что нужно знать чтобы вычислить расстояние до какого нибудь небесного тела
Как измеряется расстояние до Луны и других небесных тел?
Планеты и звезды выглядят как маленькие светящиеся точки с Земли. Люди не могут определить расстояние до небесных тел, просто посмотрев в небо невооруженным глазом. Хорошо, что астрономы придумали способы измерения расстояний от своих наблюдательных станций.
Гелиоцентрическая теория привела к прогрессу и точности в изобретении и использовании астрономических инструментов. В настоящее время мир лучше понимает, насколько велико космическое пространство и его неизведанные области. Одно можно сказать наверняка, наша планета и все вокруг нее непрерывно движется. Иоганн Кеплер впервые заметил это и сделал вывод о том, как далеко одна планета находится от другой.
Кеплер обнаружил, что чем ближе планета от Солнца, тем быстрее она может завершить свой оборот по орбите. Это позволило ему оценить расстояния до планет. Например, он знал, что Марис ближе к Солнцу, чем Сатурн, потому что Марс может завершить свою солнечную орбиту менее чем за два года, в то время как последний занимает около 29 лет. В то время Кеплер не мог рассчитать их фактические расстояния, но понимал, что Марс и Сатурн были в 1,5 и в десять раз дальше от Солнца, чем Земля, соответственно.
Галактика Млечный Путь, по оценкам, находится на расстоянии 100 000 световых лет от Земли
Измерение параллакса
Первым астрономом, который тщательно измерил расстояния до небесных тел, был Джованни Доменико Кассини. Кассини использовал метод параллакса, чтобы измерить, как далеко Марс был от Земли в 1672 году.
Чтобы понять, что такое параллакс, попробуйте поднять большой палец вверх на расстоянии вытянутой руки и посмотреть на него только правым глазом. Сделайте то же самое с противоположным глазом. Заметили ли вы, что при взгляде каждым глазом большой палец находится на разном расстоянии? Это потому, что наши глаза были разделены на несколько сантиметров. Из-за этого большой палец как бы смещается вперед и назад. Расстояние, на которое, как кажется, перемещается большой палец, является параллаксом.
Чтобы определить расстояние до объекта, находящегося гораздо дальше планет, астрономы наблюдают его из разных точек солнечной орбиты Земли. Они измеряют положение небесного тела с Земли с разницей в несколько месяцев. Это разделяет «два глаза» ученого на сотни миллионов километров. Чем больше разделение, тем точнее будет измерение параллакса по отношению к гораздо более далеким объектам.
Способы определения расстояний до тел Солнечной системы и их размеров
Сперва определяется расстояние до какой-нибудь доступной точки. Это расстояние называется базисом. Угол, под которым из недоступного места виден базис, называют параллаксом. Горизонтальным параллаксом называют угол, под которым с планеты виден радиус Земли, перпендикулярный лучу зрения.
p² – параллакс, r² – угловой радиус, R – радиус Земли, r – радиус светила.
Радиолокационный метод. Он заключается в том, что на небесное тело посылают мощный кратковременный импульс, а затем принимают отраженный сигнал. Скорость распространения радиоволн равна скорости света в вакууме: известна. Поэтому если точно измерить время, которое потребовалось сигналу, чтобы дойти до небесного тела и возвратиться обратно, то легко вычислить искомое расстояние.
Радиолокационные наблюдения позволяют с большой точностью определять расстояния до небесных тел Солнечной системы. Этим методом уточнены расстояния до Луны, Венеры, Меркурия, Марса, Юпитера.
Лазерная локация Луны. Вскоре после изобретения мощных источников светового излучения — оптических квантовых генераторов (лазеров) — стали проводиться опыты по лазерной локации Луны. Метод лазерной локации аналогичен радиолокации, однако точность измерения значительно выше. Оптическая локация дает возможность определить расстояние между выбранными точками лунной и земной поверхности с точностью до сантиметров.
Для определения размеров Земли определяют расстояние между двумя пунктами, расположенными на одном меридиане, затем длину дуги l, соответствующей 1° —n.
Для определения размеров тел Солнечной системы можно измерить угол, под которым они видны земному наблюдателю – угловой радиус светила r и расстояние до светила D.
Учитывая p0 – горизонтальный параллакс светила и, что углы p0 и r малы,
Что нужно знать чтобы вычислить расстояние до какого нибудь небесного тела
§ 11. ОПРЕДЕЛЕНИЕ РАССТОЯНИЙ ДО ТЕЛ СОЛНЕЧНОЙ СИСТЕМЫ И РАЗМЕРОВ ЭТИХ НЕБЕСНЫХ ТЕЛ
1. Определение расстояний по параллаксам светил. Допустим, что из точки А нужно определить расстояние до недоступной точки С (рис. 24). Для этого прежде всего тщательно измеряется расстояние до какой-нибудь доступной точки В. Отрезок АВ называется базисом. Далее из точек А и В угломерным геодезическим инструментом измеряют CAB и
АВС. Таким образом, в треугольнике ABC известны углы и сторона АВ = с. Остальные элементы косоугольного треугольника ABC можно вычислить по формулам тригонометрии.
Планеты | Среднее расстояние от Солнца | ||
миллионов км | астрономических единиц | световых часов | |
Меркурий | 57,9 | 0,387 | 0,0535 |
Венера | 108,2 | 0,723 | 0,102 |
Земля | 149,5 | 1,000 | 0,137 |
Марс | 227,9 | 1.524 | 0,211 |
Юпитер | 778,3 | 5,203 | 0,722 |
Сатурн | 1428,0 | 9,539 | 1,321 |
Уильям Гершель – в свое время раздвинул горизонты познания, открыв Уран и буквально удвоив границы Солнечной системы
Размеры Солнечной системы
В 17-м веке, когда был открыт Сатурн, астрономы считали его орбиту “границей” Солнечной системы, соответственно вся “система” умещалась в круг диаметром 3 миллиардов км.
Однако в 1781 г., когда английский астроном, немец по происхождению, Уильям Гершель (1738—1822) открыл планету Уран, диаметр Солнечной системы внезапно… удвоился!
А потом снова удвоился, когда сначала французский астроном Урбан Жозсф Леверье (1811 — 1877) открыл в 1846 г. Нептун, затем американский астроном Клайд Уильям Томбо (род. в 1906 г.) — Плутон в 1930 г.
Планеты | Среднее расстояние от Солнца | ||
миллионов км | астрономических единиц | световых часов | |
Уран | 2872 | 19,182 | 2,63 |
Нептун | 4498 | 30,058 | 4,26 |
Плутон | 5910 | 39,518 | 5,47 |
Если мы рассмотрим орбиту Плутона, как ранее орбиту Сатурна, то увидим, что диаметр солнечной системы равен не 3, а 12 миллиардам километров. Лучу света, который преодолевает расстояние, равное окружности Земли, за 1 /7 сек и пробегает от Земли до Луны за 1 1 /4 сек, понадобится полдня для того, чтобы пересечь солнечную систему.
Кроме того, есть все основания считать, что вовсе не орбита Плутона отмечает границу владений Солнца. Это не значит, что мы должны предполагать существование еще не открытых более далеких планет (за исключением карликовых планет). Имеются уже известные небесные тела, которые время от времени очень легко увидеть и которые, без сомнения, уходят от Солнца гораздо дальше, чем Плутон на самой удаленной точке своей орбиты.
Где находятся границы Солнечной системы
В 1684 г. английский ученый Исаак Ньютон (1642—1727) открыл закон всемирного тяготения. Этот закон строго математически обосновал кеплеровскую схему строения солнечной системы и позволил вычислить орбиту тела, обращающегося вокруг Солнца, даже если тело наблюдалось лишь на части своей орбиты.
Это в свою очередь дало возможность приняться за кометы — небесные тела, которые время от времени появлялись на небе. В древности и в эпоху Средневековья астрономы считали, что кометы появляются без всякой правильности и что движение их не подчинено никаким естественным законам, широкие же массы были убеждены, что единственное назначение комет — предвещать несчастье.
Однако современник и друг Ньютона, английский ученый Эдмунд Галлей (1656—1742) попробовал применить к кометам закон тяготения. Он заметил, что некоторые особенно яркие кометы появлялись в небе через каждые 75—76 лет.
И вот в 1704 г. он предположил, что все эти кометы на самом деле были одним и тем же небесным телом, которое двигалось вокруг Солнца по постоянной эллиптической орбите, причем орбите настолько вытянутой, что значительная ее часть лежала на колоссальном расстоянии от Земли. Когда комета находилась вдали от Земли, она была невидима.
Но через каждые 75 или 76 лет она оказывалась на той части своей орбиты, которая расположена ближе всего к Солнцу (и к Земле), и вот тогда-то она становилась видимой.
Попытка запечатлеть реальные размеры и расстояния планет Солнечной системы от Солнца и друг от друга
Галлей вычислил орбиту этой кометы и предсказал, что она вновь вернется в 1758 г. И действительно, комета появилась в тот год (через 16 лет после смерти Галлея) и с тех пор получила название кометы Галлея.
В ближайшей к Солнцу точке своей орбиты комета Галлея оказывается от него всего лишь примерно в 90 000 000 км, заходя таким образом немного внутрь орбиты Венеры В наиболее же удаленной от Солнца части своей орбиты комета Галлея уходит от него приблизительно в 3 1 /2 раза дальше, чем Сатурн.
Таким образом, к 1760 г. астрономы прекрасно знали, что солнечная система не очерчена орбитой “последней” планеты.
Более того, комета Галлея — одна из комет, относительно близких к Солнцу. Существуют кометы, которые движутся вокруг него по таким невероятно вытянутым орбитам, что возвращаются к нему только раз в несколько столетий, а то и тысячелетий. Они уходят от Солнца не на миллиарды километров, а скорее всего на сотни миллиардов.
Голландский астроном Ян Хендрик Оорт (род. в 1900 г) в 1950 г. высказал предположение, что, возможно, существует целое огромное облако комет (известное как “Облако Оорта”), которые на протяжении всей своей орбиты находятся так далеко от Солнца, что никогда не бывают видимы.
Отсюда следует, что максимальный диаметр солнечной системы может достигать 1000 миллиардов, т. е триллиона (1 000 000 000 000) километров или даже больше. Световому лучу требуется 40 суток, чтобы покрыть такое расстояние. Таким образом, можно сказать, что диаметр солнечной системы превосходит один световой месяц.
- что нужно знать чтобы вычислить размеры какого нибудь тела солнечной системы
- что нужно знать чтобы стать ветеринаром какие предметы