свои DXD-записи для свободного скачивания. Надо сказать, репертуар, как это бывает у аудиофильских контор, довольно тягостный и медлительный. Но, к счастью, там нашлась и выручила «Детская увертюра» Эжена Бозза. Эта фонограмма довольно энергично брякает, чтобы судить об изменении саунда при трансформации мастер-файла.

Изначально 5 с половиной минут DXD-оригинала «Детской увертюры» с характеристиками 24 бит / 352,8 кГц занимает целых 437 мегабайт. И это еще сжатое во FLAC, практически размер целого CD! На чем будем экономить?

На заре цифрового звука еще не существовало эффективных моделей борьбы с ошибками квантования. Да и вычислительным мощностям процессоров было многое не под силу. Шкворчание 8-битного саунда первых компьютерных игр стало стереотипом на долгие поколения вперед, но сейчас вы сами убедитесь, что 8 бит сегодня может играть вполне прилично. Чудодейственной панацеей стал так называемый дизеринг (dither), а если еще точнее — его разновидность, нойз-шейпинг (noise shaping).

В весьма толковой статье разработчика iZotope Алексея Лукина дается наглядный пример, как подмешивание горстки шума выручает картинку при снижении разрешения до 4 бит с 16-ю градациями яркости. Просто чудо, когда видишь, как ошибки квантования (так называемая постеризация изображения) практически сходят на нет. То же самое происходит и со звуком.

В отличие от общего случая дизеринга, нойз-шейпинг генерируется не во всей полосе полос, а лишь на высокочастотной области, что менее заметно на слух. Рассуждения о заметности схожи с помыслами разработчиков MP3-алгоритма, с той лишь разницей, что эти в частотный диапазон добавляют, а не режут. Нойз-шейпинг позволяет увеличить динамический диапазон фонограммы, от души его применяют в DSD кодировании и также видны следы его работы при записи «Детской увертюры».

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

Итак, с помощью ресемплера и фирменного нойз-шейпинга iZotope MBIT+ был сгенерирован целый ворох «Детских увертюр». Получилась стопочка FLAC-ов с разрядностью 8, 12, 16, 20 и 24 бит на кратной дискретизации 44,1 или 88,2 кГц. Также не обошлось без пары образцов МР3 битрейтом 320 кб/с. Один был опрокинут из файла 24 бит / 88,2 кГц, другой из 16 бит / 44,1 кГц, которые также представлены в этом списке. Архив можно скачать и самостоятельно решить, кому что нравится.

Понятное дело, четче и лучше всех отыграла самая полная версия 24/88, практически неотличимо от оригинала. Я надеялся, что понижение до 20 бит не скажется на качестве, но не тут-то было. Значит, начнем двигаться с другой стороны списка.

Сортировка в папке по размеру показала, что самым маленьким оказался образец 8 бит / 44,1 кГц. Менее 12 мегабайт после 400! Несмотря на слышимый шумок, звучит он весьма задорно и это не иллюзия — после всей математики уровень фонограммы немного подрос. Следующими по объему ожидаемо шли МР3. Не знаю как вам, но мне из всего набора проверять их было скучнее всего. И это при том, что в паузе у таких файлов было все чисто и аккуратно. Ну не мое, и все тут. Скомканный серый звук без огонька. Приятнее слушать пусть шумноватый, но лосслесс с низкой битностью, напоминает кассету. Вот на них и выруливаем дальше.

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

В полтора раза больше чем МР3 оказалась пара образцов на 12 бит / 44,1 кГц и 8 бит / 88,2 кГц. Размер — 19,7 и 23,5 Мб соответственно. По сравнению с базовым CD-разрешением (28,5 Мб) дополнительный шум заметен разве что в 8-битном треке, да и то в наушниках. Я не смог отдать однозначное предпочтение какой-то одной версии.

Субъективно файл более высокой битности играет быстрее, напористей, особенно это касается 24 бит / 44,1 кГц. Но и у 8- и 12-битного аудио на более высокой частоте дискретизации 88,2 кГц имеются несомненные плюсы. Более «гибкие» послезвучия, глубже строится сцена в отсутствие цифрового фильтра в слышимой области. Вы также можете сгруппировать треки по размерам и сравнить их самостоятельно.

По коэффициенту качество/размер я бы выделил следующую тройку, и вся она, увы, опирается на повышенную частоту дискретизации 88,2 кГц:

• 12 бит / 88,2 кГц (13-кратное уменьшение оригинала)

• 8 бит / 88,2 кГц (18,5-кратное уменьшение оригинала)

• 16 бит / 88,2 кГц (10-кратное уменьшение оригинала)

Подытоживая этот обзор, если можно было перезапустить всю цифровую индустрию заново, я бы предпочел использовать следующую градацию PCM-протоколов:

• Частота дискретизации 60 кГц в качестве индустриального стандарта

• Частота дискретизации 120 кГц для ответственных High-End задач

• Длина разряда в 10 бит для потокового аудио (10 бит / 60 кГц)

• Длина разряда в 14 бит для стандартной дистрибуции музыки (14 бит / 60 кГц)

• 22 бит для студийной работы и аудиофильских изданий музыки (22 бит / 60 кГц или 22 бит / 120 кГц)

Источник

Статьи

Аудио-кодирование: секреты раскрыты

Настройка аудио для видеозахвата и трансляции.

Как люди, непосредственно связанные с AV сферой, мы постоянно говорим об аудио-кодировании и аудиокодеках, а что же это такое? Аудиокодек – это, по сути, устройство или алгоритм, способный кодировать и декодировать цифровой аудиосигнал.

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

На практике аудиоволны, которые передаются по воздуху, являются продолжительными аналоговыми сигналами. Сигналы преобразуются в цифровой формат устройством, которое называется аналого-цифровой преобразователь (АЦП), а устройство обратного преобразования – цифро-аналоговый преобразователь (ЦАП). Кодек находится между этими двумя функциями и именно он позволяет откорректировать некоторые важные параметры для успешного захвата, записи и трансляции звукового сигнала: алгоритм кодека, частота дискретизации, разрядность и скорость передачи данных.

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

Три наиболее популярных аудиокодека: Pulse-Code Modulation ( PCM), MP3 и Advanced Audio Coding ( AAC ). Выбор кодека определяет степень сжатия и качество записи. PCM – кодек, который используется компьютерами, CD-дисками, цифровыми телефонами и иногда SACD-дисками. Источник сигнала для PCM сэмплируется через равные интервалы, и каждый сэмпл представляет собой амплитуду аналогового сигнала в цифровом значении. PCM – это наиболее простой вариант для оцифровки аналогового сигнала.

При наличии правильных параметров этот оцифрованный сигнал может быть полностью реконструирован обратно в аналоговый без каких-либо потерь. Но этот кодек, обеспечивающий практически полную идентичность оригинальному аудио, к сожалению, не очень экономичен, что выражается в очень больших объемах файлов, а такие файлы не подходят для потокового вещания. Мы рекомендуем использовать PCM для записи цифровых образов для ваших источников или когда вы занимаетесь постобработкой аудио.

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

К счастью, у нас всегда есть возможность выбрать другой кодек, который может сжимать цифровые данные (по сравнению с PCM) на основании некоторых полезных наблюдений о поведении звуковых волн. Но в этом случае приходится идти на компромисс: все альтернативные алгоритмы сопряжены с «потерями», так как невозможно полностью восстановить исходный сигнал, но, тем не менее, результат всё равно хорош настолько, что большинство пользователей не смогут уловить разницу.

MP3 – это формат аудио-кодирования с использованием как раз такого алгоритма сжатия цифровых данных, который позволяет сохранять аудиосигнал в меньшие по объему файлы. Кодек MP3 чаще всего используется пользователями для записи и хранения музыкальных файлов. Мы рекомендуем применять MP3 для трансляций аудио-контента, так как ему требуется меньшая пропускная способность сети.

AAC – это более новый алгоритм кодирования аудиосигнала, ставший «преемником» MP3. AAC стал стандартом для форматов MPEG-2 и MPEG-4. По сути это тоже кодек сжатия цифровых данных, но с меньшей, чем у MP3, потерей качества при кодировании с одинаковыми битрейтами. Мы рекомендуем использовать этот кодек для онлайн трансляций.

Частота дискретизации (кГц, kHz)

Измеряется в герцах (Гц, Hz) или килогерцах (кГц, kHz,) 1 кГц равен 1000 Гц. Например, 44 100 сэмплов в секунду можно обозначить как 44 100 Гц или 44,1 кГц. Выбранная частота дискретизации будет определять максимальную частоту воспроизведения, и, как следует из теоремы Котельникова, для того, чтобы полностью восстановить исходный сигнал, частота дискретизации должна в два раза превышать наибольшую частоту в спектре сигнала.

Как известно, человеческое ухо способно улавливать частоты между 20 Гц и 20 кГц. Учитывая эти параметры и значения, показанные в таблице ниже, можно понять, почему именно частота 44,1 кГц была выбрана в качестве частоты дискретизации для CD и до сих пор считается очень хорошей частотой для записи.

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

Есть ряд причин для выбора более высокой частоты дискретизации, хотя может показаться, что воспроизводить звук вне диапазона человеческого слуха – пустая трата сил и времени. При этом среднестатистическому слушателю будет вполне достаточно 44,1 – 48 кГц для качественного решения большинства задач.

Разрядность

Наряду с частотой дискретизации есть такое понятие как разрядность или глубина звука. Разрядность – это количество бит цифровой информации для кодирования каждого сэмпла. Проще говоря, разрядность определяет «точность» измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. С минимальной возможной разрядностью есть только два варианта измерения точности звука: 0 для полной тишины и 1 для звучания в полном объеме. Если разрядность равна 8 (16), то при измерении входного сигнала может быть получено 2 8 = 256 (2 16 = 65 536) различных значений.

Разрядность закреплена в кодеке PCM, но для кодеков, которые предполагают сжатие (например, MP3 и AAC) этот параметр рассчитывается при кодировании и может меняться от сэмпла к сэмплу.

Битрейт

битрейт = частота дискретизации × разрядность × каналы

Для таких систем как Epiphan Pearl Mini, которые кодируют линейный PCM 16-бит (разрядность 16), этот расчет может быть использован для определения, сколько дополнительных полос пропускания может потребоваться для PCM аудио. Например, для стерео (два канала) оцифровка сигнала производится с частотой 44,1 кГц на 16-бит, а битрейт при этом рассчитывается таким образом:

44,1 кГц × 16 бит × 2 = 1 411,2 кбит/с

Между тем алгоритмы сжатия аудиосигнала, такие как AAC и MP3, имеют меньшее количество бит для передачи сигнала (в этом и заключается их цель), поэтому они используют небольшие битрейты. Обычно значения находятся в диапазоне от 96 кбит/с до 320 кбит/с. Для этих кодеков чем выше битрейт вы выбираете, тем больше аудио бит вы получаете на сэмпл, и тем выше будет качество звучания.

Частота дискретизации, разрядность и битрейты в реальной жизни.

Аудио CD-диски, одни из первых наиболее популярных изобретений для простых пользователей для хранения цифрового аудио, использовали частоту 44,1 кГц (20 Гц – 20 кГц, диапазон человеческого уха) и разрядность 16-бит. Данные значения были выбраны, чтобы при хорошем качестве звука иметь возможность сохранять как можно больше аудио на диске.

Когда к аудио добавилось видео и появились DVD, а позднее Blu-Ray диски, был создан новый стандарт. Записи для DVD и Blu-Rays обычно используют линейный формат PCM с частотой 48 кГц (стерео) или 96 кГц (звук 5.1 Surround) и разрядность 24. Эти значения были выбраны в качестве идеального варианта, чтобы сохранять аудио с синхронизацией с видео и при этом получать максимально возможное качество с использованием дополнительного доступного дискового пространства.

Наши рекомендации

CD, DVD и Blu-Ray диски преследовали одну цель – дать потребителю высококачественный механизм воспроизведения. Задачей всех разработок было предоставить высокое качество аудио и видео, не заботясь о величине файла (лишь бы он умещался на диск). Такое качество мог обеспечить линейный PCM.

Напротив, у мобильных средств информации и потокового медиа совсем другая цель – использовать максимально низкий битрейт, при этом достаточный для поддержания приемлемого для слушателя качества. Для этой задачи лучше всего подходят алгоритмы сжатия. Теми же принципами вы можете руководствоваться для своих записей.

частота сэмплов какая лучше. Смотреть фото частота сэмплов какая лучше. Смотреть картинку частота сэмплов какая лучше. Картинка про частота сэмплов какая лучше. Фото частота сэмплов какая лучше

При записи аудио с видео…

При потоковой передаче аудио с видео…

При потоковой передаче или записи для последующей трансляции можно получить хорошее звучание аудио при меньшей полосе пропускания, используя кодеки AAC или MP3 с частотой 44,1 кГц и битрейт 128 кбит/с или выше. Такие параметры гарантируют, что звук будет достаточно хорош и не скажется на качестве трансляции.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *