четные номера это какие

Четные числа

Чётность в теории чисел — характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет — нечётным (примеры: 1, 3, 75, −19). Нуль считается чётным числом. [1]

Чётное число — целое число, которое делится без остатка на 2: …−4, −2, 0, 2, 4, 6, 8…

Нечётное число — целое число, которое не делится без остатка на 2: …−3, −1, 1, 3, 5, 7, 9…

Иными словами, чётные и нечётные числа — это элементы соответственно классов вычетов [0] и [1] по модулю 2.

Содержание

Признак чётности

Если в десятичной форме записи числа последняя цифра является чётным числом (0, 2, 4, 6 или 8), то всё число так же является чётным, в противном случае — нечётным.
42, 104, 11110, 9115817342 — чётные числа.
31, 703, 78527, 2356895125 — нечётные числа.

Арифметика

История и культура

Понятие чётности чисел известно с глубокой древности и ему часто придавалось мистическое значение. Так, в древнекитайской мифологии нечётные числа соответствовали Инь, а чётные — Ян.

В разных странах существуют связанные с количеством даримых цветов традиции, например в США, Европе и некоторых восточных странах считается что чётное количество даримых цветов приносит счастье. В России чётное количество цветов принято приносить лишь на похороны умершим; в случаях когда в букете много цветов, чётность или нечётность их количества уже не играет такой роли.

Примечания

Полезное

Смотреть что такое «Четные числа» в других словарях:

Числа — Во многих культурах, особенно в вавилонской, индуистской и пифагорейской, число есть фундаментальный принцип, лежащий в основе мира вещей. Оно начало всех вещей и той гармонии вселенной, стоящей за их внешней связью. Число это основной принцип… … Словарь символов

Четные и нечетные числа — Чётность в теории чисел характеристика целого числа, определяющая его способность делиться нацело на два. Если целое число делится без остатка на два, оно называется чётным (примеры: 2, 28, −8, 40), если нет нечётным (примеры: 1, 3, 75, −19).… … Википедия

ЧИСЛА — ♥ ♠ Значение сна зависит от того, где именно и в каком виде вы видели приснившееся вам число, а также от его значения. Если число было в календаре это предупреждение о том, что в этот день вас ждет важное событие, которое перевернет всю вашу… … Большой семейный сонник

«Сакральный» смысл чисел в верованиях и учениях — К материалу «07.07.07. Влюбленные всего мира поверили в магию чисел» С глубокой древности числа играют важную и многогранную роль в жизни человека. Древние люди приписывали им особые, сверхъестественные свойства; одни числа сулили… … Энциклопедия ньюсмейкеров

АДДИТИВНАЯ ТЕОРИЯ ЧИСЕЛ — раздел теории чисел, в к ром изучаются задачи о разложении целых чисел на слагаемые заданного вида, а также алгебраич. и геометрич. аналоги таких задач, относящиеся к полям алгебраич. чисел и к множествам точек решетки. Эти задачи наз.… … Математическая энциклопедия

Счастливое число — В теории чисел счастливое число является натуральным числом множества генерируемое «решетом», аналогичным решету Эратосфена, которое генерирует простые числа. Начнем со списка целых чисел, начиная с 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,… … Википедия

НУМЕРОЛОГИЯ — методы определения скрытых истин с помощью толкования чисел. В основе нумерологии лежит идея о том, что каждое число является символом неких понятий. Например, 1 это единство, Бог, начало и неделимость; 2 двойственность, разделение, анализ,… … Символы, знаки, эмблемы. Энциклопедия

Источник

В мире чисел. Чётные и нечётные

Чёт счастливым
И красивым,
Слабым только лишь нечёт!
Но, редея,
Холодея
Чёт в нечёт перетечёт!

Если вы ещё не знаете, то я открою вам большой секрет – мы живём в МИРЕ ЧИСЕЛ. Они сопровождают нас до нашего появления на свет, и продолжают оставаться с нами, когда мы перебираемся в мир иной. Одна из книг Библии так и называется: «Числа».

Наука доказала, что считать умеют многие животные, начиная с мелких пташек до человекообразных обезьян. И только человек может уловить то общее, что объединяет разные предметы, к примеру, три камня, три пальмы или трёх слонов. За ними стоит общее число. Этот факт дал толчок человеку к росткам абстрактного мышления, что в дальнейшем породило математику, заслуженно названную царицей наук.

Самая распространённая система исчислений – десятичная, по числу пальцев рук, но есть и множество других. Всё началось с целых чисел. Если расположить числа в ряд: 1, 2, 3, 4…, и так далее, то его можно продолжать до бесконечности. Учитывая природный характер чисел, ряд назвали натуральным. Помимо целых чисел, в него входят и рациональные числа в виде дробей с конечным значением. Но есть и иррациональные числа, которые не имеют конечного точного значения. Если представить натуральный ряд в виде линейки, то она будет ещё и сплошной от чисел, без малейших зазоров.

Со временем открыли и «ноль», когда число не имеет значения. Он является истинным началом натурального ряда. А затем поняли, что числа бывают не только положительными, но и отрицательными. Воображаемая линейка будет бесконечной в обе стороны с нулём посередине.

На этом картина чисел не остановилась, когда обнаружили так называемые мнимые числа, то есть такие, которые есть, но каких будто нет. Если от воображаемой линейки провести вертикальную линию, то она будет до бесконечности заполнена мнимыми числами. Но и это ещё не всё, когда открыли комплексные числа, состоящие из действительных и мнимых чисел, а они заполнят всё поле чисел между их рядами. И это только в двух измерениях! А их множество!

Если я вас не утомил, то продолжим двигаться дальше, оставив математикам пользоваться всем множеством названных чисел.

А пока рассмотрим чётные и нечётные числа. Конечно, это относится только к целым числам, поскольку частично чётных не бывает. Чётные числа составляют половину всех натуральных чисел и также бесконечны.

В большинстве стран номера домов на обеих сторонах улицы чётные либо нечётные. Чтобы разгрузить улицы от автотранспорта, в некоторых городах в отдельные дни разрешено ездить машинам с чётными или нечётными номерами.

Живым дарят нечётное число цветов, а мёртвым – чётное. Алла Пугачёва пела, как художник один подарил актрисе миллион роз, то есть чётное число. Естественно, что после этого она дала дёру.

Однако у других народов, к примеру, китайского, отношение к нечётным числам как к дурным.

Вопросы для любителей математики. Испытайте себя:

Источник

Определить чётное или нечётное число

Сколько чётных и нечётных чисел между.

Теория

Чётное ли число

Чётным является целое число, которое делится на 2 без остатка (нацело).

Все многозначные числа, оканчивающиеся на 0,2,4,6 или 8, являются чётными числами:

Примеры

Чётное ли число 10?

Десять разделилось на два без остатка, следовательно 10 является чётным числом.

После деления единицы на два мы получаем нецелое число, следовательно 1 не является чётным числом.

Чётность нуля

Ноль чётное число, так как оно делится на два без остатка: 0 ÷ 2 = 0

Нечётные числа

Нечетным является целое число, которое не делится на 2 без остатка.

Все многозначные числа, оканчивающиеся на 1,3,5,7 или 9, являются нечётными числами:

Пример

Для примера рассмотрим число 67. Так как оно заканчивается цифрой 7 (нечётной), уже можно утверждать, что оно нечётное. Для пущей уверенности разделим 67 на два:

67 ÷ 2 = 33.5, то есть 33 и остаток 1 (67 = 33 ⋅ 2 + 1)

Окончательно делаем вывод, что число 67 является нечётным числом.

Сколько чётных и нечётных чисел в ряду

Сколько чётных и нечётных чисел находится в ряду между n и m?

Если n и m разные по чётности

Если n и m разные по чётности числа, то есть одно из них четное, а второе нечётное, то количество чётных и нечётных чисел в ряду одинаковое:

Пример

Возьмём ряд чисел между n = 22 и m = 31:

22, 23, 24, 25, 26, 27, 28, 29, 30, 31

Определим количество чётных и нечётных чисел в этом ряду.

Так как 22 и 31 являются числами разной чётности делаем вывод, что чётных и нечётных чисел в данном ряду поровну:

5 чётных и 5 нечётных

2224262830
2325272931

Если n и m чётные

Если n и m чётные числа, то чётных чисел в ряду будет на одно больше, чем нечётных:

Пример

Возьмём ряд чисел между n = 10 и m = 20:

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Определим количество чётных и нечётных чисел в этом ряду.

6 чётных и 5 нечётных

101214161820
1113151719

Если n и m нечётные

Если n и m нечётные числа, то чётных чисел в ряду будет на одно меньше, чем нечётных:

Пример

Возьмём ряд чисел между n = 11 и m = 19:

11, 12, 13, 14, 15, 16, 17, 18, 19

Определим количество чётных и нечётных чисел в этом ряду.

Источник

четные номера это какие. Смотреть фото четные номера это какие. Смотреть картинку четные номера это какие. Картинка про четные номера это какие. Фото четные номера это какие

Арифметические свойства

Четными называют числа, которые при делении на 2 образуют целое число. Нечетные при том же действии дают результат с остатком (дробное число). Чтобы быстро проверить на четность двузначную цифру, нужно определить параметр для последней его цифры в десятичной записи. Если она делится на два, число является четным, в противном случае — нечетным. Метод работает для любых многозначных чисел.

Арифметические правила четных и нечетных чисел при различных операциях описаны древнегреческим математиком Пифагором до нашей эры и используются для вычислений современниками. Они помогают составлять формулы для оптимизированных расчетов в задачах с большим рядом переменных. Алгоритмы многих онлайн-калькуляторов запрограммированы с помощью таких функций.

Закономерности арифметических операций с целыми числами:

четные номера это какие. Смотреть фото четные номера это какие. Смотреть картинку четные номера это какие. Картинка про четные номера это какие. Фото четные номера это какие

Формула четного числа: m = 2k. Формула нечетного числа: m = 2k + 1.

При уменьшении или увеличении четного числа на единицу получается нечетное и наоборот. При начертании оси с нулем в центре будет сохраняться чередование четных и нечетных чисел. Наглядно продемонстрировать феномен школьникам можно, предложив записать последовательный ряд четных чисел через запятую.

Характеристика парности у ноля

четные номера это какие. Смотреть фото четные номера это какие. Смотреть картинку четные номера это какие. Картинка про четные номера это какие. Фото четные номера это какие

Не бывает целых чисел, которые не принадлежат к одной из групп по признаку кратности двум. Ноль, который разделяет отрицательные и положительные значения последовательного ряда, не является целым. Из-за этого большинство предполагает, что ноль стоит особняком, т. е. не относится ни к одному виду или же одновременно представляет оба.

В науке ноль — это аддитивный нейтральный элемент четной группы. Он является логическим началом для рекурсии последовательного ряда кратных двум объектов. Исследования, проведенные в учебных заведениях Великобритании, показали, что 2/3 преподавателей не знают верного ответа, а ученики пятого класса ошибаются реже, чем из шестого и старше.

Признаки четности ноля:

четные номера это какие. Смотреть фото четные номера это какие. Смотреть картинку четные номера это какие. Картинка про четные номера это какие. Фото четные номера это какие

Маленьким слушателям легче пояснить феномен с помощью двух таблиц — по одной для каждой группы. Элементы кратных схематически изображаются в первом столбце, во втором — остаток. Олицетворяемая нолем пустота при делении на два остается пустотой, что соответствует признаку кратности двум. Вышеприведенный список доказательств содержит другие примеры для наглядной демонстрации логики принадлежности знака к группе элементов, кратных двум.

Свойства группы для вычислений

Когда требуется вычислить сумму множества слагаемых из натурального ряда последовательных нечетных чисел, можно отказаться от длительных монотонных операций. Известно, что сумма любого количества элементов всегда соответствует квадрату их количества. Проверку можно осуществить путем сложения двух, трех и четырех элементов последовательного ряда. Аналогичное выражение можно составить для любого количества слагаемых.

Алгоритм оптимизированного решения:

Количество складываемых элементов последовательного ряда некратных двум числительным всегда соответствует квадратному корню суммы.

Примеры логических задач для решения через характеристику парности:

четные номера это какие. Смотреть фото четные номера это какие. Смотреть картинку четные номера это какие. Картинка про четные номера это какие. Фото четные номера это какие

Ответ на каждую из задач можно получить методом проб и подбора. Понимание законов парности позволяет существенно сократить время на поиск верного решения. Школьникам нравится изящное решение головоломки о маленьком кузнечике. Детям сообщают, что за один скачок он преодолевает 1 метр. Учащимся предлагают доказать, что насекомое совершило парное количество прыжков, если в результате движений оно оказалось в исходной точке.

Ответ становится очевидным при понимании, что пройденный путь, равен расстоянию, которое необходимо пройти для возвращения к стартовой позиции. Таким образом суммарное расстояние обязано быть парным.

История и значение в культуре

четные номера это какие. Смотреть фото четные номера это какие. Смотреть картинку четные номера это какие. Картинка про четные номера это какие. Фото четные номера это какие

Неоценимое влияние на развитие арифметики оказали труды Пифагора. Ученый посвятил много труда и времени, чтобы выявить закономерности свойств чисел и объединить их в логичную систему. Математические законы и наблюдения он связал с мировосприятием и теорией самопознания человека.

Каждой цифре математик отвел свое значение. Нечетные обладают более сильными, активными характеристиками. Именно они в воссозданной мистической системе являлись олицетворением мужского начала, динамики и солнца. Четные же, наоборот, олицетворяли женское естество, статичность и луну.

Аналогичное деление характерно для китайской философии, в которой нечетные числительные относят к светлой мужской субстанции Ян, а Инь — к теневому, негативному, женскому. В учении о материи тайцзи противоположности представлены как единые и неделимые стороны одного целого.

У каждого этноса существуют свои поверья. Самое популярное суеверие у славян запрещает преподносить букеты с парным количеством цветов. В США и Европе такой подарок, наоборот, трактуется как пожелание счастья и благополучия. Нечетность приглашенных гостей, дней празднования, даты события также считается обязательным по свадебным традициям Руси.

Практическое применение

Возможность разделить все числительные на парные и непарные широко используется в повседневной жизни. В зависимости от того, кратен ли двум порядковый номер месяца, по правилам дорожного движения может быть запрещена или разрешена стоянка в определенных зонах. Четные и нечетные недели помогают запомнить расписание вузов с многочисленной аудиторией.

четные номера это какие. Смотреть фото четные номера это какие. Смотреть картинку четные номера это какие. Картинка про четные номера это какие. Фото четные номера это какие

В расписании железнодорожных поездов на кратности двум числа месяца завязаны маршруты с расписанием через день. Чтобы не нарушать установленный порядок, после 31 числа поезд может пропустить один выезд. Тот же принцип используется для нумерации вагонов — парность содержит информацию о направлении пути. В плацкартах и купе места с верхними полками всегда обозначены четным числом, а нижние — нечетным.

Парность строк помогает проверить созвучность стиха поэтам. Если мысленно пронумеровать слоги, можно подобрать слово в соответствии с ритмом произведения, так как ударные и безударные гласные являются основным ориентиром.

Источник

Четные и нечетные числа

Задолго до нашей эры древнегреческий ученый, занимаясь музыкой установил связь между длинной струны музыкального инструмента и издаваемым звуком. Это наблюдение позволило Пифагору сделать вывод, что не только законы музыки, но и все на свете можно выразить с помощью чисел. «Числа правят миром!» — провозгласил великий ученый.

Числа стали для Пифагора всем. Именно он впервые разделил все числа на четные и нечетные. Исследования Пифагора и его учеников положили начало важнейшей области математики — теории чисел.

Современные ученые доказали важность этой теории. Разделение всех чисел на четные и нечетные нашло свое подтверждение в структуре вирусов и ДНК, в знаменитых опытах Пастера с поляризацией винной кислоты, в нарушении четности элементарных частиц и других теориях.

Кстати сказать, что четные числа пифагорейцы считали женскими, а нечетные — мужскими. Символом брака у древних греков было число пять, которая состоит из суммы нечетной тройки и четной двойки.

Кроме математики Пифагор страстно любил музыку. Пифагор связал науку и искусство с помощью чисел. Первые четыре числа задают все известные консонантные интервалы в музыке: октаву (1:2), квинту (2:3) и кварту (3:4).

Четные и нечетные числа стали неотъемлемой частью нашей жизни. В теории числе четность определяется как характеристика целого числа, определяющая его способность делиться на два без остатка. То есть, если целое число делится без остатка на два, оно является чётным (2, 28, −8, 40), если нет — нечётным (1, 3, 75, −19).

Интересно узнать, что нуль считается чётным числом.

К основным признакам четности относятся следующие:

В том случае, если в десятичной форме записи числа последняя цифра является чётным числом (0, 2, 4, 6 или 8), то всё число является чётным, в противном случае — нечётным.

Например, 42, 104, 11110, 9115817342 — чётные числа.

31, 703, 78527, 2356895125 — нечётные числа.

Так же были выделены закономерности получения четных и нечетные чисел при выполнении основным арифметический действий:

При сложении и вычитании:

Чётное ± Чётное = Чётное
Чётное ± Нечётное = Нечётное
Нечётное ± Чётное = Нечётное
Нечётное ± Нечётное = Чётное
При умножение:

Чётное × Чётное = Чётное
Чётное × Нечётное = Чётное
Нечётное × Нечётное = Нечётное
При делении:

Чётное / Чётное — не дает однозначного ответа о чётности результата, поскольку, если результат целое число, то оно может быть как чётным, так и нечётным;
Чётное / Нечётное = четное, если результат целое число;
Нечётное / Чётное — результат не может быть целым числом, следовательно у него отсутствуют показатели четности;
Нечётное / Нечётное = нечетное, если результат целое число.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *