четыре измерения это какие
Десять измерений
Упрощенное объяснение 10 измерений Теории струн.
Представьте, что вы живете в озере. Вы рыба с глазами по обе стороны головы, и все, что вы знаете, это подводный мир растительности и других рыб, плавающих вокруг вас. Солнечный свет проникает, рассеивается и преломляется через воду. Вы в своей жизни убеждены, что этот подводный мир всё, что есть, потому что это всё, что вы можете видеть и ощуать. Тем не менее, существует совершенно новая среда за пределами вашей видимости — та, где животным не нужна вода, чтобы дышать, а цветы расцветают в гораздо более засушливом мире.
Это физическая ситуация, в которой и мы находимся. Мы такие же рыбы, и эти все измерения более трехмерного,— это новые среды, которые мы не можем воспринимать. На самом деле Теория струн, которая пытается примирить относительность с квантовой механикой (законы очень большого с очень малым), работает только в том случае, если предположить, что существует гораздо больше, чем четыре измерения, к которым мы привыкли. Физики верят, но пока не могут доказать, что в Мультивселенной существует до 11 измерений. Да, Мультивселенная, это где вселенные — пузыри, которые иногда объединяются вместе или расходятся. Это разделение пузырей вселенных — одна из возможностей того, что могло бы вызвать Большой взрыв.
Итак, упрощенное изложение 10 измерений Теории струн.
Первое измерение
Линия, соединяющая две точки. Нет ни глубины, ни высоты, только ширина. Это можно назвать осью X.
Второе измерение
Теперь мы добавили высоту или ось Y. Представьте любую плоскую фигуру, например треугольник.
Третье измерение
Теперь мы добавили глубину или ось Z. Это измерение, в котором мы ощущаем окружающий нас мир. Оно включает в себя объем и способность получать поперечные сечения от объектов. Вы можете думать об этом измерении как о пространстве без времени.
Четвертое измерение
Четвертое измерение не является пространственным, а состоит из времени. Время помогает построить местоположение объекта во Вселенной, а также добавляет способ изменения третьего измерения. Помните, мы назвали третье измерение пространством без времени? Ну, теперь у нас официально появилось космическое время.
«Время относительно, ясно? Оно может растягиваться, и оно может сжиматься, но… оно не может бежать назад. Просто не может. Единственное, что может перемещаться по измерениям, например времени, — это гравитация».
– Кристофер Нолан (Christopher Nolan), режиссер ильма Interstellar
Пятое измерение
С этого момента появляются более высокие измерения. Они незаметны для нас, считают ученые, потому что они существуют на субатомном уровне. Эти размеры скручиваются сами по себе в процессе, известном как компактификация. Размеры здесь на самом деле имеют дело с возможностями.
В пятом измерении будет новый мир, который позволит нам увидеть сходства и различия между нашим миром и этим новым, существующим в том же положении и имеющим то же начало, что и наша планета, т. е. в результате Большого взрыва.
Шестое измерение
Шестое измерение — это целая плоскость новых миров, которая позволит вам увидеть все возможные будущие, настоящие и прошлые события с тем же началом, что и наша Вселенная.
Седьмое измерение
В седьмом измерении вплоть до девятого, у нас теперь появляется возможность новых вселенных с новыми физическими силами природы и различными законами гравитации и света. Седьмое измерение — это начало этого, где мы сталкиваемся с новыми вселенными, которые имеют иное начало, чем наше. То есть они появились не в результате Большого взрыва.
Восьмое измерение
Это измерение — плоскость всех возможных прошлых и будущих времен для каждой Вселенной, простирающаяся бесконечно.
Девятое измерение
Девятое измерение раскрывает все универсальные законы физики и условия каждой отдельной Вселенной.
Десятое или одиннадцатое измерение
Некоторые ученые считают, что мультивселенная имеет только 10 измерений, в то время как другие говорят об 11-ти. Однако Мультивселенная не может иметь более 11 измерений из-за собственной консистенции — они становятся неустойчивыми и сворачиваются обратно в 10 или 11 измерений. На данный момент, всё возможно. Есть всё будущее и всё прошлое, все начала и все концы, бесконечно расширенное, измерение всего, что вы можете себе представить. Всё складывается вместе.
В то время как идея мультивселенной забавна с точки зрения научной фантастики и мечтаний, она также математически обоснована и обеспечит основу для Теории всего, что и является попыткой Теории струн. Это было бы прекрасное сочетание науки, математики и мистики.
Cуществует ли четырехмерная форма жизни?
Представление мира в различных измерениях меняет то, как мы воспринимаем все вокруг, включая время и пространство. Думать о разнице между двумя измерениями и тремя измерениями легко, но что насчет четвертого? Важно понимать, что имеют в виду ученые и другие исследователи, когда говорят о различных измерениях: наш мир имеет три пространственных измерения: ширину, глубину и высоту, а четвертым измерением может быть время. Ученые много лет проводят исследования в попытках выяснить что же такое четвертое пространственное измерение, однако по причине того, что наблюдать четвертое измерение мы не можем, доказательства его существования найти очень трудно.
Сколько существует измерений?
Чтобы лучше понимать, на что может быть похоже четвертое измерение, давайте поближе посмотрим на то, что именно делает три измерения трехмерными, и, следуя этим идеям, подумаем о том, что такое четвертое измерение. Итак, длина, ширина и высота составляют три измерения наблюдаемого мира. Все три измерения мы можем наблюдать благодаря эмпирическим данным, а также органами чувств – такими как зрение и слух.Определить положение точек и направления векторов в трехмерном пространстве можно вдоль опорной точки.
Проще всего представить себе трехмерное пространство как трехмерный куб с тремя пространственными осями, которые определяют ширину, высоту и длину куба. Оси движутся вперед и назад, вверх и вниз, влево и вправо вместе со временем – измерением, которое мы непосредственно не наблюдаем, но воспринимаем. При сравнении 3D и 4D, учитывая наблюдения трехмерного пространственного мира, четырехмерный куб будет Тессерактом – объектом, который движется в трех измерениях, которые мы и воспринимаем и в четвертом, которое е можем наблюдать.
Четырехмерные объекты и тени
Поскольку трехмерные существа отбрасывают тень на двумерную поверхность Куба, это привело исследователей к предположению о том, что четырехмерные объекты отбрасывают трехмерную тень. Вот почему можно наблюдать «тень» в трех пространственных измерениях, даже если непосредственно наблюдать четыре измерения нельзя.Математик Генри Сегерман из университета штата Оклахома создал и описал свои собственные 4-мерные скульптуры. Точно так же, как трехмерный объект отбрасывает двумерную тень, Сегерман утверждал, что его скульптуры являются трехмерными тенями четвертого измерения. Хотя эти примеры теней не дают прямых способов наблюдения четвертого измерения, они являются хорошим индикатором того, как думать о четвертом измерении.
Математики часто приводят аналогию с муравьем, идущим по листу бумаги, описывая границы восприятия относительно измерений. Муравей, идущий по поверхности бумаги, может воспринимать только два измерения, но это не значит, что третьего измерения не существует. Это просто означает, что муравей может непосредственно видеть только два измерения и выводить третье измерение через рассуждения об этих двух измерениях. Точно так же люди могут размышлять о природе четвертого измерения, не воспринимая его непосредственно.
Четырехмерный куб Тессеракт – это один из примеров того, как трехмерный мир, описываемый x, y и z, может расширяться в четвертый. Математики, физики и другие ученые могут представлять векторы в четвертом измерении, используя четырехмерный вектор, который включает в себя другие переменные, такие как w. Геометрия объектов в четвертом измерении более сложна, так как включает в себя 4-многогранники, которые являются четырехмерными фигурами. Эти объекты показывают разницу между 3D и 4D изображениями.
Существует ли жизнь в четвертом измерении?
То, как выглядели бы существа или жизнь в четырех измерениях, занимало ученых и других специалистов на протяжении десятилетий. В рассказе писателя Роберта Хайнлайна 1940 года «Дом который построил Тим» речь шла о постройке здания в форме Тессеракта. Писатель Клифф Пиковер представлял себе четырехмерных существ как «воздушные шары телесного цвета, постоянно меняющиеся в размерах. Эти существа будут казаться вам разрозненными кусками плоти, точно так же, как двумерный мир позволяет вам видеть только поперечные сечения и остатки мира трехмерного».
Четырехмерная форма жизни может видеть вас изнутри точно так же, как трехмерное существо может видеть двумерное со всех сторон.
Однако точно ответить на вопрос о том, существуют ли 4D существа сегодня не может никто. Я полагаю, что даже концепция 4D-пространства ожесточенно обсуждается в физических лабораториях, хотя некоторые теории, такие как Теория струн и М-теория, используют существование нескольких измерений для объяснения нашей Вселенной. Важно также отметить, что биологически 4d жизнь не может существовать.
НЛО в предместьях Парижа в 2014 году
Видео снято в предместьях Парижа 14 ноября 2014 года на камеру Canon 700D. Время съёмки — вечер, запись начинается в 19:02.
Автор видео рассказал, что увидел в небе 4 объекта и начал снимать. Визуально для него объекты меняли цвет, и больше преобладал красный. Но на видео объекты отображаются как белые точки. Объекты придерживались некоего «строя» и постепенно опускались, погружаясь в облако и исчезая из пределов видимости. Возможно, это было приземление, которого не удалось увидеть далее из-за расстояния и преград.
Отдельно автор указал, что ждал появления НЛО, потому что двумя днями ранее видел огненный шар в воздухе, но не успел заснять его на камеру. В этот раз он был готов и порадовал нас интересными кадрами.
Параметры оборудования:
— Type ➫ Lights
— Scale ➫ Huge,
100 to 300 feet long
— Duration ➫ 1 min 20
— Color(s) ➫ White, red, orange
— Light(s) ➫ Yes
— Speed ➫ Slow,
20 km/h
— Filmed with ➫ Canon 700D, 50mm F/1.8 @ F/1.8, with Magic Lantern Movie crop mode (hack for Canon cameras).
Но откуда он взялся на Красной планете, до сих пор достоверно неизвестно.
Приоткрыть завесу над этой тайной решили исследователи космоса из Италии.
Необъяснимые объекты в Антарктиде
В эпоху развития технологий фотографии и снимки из космоса постоянно устаревают и обновляются. Ученые, исследователи и обычные люди имеют возможность сравнивать старые, новые фото, находить удивительные изменения и иногда – необъяснимые явления. Антарктида – один из самых неизученных материков планеты, который не перестает «подкидывать» удивительные факты. Сразу скажем, что никаких разумных существ в Антарктиде пока не обнаружено, поэтому предположить, что изменения – это дело рук человека или гуманоидов, нельзя. Вот ТОП-5 необъяснимых объектов в Антарктиде, которые остаются загадкой для ученых.
Взрыв, произошедший внутри горы
Приписать изменение ландшафта сходу снежной лавины не получится, верхушка горы каменная, монолиту уже не одна сотня лет, никакой снег так бы не сошел.
Смотрите на снимки внимательно, на них виден след какого-то объекта, сползающего по склону. Примерная длина модуля в форме цилиндра – 60 м. Если он продолжит движение, на обновленных снимках его будет видно. След идет в сторону от раскуроченной верхушки, его хорошо заметно, и его можно приблизить при масштабировании снимка.
Гребнистые верхушки на равнине
Весна 2018 года стала для пользователей сети настоящим открытием – на снимках Антарктиды из космоса обнаружена целая череда странных объектов. Если бы форма объектов была разной, они были бы разбросаны в хаотическом порядке, никто не обратил бы на них внимания. Но все объекты выстроены в ровный «гребень» с одинаково заостренными верхушками. Каждый элемент «гребня» длиной от 50 м, общая длина первого ряда «гребней» не менее 1,5 км. Есть и второй ряд, пока не так хорошо видимый на снимках, к тому же отличающийся по форме. Третий малозаметный «участок гребня» вообще как будто проваливается в толщу, а форма его напоминает треугольник.
Что это за комплекс, почему он «открылся» только сейчас, а не раньше или позднее, кому принадлежит «авторство» форм, расположенных на абсолютно ровном плато далеко от гор, неизвестно. На общих снимках видно, что верхушки могут представлять собой часть какой-то общей структуры, многорядной конструкции, скрытой многометровой толщей снежного покрова. Стоит дождаться обновленных снимков, чтобы попытаться разгадать тайну или увидеть еще одну загадку континента.
Гора с четырьмя возвышениями
Невероятный вид горы напоминает снежную поверхность, на которой видны следы от четырех «когтей». Создается ощущение, что некое исполинское животное оставило там отпечаток лапы.
Гора с 4 вершинами украшена рядами пиков, причем каждый следующий ряд по размерам меньше предыдущего. Исследователи предполагают, что «пики» – часть какого-то объекта, находящегося под толщей снега. Но пока это лишь гипотеза, которую еще надо доказать. Подождем обновленных снимков, возможно, они приоткроют завесу тайны.
Пирамида в Антарктиде – это невероятно
Снимок «пирамиды» будоражит умы исследователей с 2017 года. Но если на первых снимках очертания строения были неявными, сегодня видно – это настоящий пирамидальный комплекс, «выстроенный» очень далеко от гор. Именно равнинное расположение исключает версию природного образования объекта, форма которого напоминает пирамиды в Египте, Мексике.
Предполагаемая высота сооружений – от 200 м, и это немало, учитывая, что объектов такой высоты и формы в природе практически не существует.
Проход в секретную базу
Именно так называют пользователи непонятное отверстие в виде входа в одну из гор материка. Находка поистине фантастическая и невероятная. Размер видимого проема 30х90 м, но снимки показывают еще большие размеры «входа». Оттаивая, лед открывает гигантскую дыру, ведущую в глубину горы. Более того, от входа вниз ведет выбитая в основании льда «тропа».
Зачем немцы рисовали спираль на винте своих самолётов?
На самом деле из всех выдвигаемых идей две являются наиболее правдоподобными. Во-первых, такое изображение служило идентификацией эскадрильи. Во-вторых, «спираль» являлась техническим элементом для распознавания персоналом аэродрома. Такая версия подтверждается тем фактом, что сегодня подобные изображения наносят на двигатели самолетов.
Спираль на коке винта помогала определить работу двигателя?
Опытные летчики разъяснили факт нанесения «спирали» на винт способностью идентификации работы двигателя. В постоянном шуме аэродрома гул работающего двигателя проблемно услышать, что создает некоторую угрозу персоналу аэродрома, который находится постоянно в наушниках.
Американские летчики во времена Второй мировой войны также наносили на винты желтые полосы, обозначая тем самым процесс работы двигателя.
Кроме этого существовала версия, что при помощи нанесенной спиральной линии можно было определить сторону вращения винта, а также рисунок указывал на обороты мотора. Однако, все не так ужи просто. Ведь для определения оборотов двигателя существовала масса различных высокоточных приборов, а спирали имели разный вид — для каждой эскадрильи свой.
Спирали служили средством идентификации «свой-чужой»
Существовали знаки отличия спиралей. Каждую эскадрилью можно было отличить по ширине и цвету линий рисунка, числу витков. Кроме этого, выдвигалась версия о том, что через три года после начала войны нанесение спиральных рисунков было узаконено указом. Однако найти первоисточник данного документа не удалось.
При этом такие спирали помогали в бою идентифицировать самолеты немецкой армии (так называемый «свой-чужой»), не отвлекаясь на определение «своих» самолетов.
Учитывая вышеизложенное, можно сделать вывод: яркие спирали на винтах немецких крылатых машин помогали отличить эскадрилью или летчика, но никак не отпугнуть птиц. Однако в послевоенные годы были проведены исследования учеными Японии, которые доказали неэффективность указанного способа. При этом специалисты доказали, что мерцающие линии не могут отвлекать вражеских летчиков в бою.
Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов
У Вселенной растет четвертое измерение?
Наша Вселенная постоянно находится в состоянии динамического развития, и в настоящее время в ней происходят процессы, которые приведут к появлению так называемого «четвертого измерения». Если оно уже не появилось… К такому выводу пришли физик Дейян Стойкович из Университета в Буффало и его коллеги из Университета Лойола Мэримаунт (США).
Как утверждают ученые, изначально Вселенная была одномерной. После Большого взрыва у нее возникло второе измерение, а позднее и третье. Именно трехмерная Вселенная привычна для нас.
Термин «четвертое измерение» довольно распространен. Но чаще под ним понимают некую сверхъестественную или потустороннюю реальность, и его склонны употреблять в своем обиходе скорее оккультисты и парапсихологи, чем представители официальной науки.
Если считать составляющими трехмерной системы координат длину, ширину и высоту, то что же будет представлять собой условное четвертое измерение?
Вот наглядное пояснение. Примером одномерного пространства может служить обыкновенная линейка. В нем существуют только двоичные понятия «да-нет», «0-1», «плюс-минус» и т.п.
Аналогом двухмерного пространства является плоскость координат XY. Именно по этому принципу построены естественные и искусственные биполярные полимеры, в том числе молекулы воды.
Привычное для нас трехмерное пространство можно описать координатами ХYZ. К таким структурам относятся, например, молекулы ДНК.
В четырехмерном пространстве к трем постоянным добавляется координата времени. Пример такой структуры — наше физическое тело, подвергнутое динамическим изменениям.
Вот что говорит об этом член-корреспондент РАН, сотрудник Института физики высоких энергий Сергей Петрович Денисов: «Четвертое измерение в современной физике — это время. В релятивистской (эйнштейновской) физике координаты «x, y, z», определяющие пространственное положение тела, и его временное положение «t» не являются независимыми, как в теории Ньютона, а рассматриваются и преобразуются совместно, представляя собой четыре координаты. Или, как говорят физики, «x, y, z» и «t» являются компонентами единого вектора, определяющего положение тела в пространстве-времени».
Сейчас историю Вселенной астрономы изучают при помощи телескопов. Так как свету от звезд, расположенных в дальнем космосе, требуются миллионы лет, чтобы достичь нашей Земли, то наблюдение за определенными участками звездного неба позволяет исследовать законы космической эволюции. И результаты этих исследований порой озадачивают. К примеру, видно, что Вселенная расширяется, но куда именно?
Гипотеза о «растущем» четвертом измерении высказывалась Стойковичем и его группой еще в прошлом году. Однако тогда научный мир воспринял ее довольно сдержанно. Теперь авторы идеи решили поискать весомые доказательства своей теории.
Одно из них связанно с наличием гравитационных волн, которые никак не вписываются в трехмерную систему координат. К 2016 году NASA и Европейское космическое агентство намерены построить на орбите Земли специальную лазерную лабораторию Laser Interferometer Space Antenna (LISA) для поиска этих волн. Между тем, Стойкович считает, что обнаружить гравитационные волны не удастся, так как поиск будет проходить в привычной системе координат. Это станет лучшим аргументом в пользу существования дополнительного измерения.
Не исключено также, что четвертое измерение — отнюдь не последняя стадия. Неоднократно выдвигались теории, по которым Вселенная имеет гораздо большее число измерений. Согласно им, за пределами четырех измерений лежит Поле Событий, в котором все явления происходят одновременно и независимо от физических координат, таких как время, расстояние, скорость или масса.
Немецкий математик Герман Минковский предложил концепцию, согласно которой пространственно-временной континуум состоит из множества миров, следующих один за другим. Каждый отдельно взятый момент времени — это самостоятельная реальность. Она никуда не исчезает, и прошлое, настоящее и будущее существуют одновременно. Следовательно, если в прошлом что-то меняется, то изменяется и будущее.
Физические доказательства в пользу теории «множественных измерений» можно получить, исследуя микромир. Может быть, рано или поздно мы прорвемся и в макромир — глубины Вселенной.
По словам Дейяна Стойковича, если его идея окажется верной, это поможет ученым объяснить многие противоречия — в частности, каким образом наша Вселенная способна расширяться.
Читайте самое интересное в рубрике «Наука и техника»
Добавьте «Правду.Ру» в свои источники в Яндекс.Новости или News.Google, либо Яндекс.Дзен
Быстрые новости в Telegram-канале Правды.Ру. Не забудьте подписаться, чтоб быть в курсе событий.
Как понять 4-х мерное пространство?
См. также: http://akotlin.com/index.php?sec=1&lnk=3_11
Предисловие
Введение
1. Принцип наращивания размерностей
2. Принцип аналогий
3. Принцип многомерных массивов
4. Принцип сущностей
5. Принцип композиции
6. Принцип схлопывания
7. Принцип бесконечной рекурсии
Заключение
Литература
^Примечания (в конце статьи)
Влекут с завидным постоянством
Нас многомерные пространства.
Их наделяем чудесами,
О них мечтаем мы часами.
Повсюду ищем день за днём.
При этом сами в них живём. ©
Почему люди веками пытаются понять и объяснить четырёхмерное пространство? Зачем им это нужно? Что толкает их на поиски загадочного четырёхмерного мира? Представляется, что этому есть несколько причин.
Во-первых, людей подталкивает к поиску невидимого пространства неосознаваемое ими чувствознание, другими словами, вера в Высшие основы Мироздания, как память о пребывании в том мире ещё до момента своего рождения.
Во-вторых, на существование Высшего мира прямо указывают все мировые религии и эзотерические учения. Данный факт невозможно сбросить со счетов или объявить случайным совпадением случайностей. Тем более, что случайность является всего лишь математической абстракцией и потому принципиально нереализуема в реальном мире, в котором все события строго обусловлены причинно-следственными связями.
В-третьих, на это указывает опыт, накопленный огромным числом экстрасенсов и мистиков всех времён и народов, в большинстве случаев никак не связанных между собой и не знакомых с опытом своих «коллег», но свидетельствующих, фактически, об одном и том же. Более того, каждый человек проводит в том мире третью часть своей жизни; это происходит во время сна.
Так в чём же тогда состоит проблема понимания четырёхмерного пространства?
С одной стороны, никакой проблемы понимания четырёхмерного пространства, казалось бы, не должно быть вовсе, так как имеется современное Учение – Агни Йога [1], б`ольшая часть книг которого почти целиком посвящена мирам высшей размерности. Имеются также подробнейшие разъяснения базовых положений этого Учения и, в частности, всех основных особенностей многомерных миров [2: т. 2, гл. 8].
С другой стороны, проблема налицо, поскольку в науке нет даже определений^1 таких важнейших компонентов пространства, как точка, прямая, плоскость, а понятие размерность [3] неточно^2 отражает фундаментальное свойство размерности пространства. Всё это в совокупности с верой в нуль, непрерывность и бесконечность^3, способствует появлению различных заблуждений и противоречий, например, таких как:
• оперирование понятием пространства бесконечно большой размерности;
• отрицание возможности существования даже четырёхмерного пространства только на том основании, что четвёртую перпендикулярную координатную ось провести невозможно;
• непонимание сути многомерности пространства;
• игнорирование реально существующих^4 пространств высшей размерности;
• разработка «многомерных» моделей Вселенной^5, не имеющих ничего общего с реальностью [4].
Предпринималось много попыток обосновать существование высшего, четырехмерного пространства. Среди них известны математические, физические, геометрические, психологические и другие попытки [2: т. 2, с. 235]. Однако все их можно признать неудачными, поскольку они так и не дали чёткого и верного ответа на главный вопрос: что собой представляет и куда направлена «ось» 4-го измерения.
Рассмотрим теперь основные подходы к конструированию 4-х мерного пространства подробнее.
1. ПРИНЦИП НАРАЩИВАНИЯ РАЗМЕРНОСТЕЙ
Данный подход, или принцип основан на следующих простых рассуждениях. Пусть, к примеру, имеется 3D-объект – школьная тетрадь в линейку. Здесь буква «D» означает «размерность» (от англ. слова Dimension). Будучи трёхмерным объектом, тетрадь обладает тремя измерениями: длиной, шириной и толщиной.
Открыв тетрадь, мы можем наглядно убедиться в том, что «пространство» нулевой размерности (точки линеек) вложено в одномерное «пространство» (горизонтальные линии), а оно, в свою очередь, вложено в двухмерное «пространство» (страницу). Двухмерное «пространство», или страницы вложено в трёхмерное (тетрадь).
Простая индукция позволяет предположить, что трёхмерное пространство должно быть вложено в четырёхмерное, и так далее [5].
Прежде всего, здесь следует отметить, что наращивание размерности пространства на этапах 0D ––> 1D, 1D ––> 2D, 2D ––> 3D всегда осуществлялось в направлении, ПЕРПЕНДИКУЛЯРНОМ предыдущим направлениям. При переходе же к 4D-пространству этот принцип был нарушен, что ставит под сомнение как допустимость такого приёма, так и справедливость полученных результатов.
Кроме того, поскольку математическая точка не обладает размерами, то «пространства» с размерностью 0, 1 и 2 являются (также как и сама точка) лишь математическими абстракциями, то есть реально существовать не могут. Таким образом, минимальная размерность реального пространства равна трём: Dmin = 3. Следовательно, принцип индукции, выведенный для АБСТРАКТНЫХ объектов, не может быть положен в основу конструирования РЕАЛЬНОГО 4-х мерного пространства, а само 4-х мерное пространство не может быть объяснено рассмотренным выше способом.
1.1. Четырёхмерное пространство, полученное путём наращивания размерностей, является не более чем математической абстракцией, то есть игрой воображения.
1.2. Применение принципа наращивания размерностей для обоснования 4D-пространства чревато формированием ложных представлений о многомерных пространствах (рис. 1.2).
1.3. Наш 3-х мерный мир, который мы видим, ощущаем и понимаем, принципиально не может оказаться вложенным в какой-либо другой мир с числом измерений, отличным от трёх.
Тем не менее, отметим в нашем примере с тетрадкой и запомним два очень важных момента:
1. НИЗШЕЕ пространство всегда мысленно «вкладывалось» В ВЫСШЕЕ, то есть в пространство с б`ольшим числом измерений.
2. ВСЕ рассмотренные пространства наполнены материей ОДНОГО типа, то есть трёхмерной атомарной материей. В примере это были атомы, входящие в состав тетрадной бумаги и краски.
2. ПРИНЦИП АНАЛОГИЙ
Этот способ создания «четырёхмерных» фигур близок к рассмотренному в предыдущем разделе. В отличии от своих предшественников сторонники данного способа честно признают тот факт, что четвёртую перпендикулярную ось провести невозможно, но уверяют, что для получения четвёртого измерения необходимо и достаточно простых аналогий (табл. 2.1). Однако доказательства четырёхмерности полученных фигур, к сожалению, не приводятся.
Рассматривая рисунок 2.1 слева направо и фиксируя свойства геометрических объектов, придём к таблице свойств.
Таблица 2.1
=======================================================
1D: Отрезок | 2D: Треугольник | 3D: Тетраэдр | 4D: Симплекс
=======================================================
2 вершины | 3 вершины | 4 вершины | 5 вершин
1 ребро | 3 ребра | 6 рёбер | 10 рёбер
——— | 1 грань | 3 грани | 10 граней
——— | ——— | 1 тетрагрань | 5 тетраграней
——— | ——— | ——— | 1 симплекс-грань
Как видно из рисунка и таблицы, в основе «принципа аналогий» лежит идея достаточности для перехода в новое измерение простого увеличения числа вершин геометрической фигуры и попарного соединения всех вершин рёбрами.
Более наглядное представление о принципе аналогий можно получить, просмотрев фрагмент видеофильма [7].
Подводя итоги, сформулируем выводы.
2.1. Основанные на принципе аналогий «многомерные» построения являются математическими абстракциями и существуют исключительно в воображении.
2.2. Разработанные виртуальные (компьютерные) реализации «четырёхмерных» геометрических многогранников [6] не могут служить обоснованием реальности таких объектов, поскольку само понятие «виртуальный» является синонимом понятия «не существующий в реальности».
2.3. Перенесение этих абстракций в реальный мир требует предварительного доказательства их многомерности.
3. ПРИНЦИП МНОГОМЕРНЫХ МАССИВОВ
В предыдущих разделах мы убедились, что понять и описать реальное (не абстрактное) 4-х мерное пространство оказалось совсем непросто. Однако математика, как известно, с лёгкостью оперирует так называемыми многомерными объектами, например, «многомерными» массивами и векторами.
В связи с данным обстоятельством возникает идея применить для описания многомерных пространств и объектов якобы многомерные математические конструкции, например, массивы. Задать многомерный массив можно, дав определение, но можно ввести его в рассмотрение и поэтапно, то есть путём последовательных рассуждений, аналогичных проделанным в примере со школьной тетрадкой. Пойдём вторым путём:
• Положение точки x на отрезке прямой задаётся одной координатой, другими словами, однокомпонентным одномерным массивом: A1 = (x1);
• Положение точки x на плоскости определяется двумя координатами, то есть двухкомпонентным одномерным массивом: A2 = (x1, x2);
• Положение точки x в трёхмерном пространстве будет описано тремя координатами, или трёхкомпонентным одномерным массивом: A3 = (x1, x2, x3);
• Продолжая индукцию, придём к четырёхкомпонентному одномерному массиву, описывающему положение точки x в четырёхмерном гиперпространстве: A4 = (x1, x2, x3, x4).
Применяя понятие массива рекурсивно, то есть вкладывая одни массивы в другие, можно ввести иерархическую систему массивов для описания более крупных пространственных объектов:
• Точка – массив координат в текущем пространстве;
• Линия – массив точек (матрица);
• Страница – массив линий («куб»);
• Книга – массив страниц («гиперкуб»);
• Книжная полка – массив книг (массив 5-го порядка);
• Книжный шкаф – массив полок (массив 6-го порядка);
• Книгохранилище – массив шкафов (массив 7-го порядка).
Приведём ещё один пример применения моделей пространства на основе вложенных многомерных массивов:
• Атом – (одномерный) массив координат;
• Молекула – (двухмерный) массив атомов;
• Тело – (трёхмерный) массив молекул;
• Небесное тело – (четырёхмерный) массив тел;
• Звёздная система – (пятимерный) массив небесных тел;
• Галактика – (шестимерный) массив звёздных систем;
• Вселенная – (семимерный) массив Галактик.
3.1. Все объекты в рассмотренной иерархической модели имеют ОДИНАКОВУЮ пространственную размерность, которая определяется числом компонентов исходного одномерного массива. Однако этим компонентам можно дать не только пространственную, но и произвольную интерпретацию.
3.2. Ни количество вложенных массивов, ни их размерность (правильнее говорить – порядок!) никак не связаны с мерностью моделируемого пространства.
3.3. Таким образом, применив «многомерные» (правильнее говорить – многокомпонентные!) массивы, мы опять ни на шаг не приблизились к нашей цели – пониманию смысла многомерного пространства.
4. ПРИНЦИП СУЩНОСТЕЙ
Попробуем теперь от идеи конструирования мифических якобы «четырёхмерных» объектов перейти к реальным сущностям, чтобы взглянуть на мир как бы изнутри, то есть их «глазами». Предположим также, что в пространстве любой размерности (например, в трёхмерном пространстве) могут одновременно пребывать существа разного уровня развития, с разными возможностями по перемещению в пространстве, то есть с разным числом измерений.
Начнём с камней. К этой же группе можно причислить также «тессеракты», «симплексы» и все прочие многогранники. Это всё пассивные объекты, не способные к движению ни в одном из направлений. Поэтому отнесём их к категории «существ» нулевой^6 размерности.
К одномерным^7 сущностям можно отнести растения, которые имеют возможность «двигаться» только в одном направлении (в «направлении» увеличения своих размеров) с жёсткой привязкой к одной конкретной точке пространства.
Двухмерными^8 существами назовём тех, кто будет способен перемещаться в двух направлениях, то есть в пределах поверхности. Даже если эта поверхность имеет сложные очертания и переходит, например, с поверхности почвы в поверхность ствола дерева.
Простая аналогия позволяет предположить, что трёхмерные существа должны иметь способность перемещаться в 3-х различных направлениях. Например, они должны уметь не только ползать, но и ходить, прыгать или летать.
Та же аналогия приводит нас к выводу об обязательном наличии у четырёхмерных сущностей четвёртой сверх способности к перемещению в 4-м направлении. Таким направлением может стать движение ВНУТРЬ трёхмерных объектов.
Свойствами 4-х мерных сущностей обладают, например, эфир (радиоволны), радиоактивные ядра гелия (альфа-частицы), вирусы и так далее.
4.1. Четырёхмерные сущности невидимы. Например, размеры вируса лишь на два порядка превышают размеры атома. На острие иглы могут свободно разместиться 100 000 вирусов гриппа.
4.2. Логично предположить, что невидимые четырёхмерные сущности обитают в невидимом четырёхмерном пространстве.
4.3. Четырёхмерное пространство должно обладать очень тонкой структурой. Например, пространством обитания вируса является биологическая клетка, размеры которой измеряются нанометрами (1 нм = 1/1000000000 м).
4.4. Координатная «ось» четвёртого измерения направлена внутрь трёхмерного пространства.
4.5. Само по себе четырёхмерное пространство и четырёхмерные сущности трёхмерны. Однако ОТНОСИТЕЛЬНО трёхмерного пространства они обладают свойствами 4-го измерения.
5. ПРИНЦИП КОМПОЗИЦИИ
С появлением Теории относительности [8] в сознании широких масс укоренилось представление о времени, как о четвёртой пространственной координате [9]. Примирению разума со столь странной точкой зрения, очевидно, способствовали также различные временные графики, тренды и диаграммы. Удивительно только, что творческое воображение приверженцев такого взгляда на МНОГОмерное пространство почему-то всегда таинственным образом полностью иссякает на цифре «четыре».
Из физики известно, что существуют различные системы физических единиц, в частности, система СГС (сантиметр-грамм-секунда) [10], где в качестве независимых физических величин используются длина, масса и время. Все остальные величины выводятся из трёх основных. Таким образом, в роли трёх «китов» Мироздания в СГС выступают Пространство, Материя и Время.
В современной физике пространство и время искусственно объединены в единый четырёхмерный «континуум», называемый пространством Минковского [11, 12]. Многие искренне верят в то, что оно и есть то самое четырёхмерное пространство. Однако подобный взгляд на многомерное пространство чреват появлением целого ряда нелогичностей и несуразностей.
Во-первых, время, будучи независимой величиной, не может выступать в качестве свойства (пространственной характеристики) другой НЕЗАВИСИМОЙ величины – пространства.
Во-вторых, если всерьёз считать время четвёртой пространственной координатой, то в таком случае четырёхмерные сущности (то есть все мы, как обитатели «четырёхмерного» пространства-времени) должны обладать способностью перемещаться не только в пространстве, но и во времени! Однако мы знаем, что это не так. Таким образом, одна из якобы пространственных координат не обладает свойствами, которые присущи настоящим пространственным координатам.
В-третьих, настоящее пространство не может само по себе перемещаться относительно своих неподвижных обитателей ни в одном из своих направлений. Однако пространство-время такой фантастической способностью обладает. Более того, оно движется в четвёртом (временном) направлении исключительно избирательно: с разной скоростью по отношению к камням, растениям, животным и людям.
В-четвёртых, можно предположить, что по логике релятивистов 5-ти мерным пространством должна стать композиция пространства-времени с третьим «китом» Мироздания – материей.
В-пятых, напрашивается резонный вопрос: с какой системой единиц (СГСЭ или СГСМ) будет связано 6D-пространство?
Однако самым парадоксальным в релятивистском видении 4D-пространства является то, что на типичном релятивистском 3-х мерном графическом изображении якобы 4-х мерного пространства (рис. 5.1) 4-я координатная (временн`ая) ось отсутствует как таковая (!); зато хорошо виден результат присутствия материи (массы), которая в составе четырёхмерного «пространства-времени» даже не упоминается. 🙂
Наверное, именно поэтому словосочетание «пространство-время» так часто вызывает скепсис и ассоциируется с бородатым анекдотом про то, как в армии был найден собственный способ композиции пространства и времени, выразившийся в приказе рыть канаву от забора до обеда.
5.1. Совместное рассмотрение пространства и времени вполне допустимо.
5.2. Наделение времени свойствами пространства – искусственный приём, далёкий от реальности.
5.3. Релятивистский «четырёхмерный» пространственно-временной «континуум» не имеет ни малейшего отношения к реальному четырёхмерному пространству, тем более, к пространствам, размерность которых превышает 4, и является ещё одним примером математических фантазий на тему многомерности.
6. ПРИНЦИП СХЛОПЫВАНИЯ
Поскольку центральным вопросом любой модели 4-х мерного пространства является вопрос о выборе направления 4-ой пространственной координаты, в разделах 1 – 5 были рассмотрены различные подходы к решению этой проблемы.
Так, авторы «четырёхмерных» многогранников направляли четвёртую ось, куда хотели. Авторы многомерных массивов – в никуда. Вирусы и другие четырёхмерные сущности могли перемещаться внутрь трёхмерного пространства. Релятивисты же наделили обитателей 4-х мерного пространства (к которым они причислили и всех нас) способностью перемещаться во времени, как в обычном пространстве, значит, – в любом временн`ом направлении.
Казалось бы, все варианты уже исчерпаны, и настал момент определиться с выбором одного из известных направлений для четвёртой оси. Ан, нет! Авторы модной ныне «Теории струн» [4] нашли ещё одно никем не занятое «направление». Глядя на смотанный поливочный шланг, они придумали все «лишние» координатные оси скрутить в колечки, трубочки и бублички. А чтобы объяснить, почему мы их не видим, наделили колечки размерами, которые «бесконечно малы даже в масштабе субатомных частиц» [13]. Сторонники струнной теории считают, что все высшие пространственные измерения самопроизвольно схлопнулись, или по научному «компактифицировались» сразу после образования Вселенной.
Предвосхищая другой вопрос, – Зачем схлопнулись? – Теория струн выдвинула также гипотезу «ландшафта», в соответствии с которой никакого «схлопывания» вовсе и не было, все оси высших измерений целёхоньки, а невидимы они для нас по той причине, что наше 3-х мерное пространство, будучи гиперповерхностью (бр`аной) многомерного пространства Вселенной, якобы не позволяет нам взглянуть за пределы этой самой браны. К сожалению, ориентированы невидимые координатные оси в никому неизвестных направлениях.
Кроме перечисленного, нельзя не коснуться также других «заслуг» Теории струн.
Теория эта создавалась для описания физических закономерностей, проявляющихся на самом низком уровне рассмотрения материи, то есть на уровне субатомных частиц, а также их взаимодействий. Однако ситуация, когда одна гипотеза (Теория струн) пытается описать другие гипотезы (догадки о строении и о количестве элементарных частиц), представляется весьма сомнительной. Настораживает также полное отсутствие единого мнения по вопросу о реальном числе измерений многомерной Вселенной.
Существует множество способов свести многомерные струнные модели к наблюдаемому 3-х мерному пространству. Однако критерия для определения оптимального пути редукции не существует. В то же время, количество таких вариантов поистине огромно. По некоторым оценкам их число вообще бесконечно.
Кроме того, «математический аппарат теории струн столь сложен, что сегодня никто даже не знает точных уравнений этой теории. Вместо этого физики используют лишь приближенные варианты этих уравнений, и даже эти приближенные уравнения столь сложны, что пока поддаются только частичному решению» [13]. При этом хорошо известно, что чем сложнее теория, тем дальше она отстоит от Истины.
Будучи исключительно продуктом воображения, Теория струн остро нуждается в экспериментальном подтверждении и проверке, однако, скорее всего, в обозримом будущем её нельзя будет ни подтвердить, ни проверить в силу очень серьёзных технологических ограничений. В этой связи некоторые учёные сомневаются, заслуживает ли вообще такая теория статуса научной.
6.1. Сосредоточив всё внимание на описании мельчайших частиц, Теория струн упустила из виду объяснение таких проявлений миров Высшей размерности, как вещие сны, астральные выходы, одержание, телепатия, пророчества и т. п.
6.2. То обстоятельство, что Теория струн хорошо описывает целый ряд явлений без привлечения старых физических теорий, подтверждает гипотезу о реальной многомерности Вселенной.
7. ПРИНЦИП БЕСКОНЕЧНОЙ РЕКУРСИИ
Принцип бесконечной рекурсии или фрактальности Мира основан на гипотезе о бесконечной делимости материи и берёт своё начало с трудов греческого философа Анаксагора (5-й век до Р. Х.), утверждавшего, что в каждой частице, какой бы малой она ни была, «есть города, населённые людьми, обработанные поля, и светит солнце, луна и другие звёзды, как у нас».
В философском плане данную идею разделял, к примеру, В. И. Ленин (1908), считавший, что «электрон так же неисчерпаем, как и атом, природа бесконечна. ». В литературе – Джонатан Свифт со своим знаменитым Гулливером (1727). В поэзии – Валерий Брюсов (1922):
Быть может, эти электроны
Миры, где пять материков,
Искусства, знанья, войны, троны
И память сорока веков!
Ещё, быть может, каждый атом –
Вселенная, где сто планет;
Там – всё, что здесь, в объёме сжатом,
Но также то, чего здесь нет.
Их меры малы, но всё та же
Их бесконечность, как и здесь;
Там скорбь и страсть, как здесь, и даже
Там та же мировая спесь.
Сторонники рекурсивного подхода из числа современных учёных считают, что Вселенная состоит из бесконечного числа вложенных фрактальных уровней материи с подобными друг другу характеристиками. Пространство при этом имеет ДРОБНУЮ размерность стремящуюся к трём. Точное значение размерности зависит от строения материи и её распределения в пространстве.
Таким образом, здесь имеются два принципиальных момента, которые, фактически, обесценивают безусловно продуктивную идею о вложенности материи и планов Мироздания друг в друга. Во-первых, это совершенно бессмысленное вложение гигантской Вселенной в каждую микрочастицу собственной материи. Во-вторых, исключительно вольное обращение с понятием размерности.
Поскольку темой статьи является уяснение принципов многомерности пространства, остановимся на втором моменте более подробно.
Например, С. И. Сухонос [14], соглашаясь с тем, что даже паутинка трёхмерна, всерьёз обосновывает нульмерность Вселенной. для «внешнего наблюдателя». Однако, пребывая внутри замкнутого пространства Вселенной, мы не в праве делать какие-либо умозаключения о том, что находится за её внешней границей. Таким образом, любые рассуждения о мыслях «внешнего наблюдателя» относятся, в лучшем случае, к жанру научной фантастики.
Галактикам, в плане размерности, повезло несколько больше, чем Вселенной: их скопления автор [14] признаёт одномерными, «неправильные» Галактики считает двухмерными, «правильные» (сферической формы) – трёхмерными, а статусом четырёхмерного пространства наделяет спиральные Галактики.
К сожалению, понятие «размерность» пространства в этих рассуждениях связано, прежде всего, с понятием «размер», затем – «форма» и меньше всего размерность зависит от числа измерений материи.
7.1. Бесконечность, будучи продуктом воображения, не реализуема в реальном мире, следовательно идея бесконечной рекурсии является не более, чем мифом.
7.2. Суждение о том, что часть (к примеру, атом) может содержать целое (Вселенную), является абсурдом.
7.3. Пространства с дробной размерностью не существуют по определению, а взгляд сторонников рекурсивного подхода на размерность противоречит общепринятым представлениям и здравому смыслу.
1. На адекватное отражение реальной картины мира может претендовать не более, чем только одна из рассмотренных выше моделей 4-х мерного пространства, поскольку все они между собой попарно не совместны.
2. Все проблемы с пониманием многомерного пространства существуют исключительно внутри науки, в основном, в математике.
3. Базовые математические абстракции, прежде всего, «бесконечность», «непрерывность» и «нуль» не позволяют понять и описать пространства с размерностью выше трёх, поэтому все существующие представления о якобы многомерном пространстве выглядят смешно и наивно.
4. Разработка математических моделей пространств высшей размерности невозможна без пересмотра древних (2500-летней давности) догматов трёхмерной (то есть современной) математики.
5. Представление о разработанной автором реальной (не фантастической) многомерной модели вложенных пространств можно найти в [15].
1. Агни Йога. – 15 книг в 3-х томах. – Самара, 1992.
2. Клизовский А. И. Основы миропонимания Новой Эпохи. В 3-х томах. – Рига: Виеда, 1990.
3. Микиша А. М., Орлов В. Б. Толковый математический словарь: Основные термины. М.: Рус. яз., 1989. – 244 с.
4. Девис. П. Суперсила: Поиски единой теории природы. – М.: Мир, 1989. – 272 с.
5. Тессеракт: Материал из Википедии. – https://ru.wikipedia.org/wiki/Тессеракт
6. Измерения: видеофильм, часть 3 из 9 / Авторы: Йос Лейс, Этьен Жис, Орельян Альварез. – 14 мин (фрагмент – 2 мин).
7. Александр Котлин. Пространство-материя. Концепция. – http://www.proza.ru/2011/03/26/906
8. Специальная теория относительности. – https://ru.wikipedia.org/wiki/ Специальная_теория_относительности
9. Успенский П. Д. Tertium organum: Ключ к загадкам мира. – Типогpафiя СПб. Т-ва Печ. и Изд. дела «Тpyдъ», 1911.
10. СГС: Материал из Википедии. – http://ru.wikipedia.org/wiki/СГС
11. Четырёхмерное пространство: Материал из Википедии. – https://ru.wikipedia.org/wiki/Четырёхмерное_пространство
12. Пространство-время: Материал из Википедии. – https://ru.wikipedia.org/wiki/Пространство-время
13. Брайан Грин. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории: Пер. с англ. / Общ. ред. В. О. Малышенко. – М.: Едиториал УРСС, 2004. – 288 с.
14. Сухонос С. И. Масштабная гармония Вселенной. – М.: Новый центр, 2002. – 312 с.
15. Александр Котлин. Как понять 10-ти мерное пространство? – http://www.proza.ru/2012/12/21/204
1. Вот что говорит об этом великий математик Гильберт: «вообразим три системы вещей, которые мы назовём точками, прямыми и плоскостями. Что это за »вещи» – мы не знаем, да и незачем нам это знать. Было бы даже греховно стараться это узнать».
2. На самом деле размерность пространства определяется не числом мифических, другими словами абстрактных «осей», а числом допустимых (для данного пространства) направлений движения, например: вперёд-назад, влево-вправо, вверх-вниз для пространства 3-х измерений.
3. Использование древних (возрастом 2500 лет) математических абстракций непрерывности, бесконечности и нуля (как порождения бесконечности) в задачах исследования многомерных пространств можно сравнить с применением топора для раскалывания атомных ядер в физике.
5. Прежде всего, это касается моделей многомерных пространств с координатными осями, скрученными в колечки, трубочки и бублички, которые рассматриваются в рамках так называемой «Теории струн».
6. Строго говоря, камни могут двигаться в 3-х направлениях: перемещаться ледниками, погружаться под воду, выходить из глубин океана на поверхность суши, разрушаться под воздействием волн или атмосферы. Однако эти движения происходят по нашим меркам очень медленно, со скоростью смены геологических эпох. То есть сущности «нулевой» размерности живут в других временных рамках, или с другой скоростью, не сопоставимой с той, что привычна нам.
7. Если быть объективными, то надо признать, что растения не одномерны, а трёхмерны, так как способны перемещаться не только вверх, но и в пределах поверхности: в результате размножения (корнями или семенами). Однако такое движение будет проявлено лишь через год (при неблагоприятных обстоятельствах – через несколько лет), то есть со скоростью значительно меньшей скорости роста растения.
8. Отметим, что двухмерные сущности тоже способны к перемещению в дополнительном, третьем направлении. Например, попадая на тело животных или человека, или могут быть перемещены вверх/вниз потоками воды или порывами ветра. Однако та же объективность требует признать движение в 3-м направлении исключением, не свойственным двумерным сущностям от природы.
27 мая 2012 года
17 июня 2012 года
3 июля 2012 года
17 октября 2012 года
21 декабря 2012 года













