через какое действие робот связывается с окружающим миром

Как устроены современные роботы и как они помогают изучать мозг человека

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Материал предоставлен РБК Трендам порталом HSE.RU.

Роботы интересны нейронаукам, а нейронауки интересны роботам — об этом была наша статья «Neuroengineering challenges of fusing robotics and neuroscience» в журнале Science Robotics. Такое совместное развитие способствует прогрессу в обеих отраслях, приближая нас к созданию более совершенных роботов-андроидов и к более глубокому пониманию устройства нашего мозга. А в какой-то степени — к объединению биологических организмов с машинами, к созданию кибернетических организмов (киборгов).

Нейронаука для роботов

По своему устройству роботы нередко копируют человека. Это касается той части роботов, которым важно имитировать человеческие действия и поведение — индустриальным машинам нейронауки не так важны.

Самое очевидное, что могут использовать при разработке робота — делать его внешне похожим на человека. Роботы часто имеют две руки, две ноги и голову, даже если это не обязательно с инженерной точки зрения. Особенно это важно в тех случаях, когда робот будет взаимодействовать с людьми — похожей на нас машине проще доверять.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Можно сделать так, чтобы не только внешний вид, но и «мозг» робота был похож на человеческий. Разрабатывая механизмы восприятия, обработки информации и управления, инженеры вдохновляются устройством нервной системы людей.

Например, глаза робота — телекамеры, которые могут двигаться в разных направлениях — имитируют зрительную систему человека. Опираясь на знание о том, как устроено зрение человека и как происходит обработка зрительного сигнала, инженеры проектируют сенсоры робота по тем же принципам. Таким образом робота можно наделить, например, человеческой способностью видеть мир трехмерным.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

У человека есть вестибулоокулярный рефлекс: глаза при перемещении стабилизируются с учетом вестибулярной информации, что позволяет сохранять стабильность картинки, которую мы видим. На теле робота также могут быть датчики ускорения и вертикализации. Они помогают роботу учитывать движения тела для стабилизации зрительного восприятия внешнего мира и совершенствования ловкости.

Кроме того, робот может ощущать точно так же, как человек — на роботе может быть кожа, он может чувствовать прикосновение. И тогда он не просто произвольно движется в пространстве: если он дотрагивается до препятствия, он его ощущает и реагирует так же, как человек. Он может использовать эту искусственную тактильную информацию и для схватывания предметов.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

У роботов можно имитировать даже болевые ощущения: какое-то прикосновение ощущается нормально, а какое-то вызывает боль, что в корне меняет поведение робота. Он начинает избегать боли и вырабатывает новые модели поведения, то есть обучается — как ребенок, который впервые обжегся чем-то горячим.

Не только сенсорные системы, но и управление своим телом у робота можно спроектировать по аналогии с человеком. У людей ходьбой управляют так называемые центральные генераторы ритма — специализированные нервные клетки, предназначенные для контроля автономной моторной активности. Есть роботы, в которых для управления ходьбой была использована та же идея.

Кроме того, роботы могут обучаться у людей. Робот может совершать действия бесконечным числом способов, но если он хочет имитировать человека, он должен наблюдать за тем, как человек это делает, и пытаться повторить это движение. При совершении ошибок он сравнивает это с тем, как это же действие совершает человек.

Роботы для нейронауки

Как может использовать роботов нейронаука? Когда мы изготовляем модель биологической системы, мы начинаем лучше понимать, по каким принципам она работает. Поэтому создание механических и компьютерных моделей управления движениями нервной системой человека приближает нас к пониманию нервных функций и биомеханики.

А наиболее перспективное направление использования роботов в современной нейронауке — это проектирование нейроинтерфейсов, систем для управления внешними устройствами с помощью сигналов мозга. Нейроинтерфейсы необходимы для разработки нейропротезов (например, искуственной руки для людей, лишившихся конечности) и экзоскелетов — внешних каркасов тела человека для увеличения его силы или восстановления утраченной двигательной способности.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Робот может взаимодействовать с нервной системой через интерфейс в двух направлениях: нервная система может подавать командный сигнал роботу, в робот от своих сенсоров может подавать человеку сенсорную информацию, вызывая реальные ощущения — за счет стимуляции нервов, нервных окончаний кожи, или самой сенсорной коры мозга. Такие механизмы обратной связи позволяют восстановить чувствительность конечности, если она была утрачена. Они также необходимы для более точных движений роботизированной конечностью, так как именно на основе сенсорной информации от рук и ног мы корректируем движения.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Здесь возникает интересный вопрос — следует ли нам управлять через нейроинтерфейс всеми степенями свободы робота, то есть насколько конкретные команды мы должны ему посылать. Например, можно «приказать» роботизированной руке взять бутылку воды, а конкретные операции — опустить руку, повернуть ее, разжать и сжать пальцы — она совершит сама. Этот подход называется совмещенным контролем — через нейроинтерфейс мы даем простые команды, а специальный контроллер внутри робота выбирает наилучшую стратегию для реализации. Либо можно создать такой механизм, который не поймет команды «взять бутылку»: ему нужно посылать информацию о конкретных, детализированных движениях.

Современные исследования

Ученые в области нейронаук и робототехники изучают различные аспекты работы мозга и устройства роботов. Так, в университете Дьюк я проводил эксперименты с нейроинтерфейсами на обезьянах — так как для точной работы интерфейсов необходимо их прямое подключение к зонам мозга и не всегда такие экспериментальные вмешательства возможны на людях.

В одном из моих исследований обезьяна ходила по дорожке, активность ее моторной коры ее мозга, ответственной за движение ног, считывалась и запускала ходьбу робота. При этом обезьяна наблюдала этого ходящего робота на экране, который был перед ней расположен.

Обезьяна использовала обратную связь, то есть корректировала свои движения на основе того, что она видит на экране. Таким образом разрабатываются наиболее эффективные для реализации ходьбы нейроинтерфейсы.

Кибернетическое будущее

Подобные исследования ведут нас к инновационным разработкам в будущем. Например, создание экзоскелета для восстановления движений у полностью парализованных людей уже не кажется недостижимой фантазией — необходимо только время. Этот прогресс может сдерживать недостаточная мощность компьютеров, но за последние десять лет развитие и здесь было колоссальным. Вполне вероятно. что скоро мы увидим вокруг людей, которые используют для передвижения не коляски, а легкий, удобный экзоскелет. Люди-киборги станут для нас чем-то обыденным.

Коммерческая разработка таких систем идет по всему миру, в том числе и в России. Например, в известном проекте ExoAtlet разрабатывают экзоскелеты для реабилитации людей с двигательными нарушениями. Центр биоэлектрических интерфейсов НИУ ВШЭ поучаствовал в разработке алгоритмов для этих машин: директор Центра профессор Алексей Осадчий и его аспиранты разработали нейроинтерфейс, запускающий шагательные движения экзоскелета.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Быстрое развитие человекоподобных роботов-андроидов тоже становится реальностью. Вполне вероятно, что скоро вокруг нас будут ходить роботы, которые будут имитировать нас во многих аспектах — двигаться как мы и думать как мы. Они смогут выполнять часть работы, прежде доступной только человеку.

Очевидно, что мы будем видеть развитие и робототехники, и нейронаук, и эти области будут сближаться. Это не только открывает новые возможности, но и создает новые этические вопросы: как мы должны относиться к роботам-андроидам или людям-киборгам.

И все-таки пока человек лучше, чем робот, во многих отношениях. Наши мышцы наиболее экономичны: достаточно съесть бутерброд, чтобы хватило энергии на весь день. У робота заряд батарей закончится через полчаса. И хотя может быть гораздо мощнее, чем человек, он часто оказывается слишком тяжелым. Элегантность и оптимизация энергетических затрат — тут человек пока превосходит робота.

Хотя недалеко то будущее, когда это изменится — в этом направлении работают десятки тысяч талантливых ученых и инженеров.

Подписывайтесь также на Telegram-канал РБК Тренды и будьте в курсе актуальных тенденций и прогнозов о будущем технологий, эко-номики, образования и инноваций.

Источник

Робототехника: все, что нужно знать о роботах

Тема: Наука

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Робототехника — прикладная наука, занимающаяся разработкой автоматизированных технических систем.

Слово «робототехника» (в его английском варианте «robotics») было впервые использовано в печати Айзеком Азимовым в научно-фантастическом рассказе «Лжец», опубликованном в 1941 году.

Робот (чеш. robot, от robota — подневольный труд или rob — раб) — автоматическое устройство, созданное по принципу живого организма.

Действуя по заранее заложенной программе и получая информацию о внешнем мире от датчиков (аналогов органов чувств живых организмов), робот самостоятельно осуществляет производственные и иные операции, обычно выполняемые человеком (либо животными). При этом робот может как и иметь связь с оператором (получать от него команды), так и действовать автономно.

“Современные роботы, созданные на базе самых последних достижений науки и техники, применяются во всех сферах человеческой деятельности. Люди получили верного помощника, способного не только выполнять опасные для жизни человека работы, но и освободить человечество от однообразных рутинных операций.” И. М. Макаров, Ю. И. Топчеев. “Робототехника: История и перспективы”

Внешний вид и конструкция современных роботов могут быть весьма разнообразными. В настоящее время впромышленном производстве широко применяются различные роботы, внешний вид которых (по причинам технического и экономического характера) далёк от «человеческого».

История

Сведения о первом практическом применении прообразов современных роботов — механических людей с автоматическим управлением — относятся к эллинистической эпохе.

Тогда на маяке, сооружённом на острове Фарос, установили четыре позолоченные женские фигуры. Днём они горели в лучах солнца, а ночью ярко освещались, так что всегда были хорошо видны издалека. Эти статуи через определённые промежутки времени, поворачиваясь, отбивали склянки; в ночное же время они издавали трубные звуки, предупреждая мореплавателей о близости берега.

Прообразами роботов были также механические фигуры, созданные арабским учёным и изобретателем Аль-Джазари (1136—1206). Так, он создал лодку с четырьмя механическими музыкантами, которые играли на бубнах, арфе и флейте.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Чертёж человекоподобного робота был сделан Леонардо да Винчи около 1495 года. Записи Леонардо, найденные в 1950-х, содержали детальные чертежи механического рыцаря, способного сидеть, раздвигать руки, двигать головой и открывать забрало. Дизайн, скорее всего, основан на анатомических исследованиях, записанных в Витрувианском человеке. Неизвестно, пытался ли Леонардо построить робота.

С начала XVIII века в прессе начали появляться сообщения о машинах с «признаками разума», однако в большинстве случаев выяснялось, что это мошенничество. Внутри механизмов прятались живые люди или дрессированные животные.

Французский механик и изобретатель Жак де Вокансон создал в 1738 году первое работающее человекоподобное устройство (андроид), которое играло на флейте. Он также изготовил механических уток, которые, как говорили, умели клевать корм и «испражняться».

Виды роботов

Промышленные роботы
Появление станков с числовым программным управлением привело к созданию программируемых манипуляторов для разнообразных операций по загрузке и разгрузке станков.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Появление в 70-х гг. микропроцессорных систем управления и замена специализированных устройств управления на программируемые контроллеры позволили снизить стоимость роботов в три раза, сделав рентабельным их массовое внедрение в промышленности. Этому способствовали объективные предпосылки развития промышленного производства.

Несмотря на их высокую стоимость, численность промышленных роботов в странах с развитым производством быстро растёт. Основная причина массовой роботизации такова:

«Роботы выполняют сложные производственные операции по 24 ч в сутки. Выпускаемая продукция при этом имеет высокое качество. Они… не болеют, не нуждаются в обеденном перерыве и отдыхе, не бастуют, не требуют повышения заработной платы и пенсии. Роботы не подвержены влиянию температуры окружающей среды либо воздействию газов или выбросов агрессивных веществ, опасных для жизни человека».

Медицинские роботы
В последние годы роботы получают всё большее применение в медицине; в частности, разрабатываются различные модели хирургических роботов.

Ещё в 1985 году робот Unimation Puma 200 был использован для позиционирования хирургической иглы при выполнении биопсии головного мозга, проводившейся под управлением компьютера.

В 1992 году разработанный в Имперском колледже Лондона робот ProBot впервые осуществил операцию на предстательной железе, положив начало практической роботизированной хирургии.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

С 2000 года компания Intuitive Surgical серийно выпускает робот Da Vinci, предназначенный для лапароскопических операций и установленный в нескольких сотнях клиник по всему миру.

Бытовые роботы

Одним из первых примеров удачной массовой промышленной реализации бытовых роботов стала механическая собачка AIBO корпорации Sony.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Всё большую популярность набирают роботы-уборщики (по своей сути — автоматические пылесосы), способные самостоятельно прибраться в квартире и вернуться на место для подзарядки без участия человека.

Боевые роботы

Боевым роботом называют автоматическое устройство, заменяющее человека в боевых ситуациях или при работе в условиях, несовместимых с возможностями человека, в военных целях: разведка, боевые действия, разминирование и т. п.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Боевыми роботами являются не только автоматические устройства с антропоморфным действием, которые частично или полностью заменяют человека, но и действующие в воздушной и водной среде, не являющейся средой обитания человека (авиационные беспилотные с дистанционным управлением, подводные аппараты и надводные корабли).

В настоящее время большинство боевых роботов являются устройствами телеприсутствия, и лишь очень немногие модели имеют возможность выполнять некоторые задачи автономно, без вмешательства оператора.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

В Технологическом институте Джорджии под руководством профессора Хенрика Кристенсена разработаны напоминающие муравьёв инсектоморфные роботы, способные обследовать здание на предмет наличия там врагов и мин-ловушек (доставляются к зданию «главным роботом» — мобильным роботом на гусеничном ходу).

Получили распространение в войсках и летающие роботы. На начало 2012 года военными во всём мире использовались около 10 тысяч наземных и 5 тысяч летающих роботов; 45 стран мира разрабатывало или закупало военных роботов.

Роботы-учёные

Первые роботы-учёные Адам и Ева были созданы в рамках проекта Robot Scientist университета Аберистуита и в 2009 году одним из них было совершено первое научное открыти.

К роботам-учёным безусловно можно отнести роботов, с помощью которых исследовались вентиляционные шахты Большой Пирамиды Хеопса. С их помощью были открыты т. н. «дверки Гантенбринка» и т. н. «ниши Хеопса». Исследования продолжаются.

Система передвижения

Для передвижения по открытой местности чаще всего используют колёсный или гусеничный движитель (примерами подобных роботов могут служить Warrior и PackBot).

Реже используются шагающие системы (примерами подобных роботов могут служить BigDog и Asimo).

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Для неровных поверхностей создаются гибридные конструкции, сочетающие колёсный или гусеничный ход со сложной кинематикой движения колёс. Такая конструкция была применена в луноходе.

Внутри помещений, на промышленных объектах роботы передвигаются вдоль монорельсов, по напольной колее и т. д. Для перемещения по наклонным или вертикальным плоскостям, по трубам используются системы, аналогичные «шагающим» конструкциям, но с вакуумными присосками.

Также известны роботы, использующие принципы движения живых организмов — змей, червей, рыб, птиц, насекомых и других типах роботов бионического происхождения.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Система распознавания образов

Системы распознавания уже способны определять простые трехмерные предметы, их ориентацию и композицию в пространстве, а также могут достраивать недостающие части, пользуясь информацией из своей базы данных (например, собирать конструктор Lego).

Двигатели

В настоящее время в качестве приводов обычно используются двигатели постоянного тока, шаговые электродвигатели и сервоприводы.

Существуют разработки двигателей, не использующих в своей конструкции моторов: например, технология сокращения материала под действием электрического тока (или поля), которая позволяет добиться более точного соответствия движения робота натуральным плавным движениям живых существ.

Математическая база

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Помимо уже широко применяющихся нейросетевых технологий, существуют алгоритмы самообучения взаимодействию робота с окружающими предметами в реальном трёхмерном мире: робот-собака Aibo под управлением таких алгоритмов прошел те же стадии обучения, что и новорожденный младенец, самостоятельно научившись координировать движения своих конечностей и взаимодействовать с окружающими предметами (погремушками в детском манеже). Это дает ещё один пример математического понимания алгоритмов работы высшей нервной деятельности человека.

Навигация

Системы построения модели окружающего пространства по ультразвуку или сканированием лазерным лучом широко используются в гонках роботизированных автомобилей (которые уже успешно и самостоятельно проходят реальные городские трассы и дороги на пересечённой местности с учётом неожиданно возникающих препятствий).

Внешний вид

В Японии не прекращаются разработки роботов, имеющих внешний вид, на первый взгляд неотличимый от человеческого. Развивается техника имитации эмоций и мимики «лица» роботов.

В июне 2009 года ученые Токийского университета представили человекоподобного робота «KOBIAN», способного выражать свои эмоции — счастье, страх, удивление, грусть, гнев, отвращение — с помощью жестов и мимики.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миром

Робот способен открывать и закрывать глаза, двигать губами и бровями, использовать руки и ноги.

Производители роботов

Существуют компании, специализирующиеся на производстве роботов (среди крупнейших — iRobot Corporation). Роботов также выпускают некоторые компании, работающие в сфере высоких технологий: ABB, Honda, Mitsubishi, Sony, World Demanded Electronic, Gostai, KUKA.

Проводятся выставки роботов, напр. самая крупная в мире International robot exhibition (iRex) (проводится в начале ноября раз в два года в Токио, Япония).

Если вы хотите получать больше статей, подобно этой, то кликните Recommend ниже.

Источник

Шаг 6. Управление роботом

Способы управления роботом

Управление роботом является сложной задачей. Определение, которое мы выбрали для «робота», требует, чтобы устройство получало данные о своей среде. Затем принимало решение и предпринимало соответствующие действия. Роботы могут быть автономными и полуавтономными.

Полуавтономные роботы

Хорошим примером полуавтономного робота является сложный подводный робот. Человек контролирует основные движения робота. И в это время бортовой процессор измеряет и реагирует на подводные токи. Это позволяет держать робота в одном и том же положении без дрейфа. Камера на борту робота отправляет видео обратно человеку. Дополнительно бортовые датчики могут отслеживать температуру воды, давление и многое другое.

Если робот теряет связь с поверхностью, то включается автономная программа и поднимает подводного робота на поверхность. Для того, чтобы иметь возможность управлять своим роботом, нужно будет определить его уровень автономности. Возможно вы хотите чтобы управление роботом осуществлялось по кабелю, было беспроводное или полностью автономное.

Управление по кабелю

Самый простой способ управления роботом — это ручной контроллер, физически подключенный к нему с помощью кабеля. Переключатели, ручки, рычаги, джойстики и кнопки на этом контроллере позволяют пользователю управлять роботом без необходимости включать сложную электронику.

В этой ситуации двигатели и источник питания могут быть подключены непосредственно к переключателю. Следовательно, можно контролировать его вращение вперед / назад. Это используется обычно в транспортных средствах.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миромПолуавтономный подводный робот

Они не имеют интеллекта и считаются скорее «дистанционно управляемыми машинами», чем «роботами».

Управление роботом при помощи кабеля и встроенного микроконтроллера

Следующим шагом будет установка микроконтроллера на робота, но при этом продолжать использовать кабель. Подключение микроконтроллера к одному из портов ввода / вывода вашего компьютера (например, USB-порт) позволяет вам управлять своими действиями. Управление происходит с помощью клавиатуры, джойстика или другого периферийного устройства. Добавление микроконтроллера в проект также может потребовать, чтобы вы запрограммировали робота на входные сигналы.

Управление по Ethernet

Используется разъём Ethernet RJ45. Для управления нужно Ethernet соединение. Робот физически подключен к маршрутизатору. Следовательно его можно контролировать через Интернет. Также это возможно (хотя и не очень практично) для мобильных роботов.

Настройка робота, который может общаться через Интернет, может быть довольно сложной. В первую очередь предпочтительным является соединение WiFi (беспроводной интернет). Проводная и беспроводная комбинация также являются опцией, где есть приемопередатчик (передача и прием). Приемопередатчик физически подключен к Интернету, и данные, полученные через Интернет, затем передаются беспроводным способом роботу.

Управление при помощи ИК-пульта

Инфракрасные передатчики и приемники исключают кабель, соединяющий робота с оператором. Это, как правило, используется начинающими. Для работы инфракрасного управления требуется «линия визирования». Приемник должен иметь возможность «видеть» передатчик в любое время, чтобы получать данные.

Инфракрасные пульты дистанционного управления (такие, как универсальные пульты дистанционного управления, для телевизоров), используются для отправки команд инфракрасному приемнику, подключенному к микроконтроллеру. Он затем интерпретирует эти сигналы и контролирует действия робота.

Радиоуправление

Для управления при помощи радиочастот требуется передатчик и приемник с небольшими микроконтроллерами для отправки, приема и интерпретации данных, передаваемых по радиочастоте (RF). В коробке приемника имеется печатная плата (печатная плата), которая содержит приемный блок и небольшой контроллер сервомотора. Для радиосвязи требуется передатчик, согласованный / сопряженный с приемником. Возможно использование трансивера, который может отправлять и принимать данные между двумя физически разными средами систем связи.

Радиоуправление не требует прямой видимости и может быть осуществлено на большом расстоянии. Стандартные радиочастотные устройства могут обеспечивать передачу данных между устройствами на расстоянии до нескольких километров. В то время как более профессиональные радиочастотные устройства могут обеспечивать управление роботом практически на любом расстоянии.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миромпульт радиоуправления роботом

Многие конструкторы роботов предпочитают изготавливать полуавтономных роботов с радиоуправлением. Это позволяет роботу быть максимально автономным, обеспечивать обратную связь с пользователем. И может давать пользователю некоторый контроль над некоторыми его функциями в случае необходимости.

Управление по Bluetooth

Bluetooth является радиосигналом (RF) и передается по определенным протоколам для отправки и получения данных. Обычный диапазон Bluetooth часто ограничен примерно 10 м. Хотя он имеет то преимущество, что позволяет пользователям управлять своим роботом через устройства с поддержкой Bluetooth. Это в первую очередь сотовые телефоны, КПК и ноутбуки (хотя для создания интерфейса может потребоваться настраиваемое программирование). Так же, как и радиоуправление, Bluetooth предлагает двустороннюю связь.

Управление по WiFi

Управление по WiFi часто является дополнительной опцией для роботов. Способность управлять роботом по беспроводной сети через Интернет представляет некоторые существенные преимущества (и некоторые недостатки) для беспроводного управления. Чтобы настроить управление роботом по Wi-Fi нужен беспроводной маршрутизатор, подключенный к Интернету, и блок WiFi на самом роботе. Для робота можно использовать устройство, которое поддерживает TCP / IP протокол.

Управление при помощи сотового телефона

Другая беспроводная технология, которая была первоначально разработана для связи человека и человека — сотовый телефон, теперь используется для управления роботами. Поскольку частоты сотового телефона регулируются, включение сотового модуля на робота обычно требует дополнительного программирования. Также не нужно понимания системы сотовой сети и правил.

Автономное управление роботом

Следующим шагом будет использование микроконтроллера в вашем роботе в полном объеме. И в первую очередь программирование его алгоритма работы по вводу данных от его датчиков. Автономное управление может осуществляться в различных формах:

Настоящее автономное управление включает в себя множество датчиков и алгоритмов. Они позволяют роботу самостоятельно определять лучшее действие в любой заданной ситуации. Самые сложные методы управления, которые в настоящее время реализуются на автономных роботах, являются визуальными и слуховыми командами. Для визуального контроля робот смотрит на человека или объект, чтобы получить свои команды.

автономное управление роботом

Управление роботом для поворота налево при помощи чтения с листа бумаги стрелки, указывающей влево, намного сложнее выполнить, чем можно было бы представить. Служебная команда, такая как «повернуть налево», также требует довольно много программирования. Программирование множества сложных команд, таких как «Принесите мне тапочки» уже не фантазия. Хотя требует очень высокого уровня программирования и большого количества времени.

Автономная платформа

Целью нашего проекта является создание автономной платформы, способной принимать решение, основанное на внешних сигналах от датчиков.

через какое действие робот связывается с окружающим миром. Смотреть фото через какое действие робот связывается с окружающим миром. Смотреть картинку через какое действие робот связывается с окружающим миром. Картинка про через какое действие робот связывается с окружающим миром. Фото через какое действие робот связывается с окружающим миромуправление микроконтроллером Lego EV3

Мы будем использовать микроконтроллер Lego EV3. Он нам позволяет сделать как полностью автономную платформу. Так и полуавтономную, управляемую по Bluetooth или при помощи инфракрасного пульта управления.

Программируемый блок LEGO EV3

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *