через какую точку проходит график логарифмической функции
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок № 26. Логарифмическая функция.
Перечень вопросов, рассматриваемых в теме
1) Понятие логарифмической функции
2) Свойства логарифмической функции
3) График логарифмической функции
Логарифмическая функция. Функция вида 
Свойства логарифмической функции:
1. Область определения – множество всех положительных чисел.
2. Множество значений логарифмической функции – множество всех действительных чисел.
3. Неограниченная функция.
4. Возрастающая, если a > 1, и убывающая, если 0 0, то функция принимает положительные значение при х > 1, отрицательные при 0 1.
Колягин Ю.М., Ткачева М.В., Фёдорова Н.Е. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс. Базовый и углублённый уровни. – М.: Просвещение, 2014.–384с.
Открытые электронные ресурсы:
Теоретический материал для самостоятельного изучения
В математике и других науках достаточно часто встречаются функции, содержащие логарифм.
Функцию вида 
Свойства логарифмической функции:
1. Область определения – множество всех положительных чисел. 
2. Множество значений логарифмической функции – множество всех действительных чисел.
3. Неограниченная функция. (Следует напрямую из 2 свойства.)
4. Возрастающая, если a > 1, и убывающая, если 
Докажем возрастание по определению возрастающей функции, если 

Пусть 
По основному логарифмическому тождеству 



Из этого свойства следуют два важных утверждения:
Если a > 0 и
Если 0 0, то функция принимает положительные значение при х > 1, отрицательные при 0 1.
Из рассмотренных свойств логарифмической функции следует, что ее график располагается правее оси Оу, обязательно проходит через точку (1; 0) и имеет вид: если основание больше 1 (график №1) и если основание больше нуля, но меньше 1 (график №2).
Отметим, если
Докажем это утверждение.
Предположим, что 







Это свойство применяется при решении уравнений.
Решить уравнение:
Слева и справа логарифмы по одинаковым основаниям, значит при условии, что 
Ответ: 
Особенности графиков логарифмической функции с разными основаниями.
Построим в одной системе координат графики функций 
Видно, что чем больше основание, тем ближе к осям координат расположен график. Обратите внимание: все графики проходят через точку (1; 0).
В другой системе координат построим графики функций с основаниями от 0 до
Видно, что в этом случае график приближается к осям координат при уменьшении основания. Но все так же есть общая точка (1; 0).
1. Если функция возрастающая (a > 1), при увеличении основания график приближается к осям координат.
2. Если функция убывающая 
Примеры и разбор решения заданий тренировочного модуля
№1. Найдите область определения функции:
Для функции 
В данной функции 

Ответ:
№2 Найдите наибольшее значение функции на данном промежутке
Рассмотрим функцию 



Через какую точку проходит график логарифмической функции
График функции имеет следующий вид:
Рассмотрим свойства функции:
Примеры решения задач
Задание 1.
В одной координатной плоскости построить графики функций:
Решение.
Для начала построим график функции y = log2x. Для этого найдем значения функции при x = 


| x | ![]() | ![]() | ![]() | 1 | 2 | 4 | 8 |
| y(x) | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Отметим полученные точки на координатной плоскости, соединив их плавной линией.
Большему значению аргумента х соответствует и большее значение функции у. Функция y = log2x возрастает на всей области определения D(y)=R+, так как основание функции 2 > 1.
Подобным образом построим графики остальных функций.
Переменная х может принимать только положительные значения (D(y) = R+), при этом значение у может быть любым (E(y) = R).
Графики всех данных функций пересекают ось Оx в точке (0; 1), так как логарифм по любому основанию от единицы равен нулю. C осью Оy графики не пересекаются, так как логарифм по положительному основанию не может быть равен нулю.
Чем больше основание a (если a > 1) логарифмической функции y = logax, тем ближе расположена кривая к оси Оx.
Все данные функции являются возрастающими, так как большему значению аргумента соответствует и большее значение функции.
Задание 2.
В одной координатной плоскости построить графики функций:
Решение.
Для начала построим график функции 



| x | ![]() | ![]() | ![]() | 1 | 2 | 4 | 8 |
| y(x) | 3 | 2 | 1 | 0 | -1 | -2 | -3 |
Отметим полученные точки на координатной плоскости, соединив их плавной линией.
Большему значению аргумента х соответствует меньшее значение функции y. Функция 
Подобным образом построим графики остальных функций.
Переменная х может принимать только положительные значения (D(y) = R+), при этом значение у может быть любым (E(y) = R).
Графики всех данных функций пересекают ось Оx в точке (0; 1), так как логарифм по любому основанию от единицы равен нулю. С осью Оy графики не пересекаются, так как логарифм по положительному основанию не может быть равен нулю.
Чем меньше основание a (если 0
Все данные функции являются убывающими, так как большему значению аргумента соответствует меньшее значение функции.
Задание 3.
Найти обасть определеления функции:
Решение
Область определения данной функции задается следующим неравенством:
Решим это линейное неравенство:
Логарифм определен, если подлогарифмическая функция является положительной, то есть искомая область определения: D(y): (x-1)(x+5) > 0.
Решим полученное уравнение методом интервалов. Для этого найдем нули каждого из сомножителей:
Наносим их на координатную прямую и определяем знак неравенства на каждом из полученных промежутков.
Что такое логарифмическая функция? Определение, свойства, решение задач
Раздел логарифмов занимает огромное значение в школьном курсе «Математического анализа». Задания для логарифмических функций построены на иных принципах, нежели задачи для неравенств и уравнений. Знание определений и основных свойств понятий логарифм и логарифмическая функция, обеспечат успешное решение типовых задач ЕГЭ.
Определение понятия логарифм
Прежде чем приступить к объяснению, что представляет собой логарифмическая функция, стоит обратиться к определению логарифма.
Разберем конкретный пример: а log a x = x, где a › 0, a ≠ 1.
Основные свойства логарифмов можно перечислить несколькими пунктами:
Логарифмирование
Логарифмированием называют математическую операцию, которая позволяет с помощью свойств понятия найти логарифм числа или выражения.
Функция логарифма и ее свойства
Логарифмическая функция имеет вид
Сразу отметим, что график функции может быть возрастающим при a › 1 и убывающим при 0 ‹ a ‹ 1. В зависимости от этого кривая функции будет иметь тот или иной вид.
Приведем свойства и способ построения графиков логарифмов:
Построить обе разновидности графиков очень просто, рассмотрим процесс на примере
Для начала необходимо вспомнить свойства простого логарифма и ее функции. С их помощью нужно построить таблицу для конкретных значений x и y. Затем на координатной оси следует отметить полученные точки и соединить их плавной линией. Эта кривая и будет являться требуемым графиком.
Очевидно, что обе линии являются зеркальным отражением друг друга. Построив прямую y = x, можно увидеть ось симметрии.
Для того, чтобы быстро найти ответ задачи нужно рассчитать значения точек для y = log2x, а затем просто перенести начала точки координат на три деления вниз по оси OY и на 2 деления влево по оси OX.
В качестве доказательства построим расчетную таблицу для точек графика y = log2(x+2)-3 и сравним полученные значения с рисунком.
Как видно, координаты из таблицы и точек на графике совпадают, следовательно, перенос по осям был осуществлен правильно.
Примеры решения типовых задач ЕГЭ
Большую часть тестовых задач можно разделить на две части: поиск области определения, указания вида функции по рисунку графика, определение является ли функция возрастающей/убывающей.
Для быстрого ответа на задания необходимо четко уяснить, что f(x) возрастает, если показатель логарифма а › 1, а убывает – при 0 ‹ а ‹ 1. Однако, не только основание, но и аргумент может сильно повлиять на вид кривой функции.
Задание 1
F(x), отмеченные галочкой, являются правильными ответами. Сомнения в данном случае вызывают пример 2 и 3. Знак «-» перед log меняет возрастающую на убывающую и наоборот.
Ответ: 3,4,5.
Задание 2
Ответ: 4.
Данные типы заданий считаются легкими и оцениваются в 1- 2 балла.
Задание 3.
Определить убывающая или возрастающая ли функция и указать область ее определения.
Так как основание логарифма меньше единицы, но больше нуля – функция от x является убывающей. Согласно свойствам логарифма аргумент также должен быть больше нуля. Решим неравенство:
Ответ: область определения D(x) – интервал (50; + ∞).
Задание 4.
Ответ: 3, 1, оси OX, направо.
Подобные задания классифицируются как средние и оцениваются в 3 – 4 балла.
Задание 5. Найти область значений для функции:
Из свойств логарифма известно, что аргумент может быть только положительным. Поэтому рассчитаем область допустимых значений функции. Для этого нужно будет решить систему из двух неравенств:
Итак, искомый промежуток находится в пределе интервала (-4; 8), при других x становится невозможным вычислить значение одного из данных логарифмических выражений.
Согласно свойствам логарифмической функции сумма логарифмов с одинаковым основанием равна логарифму произведения их аргументов.
Графиком функции y = – x 2 + 4x + 32 является парабола, схематический график которой представлен ниже.
Точка A является экстремумом графика, в ней y принимает наибольшее значение. Координаты точки A (m; n) вычисляются по формулам, приведенным на рисунке. Высчитаем n для заданной параболы.
Наибольшее значение ymax = 36. Так как основание логарифма в примере больше 1, то функция будет возрастающей, и достигнет наибольшего значения при максимальном аргументе. Узнаем максимум для F(y):
Наименьшего значения в конкретном примере нет, поэтому ОДЗ для f(x) = log3(x+4)+ log3(8-x) является следующий интервал (- ∞; 2log36).
Подобные задачи можно отнести к категории «сложно» и оценивать не менее 4 баллов за правильный ответ.

























