через какое расстояние ставится компенсатор на тепловом вводе
Компенсация температурных расширений
С. В. Комаров, ведущий специалист отдела промышленного оборудования, ros-pipe.ru
Любые перемещения, возникающие вследствие внешних воздействий на трубопровод (например, сейсмических и др.), должны быть учтены при его проектировании, также следует учитывать и температурное расширение трубопроводов.
Строительные изделия, такие как трубы, оборудование, строительные конструкции, изменяют свои размеры в результате изменения температур. В настоящей статье затронуты вопросы компенсации теплового расширения и сжатия трубопроводов.
Вследствие изменения температуры рабочей среды в трубах возникают температурные напряжения, которые могут передаваться на арматуру, насосное оборудование и т.д. в виде реактивных сил и моментов. Это создает потенциальную опасность разгерметизации стыков, разрушения арматуры или оборудования.
Три наиболее часто используемых способа компенсации перемещений трубопроводов:
Выбор способа компенсации зависит от вида системы трубопроводов, ее схемы, а также от особенностей ландшафта, наличия рядом других коммуникаций и прочих условий.
Перечисленные выше примеры представлены в качестве общих инженерных решений и не должны рассматриваться как единственно верные для конкретной системы трубопроводов. Мы будем рассматривать способ компенсации расширения прямолинейных участков трубопроводов при помощи осевых сильфонных компенсаторов.
Расширение трубопроводов
Первым шагом для решения вопроса компенсации температурных перемещений является вычисление точного изменения длины участков трубопроводной системы в соответствии с предъявляемыми условиями безопасности.
Определение (расчет) теплового расширения трубопровода производится по следующей формуле:
где а – коэффициент температурного расширения, мм/ (м·°С);
L – длина трубопровода (расстояние между неподвижными опорами), м;
∆t – разница значений между максимальным и минимальным значениями температур рабочей среды, °С.
Коэффициент температурного расширения берется из таблицы линейного расширения труб из различных материалов.
Как видно из таблицы, наиболее подвержены температурному расширению трубопроводы из полимерных материалов, в связи с этим способы компенсации полимерных труб несколько отличаются от способов компенсации стальных.
Значения коэффициента линейного расширения являются усредненными для каждого вида материала. Эти значения не должны применяться для расчетов трубопроводов из других материалов. Коэффициенты растяжения в разных источниках могут различаться на 5% и более, поскольку их вычисления проводятся при разных условиях и различными методами. Желательно применять для расчетов коэффициент линейного расширения, который представлен в технической документации производителя труб.
Рассмотрим реальный пример.
Возьмем прямолинейный участок трубопровода диаметром 219 мм из черной углеродистой стали длиной 100 м. Максимальная температура tmax = 140 °С, минимальная tmin = –20 °С.
Производим расчеты:
∆t = 140 – (–20) = 160 °С,
изменение длины трубопровода:
∆L = 0,0115 × 160 × 100 = 184 мм.
Полученный результат говорит о том, что трубопровод при заданных значениях меняет свою длину на 184 мм. Для обеспечения правильной работы трубопровода подходит осевой сильфонный компенсатор условным диаметром 200 мм и компенсирующей способностью 200 мм (например, КСО 200–16–200). При подборе данного типоразмера компенсатора имеется запас компенсирующей способности, а это положительно скажется на сроке работы трубопровода.
В случае, если полученное значение ∆L будет превышать значение компенсирующей способности производимых типоразмеров компенсаторов, то следует уменьшить длину участка трубопровода между двумя неподвижными опорами пропорционально имеющейся компенсирующей способности, а затем подобрать необходимый сильфонный компенсатор, пользуясь вышепредставленным расчетом.
| Таблица | ||||||||||||||||||||||||||||
|
Установка сильфонных компенсаторов
Цель установки сильфонного компенсатора – это поглощение теплового расширения трубы. Обычно температура рабочей среды (жидкости) является основным источником изменения размеров трубопровода, однако в некоторых случаях температура окружающей среды может вызвать тепловое движение трубопровода, т.е. его удлинение или сжатие.
Рекомендации по установке
1. Устанавливая сильфонные компенсаторы, следует проверить соответствие их основных параметров указанным в проекте, таких как
2. Диаметр и давление трубопровода должны соответствовать выбираемому компенсатору.
3. При установке сильфонных компенсаторов необходимо монтировать не более одного компенсатора на участке трубопровода между каждыми двумя последовательно стоящими неподвижными опорами.
4. Скользящие опоры должны быть охватывающими (хомуты, рамочные и др.). Они не должны создавать большую силу трения. Целесообразно применение фторопластовых прокладок и т.п. При движении труб не должно быть заклиниваний и перекосов.
Максимальный размер люфтов для Ду ≤ 100 мм – 1 мм, а для Ду ≥ 125 мм – 1,6 мм.
5. При проведении расчетов трубопроводов необходимо учитывать влияющие силы (силы трения, силы упругости сильфонов и др.).
6. При выборе места установки сильфонных компенсаторов нужно выбрать наиболее оптимальный вариант их расположения на трубопроводе.
7. При опрессовке труб давление не должно превышать 1,25 × Ру.
8. Процесс опрессовки проводить только после полного монтажа трубопровода.
9. Напряжения скручивания, угловые усилия, поперечные перемещения должны быть полностью исключены на участке трубопровода, на котором установлен осевой сильфонный компенсатор.
Определение точек установки компенсаторов и направляющих опор для трубы
Для обеспечения правильной работы трубопровода в рабочем режиме следует разделить систему на отдельные участки с целью установки на них сильфонных компенсаторов. Основная задача компенсаторов – контроль расширения трубопровода между неподвижными опорами, перемещение должно происходить строго в осевом направлении для обеспечения жесткости конструкции.
Неподвижные же опоры предназначены для приема всех сил, действующих на трубопроводе.
Направляющие (скользящие) опоры для труб обеспечивают выравнивание движения сильфона компенсатора и предотвращают смещение относительно оси трубопровода. При отсутствии направляющих опор сильфонный компенсатор, обладающий высокой гибкостью в сочетании с внутренним давлением, может потерять устойчивость и деформироваться, что может привести к выходу из строя трубопровода.
Основная рекомендация состоит в установке осевого сильфонного компенсатора рядом с неподвижной опорой. Обычно осевой сильфонный компенсатор устанавливают на расстоянии не более 4Ду от неподвижной опоры. Данное условие обусловлено обеспечением жесткости конструкции.
Соблюдая правила монтажа сильфонных компенсаторов, вы продлите до максимума срок службы трубопровода, что сэкономит средства на его неплановый ремонт.
| Схемы установки осевых сильфонных компенсаторов | |||||||||||||||||||||||
Поделиться статьей в социальных сетях: ИНСТРУКЦИЯ ПО УСТАНОВКЕ СИЛЬФОННЫХ КОМПЕНСАТОРОВНа участке трубопровода меж2-ух неподвижных опор разрешается монтировать только один компенсатор. Расстояние от компенсатора до неподвижной опоры не должно быть больше длины, равной четырем номинальным диаметрам трубопровода. Перед монтажом компенсатор должен быть проверен на соответствие техническим условиям и на отсутствие дефектов или повреждений при перевозке. При передвижении компенсатора во время установки должны приниматься меры, исключающие повреждение компенсатора и его загрязнение. Перед монтажом компенсатор необходимо проверить на наличие/отсутствие заводской предварительной растяжки. Компенсаторы могут поставляться в свободном и полностью растянутом виде, что указывается в товарно-сопроводительных документах. С целью правильной установки компенсатора, если это необходимо, направление потока указывается стрелкой на его кожухе или окончаниях. Компенсатор освобождается от транспортных ограничителей перед началом растяжки. Растяжку осуществляют на длину установочного расстояния Lуст, которое определяется следующим образом: где ΔL – полный осевой ход компенсатора, tуст – температура окружающей среды при монтаже, tмин – минимальная расчетная рабочая температура, tмакс – максимальная расчетная рабочая температура. Если компенсатор поставлен в свободном состоянии, установку рекомендовано осуществлять в следующей последовательности: Участки трубопровода до и после компенсатора должны быть смонтированы и закреплены в неподвижных опорах Н1 и Н2 таким образом, чтобы расстояние между торцами труб в месте установки компенсатора соответствовало монтажной длине компенсатора при температуре окружающей среды, соответствующей моменту закрепления компенсатора. Температура окружающей среды и значение монтажной длины компенсатора должны быть зафиксированы в акте. После стыковки с одним концом трубопровода, проверяются отклонения соединения компенсатора и трубопровода, которые не должны превышать следующих значений: Зазор между компенсатором и трубопроводом (между фланцами или приварными патрубками) не более 2 мм. Стыковочные плоскости патрубков/фланцев должны быть параллельны. После устранения погрешностей, производится стыковка компенсатора со вторым концом трубопровода. Все действия аналогичны примеру 1 с той разницей, что зазор между участками трубопровода Lмонт устраивается не в месте установки компенсатора. Компенсатор устанавливают в трубопровод перед выполнением растяжки и растяжка производиться совместно с участком трубопровода. Требования по соблюдению отклонений такие же, как описаны в примере 1.
Ось участка трубопровода, на котором устанавливается сильфонный компенсатор и ось компенсатора должны совпадать. Поверхности соединяемых фланцев должны быть строго перпендикулярны оси трубопровода. Неподвижные и плавающие направляющие опоры обязаныустанавливаться как показано на рисунке справа: L1 = 4×D max; L2,3 = 14×D max; D – диаметр трубопровода. Во избежание перекоса, затяжку гаек на шпильках стяжного устройства необходимо осуществлять последовательно или крестообразно с поворотом гайки на один оборот. В случае, если компенсатор поставлен в предварительно растянутом виде, то после подгонки Lмонт к условиям установки, компенсатор монтируется как элемент трубопровода с соблюдением всех требований по соосности трубопровода и компенсатора. Транспортные ограничители удаляются только после окончания установки. Компенсаторы для трубопроводов отопления и водоснабжения: их виды, назначение и установка
Одним из способов решения этой задачи стали компенсаторы для трубопроводов отопления. Такие компенсаторы применяются не только на магистральных трубах и распределительных сетях, но и внутри домовых тепловых (и не только) разводках. Виды компенсаторовКонструктивно такие приспособления бывают следующих видов: Уже было сказано, что эти устройства отличаются высокой возможностью компенсирования, и она увеличивается пропорционально увеличению объема сети.
Установка компенсирующих систем весьма желательна на трубопроводах систем отопления и разводках горячего водоснабжения внутридомовых тепловых сетей частного дома. Установка компенсаторов обязательна независимо от материала трубопровода; Кроме основной функции гашения вибраций успешно работает при тепловых деформациях трубопроводов для отопления, а также в случае возникновения радиальных смещений и угловых деформаций. Мир инженераинформация для инженеров и проектировщиковП-образный компенсаторП-образный компенсатор ППУ Приветствую Вас, дорогие и уважаемые читатели сайта “world-engineer.ru”. В этой статье Вы узнаете, что такое П-образный компенсатор, а также по какой формуле рассчитать П-образный компенсатор. Узнаете, как выполнить расчет П-образного компенсатора и поймете, что такое растяжка П-образного компенсатора. Широкое применение при монтаже тепловых сетей с трубопроводами нашли П-образные компенсаторы. П-образный компенсатор – это участок трассы тепловой сети, изготовленный из отводов и прямых участков труб, соединенных при помощи электродуговой сварки. Более простым языком, П-образные компенсаторы – это гибкие компенсаторы, которые при температурном расширении двигаются, тем самым совершая поглощение осевых нагрузок при его движении. Диаметр, толщина стенки, и марка стали труб для гибких компенсаторов должны быть такие же, как и для трубопроводов основных участков. Расположение П-образных компенсаторов при монтаже рекомендуется принимать горизонтальное. Для компенсации тепловых удлинений трубопроводов применяются сальниковые компенсаторы, сильфонные компенсаторы, гибкие П-образные компенсаторы, а также используются повороты трассы (самокомпенсация). Применение П-образного компенсатора позволяет так же более живучей проектировать трассу тепловой сети, так как лишь на углах поворотах трассы тепловой сети можно менять уклоны трубопроводов при построении продольного профиля. Правило простое — чем больше углов поворотов, тем проще строить профиль тепловой сети и тем самым можно регулировать уровень заложения трубы. Допустим, если бы вся трасса была длиной 1 км без углов поворотов с применением сальниковых компенсаторов и неподвижных опор, и начальное заглубление трассы тепловой сети от поверхности земли было 1 метр, то на конце 1 км участка даже с минимальным уклоном в 0,002 вполне могла оказаться глубина заложения в 5 метров от поверхности земли. Все индивидуально от рельефа земной поверхности, а также от количества и глубины залегания пересекаемых тепловой сетью инженерных коммуникаций. В любом случае применение П-образного компенсатора намного эффективнее. Согласно правилам Госгортехнадзора, в качестве компенсаторов допускается применение: а) гибких П-образных, лирообразных и других нормально изогнутых труб того же назначения и качества, что и на прямых участках, — для трубопроводов всех категорий; б) нормально изогнутых отводов при условии, что радиус сгиба труб при изготовлении компенсаторов должен быть не менее 3, 5 номинального наружного диаметра труб; также допускается применение крутоизогнутых отводов; в) сварных секторных отводов – для трубопроводов тепловых сетей диаметром свыше 450 мм. Устройство П-образного компенсатора Все части П-образных компенсаторов соединяются сваркой. Установка П-образных компенсаторов выполняется так, чтобы его ось симметрии была сдвинута от проектного положения на 1/4 компенсирующей способности компенсатора в сторону той неподвижной опоры, между которой и компенсатором все стыки должны быть сварены в первую очередь. У другой неподвижной опоры остается несваренным один стык с расстоянием между кромками в соответствии с проектной величиной растяжки компенсатора. Стяжка производится стяжными болтами или другими приспособлениями. Подвижные опоры устанавливаются на расстоянии, равном двум-трем диаметрам трубы, считая от качала гнутья отводов (посередине прямых участков П-образного компенсатора, но не под сварными стыками). Расчет П-образного компенсатора стальных труб онлайн и определение напряжений в их опасных сечениях производятся по формулам и номограммам (см. рисунки и таблицы ниже). Вспомогательные номограммы для расчета П-образных компенсаторов с гнутыми отводами а – номограмма для расчета П-образного компенсатора для Ду = 50, 70, 80, 100 мм б — номограмма для расчета П-образного компенсатора для Ду = 125, 150, 175, 200 мм в — номограмма для расчета П-образного компенсатора для Ду = 250, 300, 350, 400 мм Вспомогательные номограммы для расчета самокомпенсации тепловых удлинений а – номограмма для определения напряжений изгиба в сечении А Г-образных компенсаторов; б – номограмма для определения напряжений изгиба в сечении А Z-образных компенсаторов; в – номограмма для определения размеров Z-образных компенсаторов. Пример расчета П-образного компенсатора по номограммам Пример 1. Определить напряжение в наиболее нагруженном сечении А при следующих данных: Dy = 200 мм; l1 = 10 м; l2 = 30 м; а = 0 0 ; Δt = 173 0 C. Решение: n = 30/10 = 3. По номограмме (рис. а) находим бА 1 = 3,1 кгс/см 2 (0,3 МПа) при Δt = 1 0 C), тогда бА = 3,1 * 173 = 536 кгс/см 2 (53,6 МПа). Пример 2. Определить длину плеча компенсатора l при следующих данных: воспринимаемое удлинение Δ = 14 см, наружный диаметр трубы Dн = 159 мм, длина короткого параллельного плеча компенсатора l1 = 15 м. Ход решение по номограмме (рис. в) показан стрелками. Примечание. Номограмма составлена при биз = 80 МПа (800 кгс/см 2 ). Компенсирующие плечи Г-образных участков трубопроводов с разными плечами без учета влияние гнутого отвода Минимальная длина l, м, компенсирующих плеч Г-образных участков трубопроводов с равными плечами (см. рисунок выше)
| |||||||||||||||||||||||













