частью какого числа является мнимая единица ответ
Числа. Комплексные (мнимые) числа.
Множество всех комплексных чисел с арифметическими операциями есть поле и обычно обозначают как .
Мнимое число (либо чисто мнимое число) — комплексное число с действительной частью, равной нулю. Раньше этим термином обозначали комплексные числа.
Комплексные числа изображаются на комплексной плоскости:
Например, построим на комплексной плоскости следующие комплексные числа:
,
,
,
,
,
,
,
,
,
.
Действия над комплексными числами.
означает, что a = c и b = d (2 комплексных числа равны между собой только в том случае, если равны их действительные и мнимые части).
(a + bi) + (c + di) = (a + c) + (b + d)i.
Для того чтобы сложить 2 комплексных числа нужно сложить их действительные и мнимые части:
(a + bi) – (c + di) = (a – c) + (b – d)i.
Действие аналогично сложению, отличие только в том, что вычитаемое берем в скобки, а потом – как обычно раскрываем их со сменой знака:
У числа, которое мы получили 2, а не 3 части. Так как действительная часть является составной: . Что было понятней ответ перепишем так:
.
Рассчитываем 2-ю разность:
Здесь действительная часть тоже составная: .
Приведем короткий пример с «нехорошей» мнимой частью: . В этом случае без скобок никак не обойтись.
Найдем произведение комплексных чисел ,
Раскрываем скобки, как обычно. Обратите внимание, что и будьте внимательны.
Напомним: Чтобы умножить многочлен на многочлен надо все члены 1-го многочлена умножить на каждый член другого многочлена.
Очевидно, что .
Как и в сумме, в произведении комплексных чисел работает перестановочный закон: .
Произведение 2-х сопряжённых комплексных чисел равно положительному действительному числу.
Если делитель ненулевой, деление всегда возможно.
Есть комплексные числа ,
. Найдем частное
.
Деление чисел производится способом умножения знаменателя и числителя на сопряженное знаменателю выражение.
Напомним, что и смотрим на наш знаменатель:
. В знаменателе уже имеется
, поэтому сопряженным выражением в данном случае оказывается
, т.е.
.
Из правила, знаменатель необходимо домножить на , и, чтобы ничего не изменилось, умножить числитель на такое же число
:
Дальше в числителе раскрываем скобки. А в знаменателе пользуемся формулой (при
).
Часто перед делением дробь лучше упростить.
Свойства комплексных чисел.
1. Основная теорема алгебры.
У всех, не являющихся константой многочленов (от одной переменной) с комплексными коэффициентами есть как минимум 1 корень в поле комплексных чисел.
2. Формула Муавра и извлечение корней из комплексных чисел.
Эта формула помогает возводить в целую степень комплексное число, не равное нулю, которое представлено в тригонометрической форме.
Формула Муавра имеет вид:
где r — модуль, а φ — аргумент комплексного числа.
Аналогичная формула применяется также и при вычислении корней n-ой степени из комплексного числа, не равного нулю:
Заметим, что корни n-й степени из комплексного числа, не равного нулю, всегда есть, и их чило равно n. На комплексной плоскости, как видно из формулы, все эти корни оказываются вершинами правильного n-угольника, который вписан в окружность радиуса с центром в начале координат.
Например, корни 5-ой степени из единицы (вершины пятиугольника):
Мнимая единица – число на грани мистики
Человеку не сведущим в математике и физике рассуждения о мнимой единице представляется полным бредом. Например, квадратные корни из отрицательных чисел не равны нулю, не меньше нуля и не больше нуля. Отсюда ясно, что квадратные корни из отрицательных чисел не могут находиться среди возможных действительных чисел. Следовательно, нам не остается ничего другого, как признать их невозможными числами.
Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел. Это было сделано китайскими математиками во II веке до н. э. Отрицательные числа не так просты. Представьте, сколько будет 3 – 4? Как можно отнять 4 барана от 3? Отрицательные числа рассматривались как полная чушь. Но не будем умалять человеческие страдания: отрицательные числа были настоящим сдвигом в сознании. Даже Эйлер, гений, открывший число Е и много еще чего, не понимал отрицательные числа так же хорошо, как
мы сегодня. Они рассматривались как «бессмысленные» результаты вычислений. Древнегреческие математики считали «настоящими» только натуральные числа.
То, что называют мнимым числом, на самом деле частный случай комплексного числа. Это число настоящим числом назвать нельзя. Учебники описывают его как величину, которая, будучи возведенной в квадрат, дает минус один. Другими словами, это сторона квадрата с отрицательной площадью. В реальности такого не бывает. Впервые понятие «мнимая величина» использовал Кардано (1545). Он решал задачу с помощью квадратных уравнений
Термин “комплексные числа” так же был введен Гауссом в 1831 году. Слово комплекс означает связь, сочетание, совокупность понятий, предметов, явлений образующих единое целое. В конце XVIII века, в начале XIX века было получено геометрическое истолкование комплексных чисел. Датчанин К. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изобразить комплексное число z = a + b × i точкой m (a, b) на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой M, а вектором, идущим в эту точку из начала координат. Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного переменного, расширило область их применения. В дальнейшем Леонард Эйлер (кстати, это именно он ввел ныне общеупотребительное обозначение для мнимой единицы) получил знаменитую формулу, и открыл комплексным числам дорогу в самые различные области математики и ее приложений.
Комплексные числа – расширили понятие числа. В 1843 году ирландский математик Уильям Гамильтон предложил четырехмерную систему комплексных чисел, которая стала первой гиперкомплексной системой, названную кватернионами. Теория кватернионов вскоре стала одним из источников дальнейшего развития математики и ее приложений.
Значение математики сейчас непрерывно возрастает. В математике рождаются новые идеи и методы. Всё это расширяет сферу её приложения.
Лекция по высшей математике «Мнимая единица. Алгебраическая форма комплексного числа»
Ищем педагогов в команду «Инфоурок»
Алгебраическая форма комплексного числа.
Цели: расширить понятие числа, ввести понятие мнимой единицы и ее степеней, понятие комплексного числа; рассмотреть алгебраическую форму комплексного числа ; развивать умения обобщать полученные знания, способствовать развитию логического мышления;
воспитывать у обучающихся сознательное отношение к процессу обучения.
Мнимые числа. Определение мнимой единицы. Степени мнимой единицы.
Определение комплексного числа.
Алгебраическая форма комплексного числа.
Например:
Например: и
и
.
Теорема. Люб ая натуральн ая степень числа і может быть преобразован а к
Пусть m =4 k +3, тогда і м
Пример. Вычислить значение выражения
.
Замечание. Для того, чтобы вычислить степень мнимой единицы, удобно пользоваться таким правилом:
1) разделить показатель степени на 4;
Символически действительную и мнимую части комплексного числа обозначают так: (ре зет),
(им зет).
Замечание. Иногда мнимой частью комплексного числа z = а + b і называют bi.
Для комплексных чисел не существует понятий больше и меньше, то есть комплексные числа не сравнимы.
Определение. Комплексное число (-а- bi ) называется противоположным комплексному числу
Определение. Два комплексных числа, у которых действительные части равны, а мнимые
части противоположные, называются комплексно сопряженными числами и
обозначаются соответственно и
.
3.Алгебраическая форма комплексного числа. Действия над комплексными числами, заданными в алгебраической форме.
Сложение комплексных чисел
Определение. Суммой двух комплексных чисел и
называется
комплексное число .
Итак, (1)
Таким образом, чтобы сложить два комплексных числа нужно сложить их действительные части, и это дает действительную часть суммы, и сложить мнимые части, что дает мнимую часть суммы.
Сумма сопряженных чисел всегда является действительн ым числом
то есть, . (2)
Вычитание комплексных чисел
Определение. Разностью двух комплексных чисел и
называется такое
комплексное число , которое в сумме с числом
дает число
.
Вычитание комплексных чисел всегда возможно.
Теорема. Для любых комплексных чисел и
всегда существует разница
, которая определена однозначно.
Таким образом, для того, чтобы вычесть комплексные числа, достаточно вычесть их действительные части и их разницу взять за действительную часть разности, а также вычесть мнимую часть разности
Получается, (3)
Разность двух сопряженных чисел всегда является мнимым числом. ,
то есть, (4)
Умножение комплексных чисел
Определение. Произведением двух комплексных чисел и
называется такое комплексное число, которое определяется формулой:
(5)
В процессе умножения комплексных чисел лучше выполнять непосредственное умножение. Произведение сопряженных чисел всегда является действительным числом
.
Пример. Найти значение выражения .
Решение: .
Деление комплексных чисел
Определение. Частным двух комплексных чисел и
называется такое
комплексное число z, которое в произведении с дает
.
Всегда существует частное от деления двух комплексных чисел, если знаменатель отличается от нуля.
Теорема. Частное определено и к тому же однозначно для всех комплексных чисел
и
, если только
, то есть
.
(7)
Пример. Вычислить значение выражения .
Решение:
Над комплексными числами в алгебраической форме возможно выполнять и такие действия, как возведение в степень, извлечения корня. Но выполнение этих действий в алгебраической форме довольно трудоемкое.
Закрепление изученного материала.
1. Вычислить:
2. Среди приведенных примеров укажите :
а) чисто мнимые комплексные числа;
б) чисто действительные комплексные числа;
в) сопряженные комплексные числа;
г) равные комплексные числа:
3. Выполнить действия: Ответ.
4. На основании равенства комплексных чисел найти действительные числа и
если
Ответ.
5. Решить квадратные уравнения и проверить выполнение теоремы Виета:
а) б)
Ответ. а)
б)
1.Дать определение комплексного числа.
2.Сформулировать определение мнимой единицы.
3.Как найти степень мнимой единицы.
4.Какие комплексные числа называют равными, сопряженными?
5.Записать формулу для нахождения произвольного степени мнимой единицы.
6. Приведите примеры чисто мнимых чисел.
7. Дать определение суммы, произведения и частного двух комплексных чисел.
Письменный, Д. Т. Конспект лекций по высшей математике: полный курс Д. Т. Письменный. – 9-е изд. – М.: Айрис-пресс, 2009. 608 с.: ил. – (Высшее образование).
Лунгу, К. Н. Сборник задач по высшей математике. 1 курс / К. Н. Лунгу, Д. Т. Письменный, С. Н. Федин, Ю. А. Шевченко. – 7-е изд. – М.: Айрис-пресс, 2008. 576 с.: – (Высшее образование).
Григорьев В. П. Элементы высшей математики: учебник для студ. учреждений сред. проф. образования / В. П. Григорьев, Ю. А. Дубинский. – 10-е изд., стер. – М. Издательский центр «Академия», 2014. – 320 с.