что такое запоминающее устройство какая общая классификация

Запоминающие устройства: классификация, принцип работы, основные характеристики

2.3.1. Параметры и основные характеристики запоминающих устройств

Информация в ПК хранится в электронной памяти.

Запоминающие устройства (ЗУ) ЭВМ – это совокупность устройств, обеспечивающих хранение и передачу данных. Основные операции, выполняемые запоминающими устройствами, – запись и считывание информации, в совокупности называют обращением к памяти.

Запоминающие устройства (ЗУ) служат для хранения информации и обмена ею с другими цифровыми устройствами. Память компьютера дискретна, она состоит изотдельных ячеек. Наименьший запоминающий элемент (ЗЭ) памяти — бит — двоичный разряд. В нем хранится двоичный код (0 или 1). Восемь последовательных двоичных разрядов составляют байт. Максимальное количество байтов, которое может быть одновременно обработано командой процессора, машинное слово или запоминающая ячейка (ЗЯ), длина которого определяется разрядностью процессора

Объем памяти компьютера измеряется в байтах и их производных: килобайтах (1 Кб = 1024 б), мегабайтах (1Мб = 1024 Кб), гигабайтах (1Гб = = 1024 Мб) и т. д.

Основные характеристики запоминающих устройств:

p>Память компьютера имеет многоуровневый характер. Такое сочетание запоминающих систем называется иерархией памяти компьютера.

В наиболее развитой иерархии памяти ЭВМ можно выделить следующие уровни:

1) регистровые ЗУ, находящиеся в составе процессора или других устройств (т.е. внутренние для этих блоков), благодаря которым уменьшается число обращений к другим уровням памяти, реализованным вне процессора и требующим большего времени для операций обмена информацией;

2) кэш — память, служащая для хранения копий информации, используемой в текущих операциях обмена. Высокое быстродействие кэш — памяти повышает производительность ЭВМ;

3) основная память (оперативная, постоянная, полупостоянная), работающая в режиме непосредственного обмена с процессором и по возможности согласованная с ним по быстродействию. Исполняемый в текущий момент фрагмент программы обязательно находится в основной памяти;

4) специализированные виды памяти, характерные для некоторых специфических архитектур (многопортовые, ассоциативные, видеопамять и др.);

5) внешняя память, хранящая большие объемы информации. Эта память обычно реализуется на основе устройств с подвижным носителем информации (магнитные и оптические диски, магнитные ленты и др.).

Память компьютера по способу организации и использования можно разделить на внутреннюю и внешнюю.

2.3.2. Внутренняя память (ОЗУ, ПЗУ, кэш), ее назначение и принцип работы

Внутренняя память компьютера включает в себя оперативную память, постоянную память, кэш-память.

Оперативная память (оперативное запоминающее устройство — ОЗУ или Random Access Memory — RAM) — энергозависимое, быстродействующее запоминающее устройство, предназначенное для хранения информации (программ и данных), непосредственно участвующей в вычислительном процессе на текущем этапе функционирования ПК. ОЗУ — энергозависимая память: при отключении напряжения питания информация, хранящаяся в ней, теряется.

Существуют также перепрограммируемые ПЗУ (ППЗУ), в которых информация может перезаписываться несколько раз в процессе эксплуатации. ППЗУ применяются в тех случаях, когда необходима модификация программы или функций самой системы.

Кэш-память — высокоскоростная память сравнительно большой емкости, которая является буфером между оперативной памятью и микропроцессором и позволяющая увеличить скорость выполнения операций. В кэш-памяти хранятся данные, которые микропроцессор получил и будет использовать в ближайшие такты своей работы. Современные микропроцессоры, начиная от МП 80486, имеют свою встроенную кэш-память (или кэш-память 1-го уровня). Кэш-память 2-го уровня размещается на материнской плате вне микропроцессора и хранит данные и результаты, обрабатываемые процессором в текущий момент времени.

2.3.3. Внешние запоминающие устройства, назначение и принцип работы

Внешняя память компьютера предназначена для долговременного хранения информации. Внешние ЗУ также называют накопителем.

Накопители бывают внешними (собственный корпус и источник питания), встроенными в корпус компьютера, со сменными и несменными носителями, с носителями разной формы (диски, ленты). Накопители имеют разные характеристики: максимально возможный объем хранимой информации, время доступа.

Накопители на магнитных лентах называются стримерами. В современных стримерах используются специальные кассеты (картриджи) с магнитной лентой. Стримеры имеют разные стандарты, определяющие интерфейс с компьютером, формат магнитной ленты, методы кодирования и сжатия.

Жесткие несменные диски называются винчестерами. Они представляют собой систему, состоящую из механического привода головок чтения-записи, нескольких носителей и контроллера, обеспечивающего работу всего устройства. Магнитная головка (несколько магнитных головок в специальном позиционере) является одной из наиболее важных частей устройства. Носитель информации состоит из нескольких дисков, каждый из которых имеет две рабочие поверхности. При записи информации используются магнитные свойства слоя, нанесенного на поверхность.

Магнитооптические диски имеют различную емкость от 128 Мбайт до 640 Мбайт. Запись производится после нагревания лазером магнитного слоя до определенной температуры. Надежность хранения информации обеспечивается тем, что при обычной температуре информация не подвержена действию внешних магнитных полей.

Устройства CD-ROM используют носители емкостью до 650 Мбайт, представляющие собой диски со светоотражающим слоем на одной стороне, где хранится информация. На диск нанесена дорожка-спираль от центра к краю диска, состоящая из отражающих и не отражающих свет точек; считывание производится лазерным лучом.

Накопители CD-R позволяют лишь однократно записывать информацию на диски. Луч лазера прожигает пленку на поверхности диска, меняя его отражающую способность. Перезапись при этом невозможна. Такие диски считываются на любом приводе CD-ROM.

Накопители CD-RW позволяют делать многократную запись на диск. Здесь используются свойство рабочего слоя переходить под воздействием лазерного луча в кристаллическое или аморфное состояние, имеющие разную отражательную способность.

Накопители DVD предназначены для хранения видео, аудио, высокого качества, компьютерной информации большого объема. Плотность записи выше, чем у обычных CD-ROM.+

Накопители DVD-RAM позволяют записывать и перезаписывать информацию.

Накопители на сменных жестких дисках используют технологию винчестеров. Параметры таких устройств приближаются к параметрам устройств с жесткими несъемными дисками.

Флэш-память. Модули или карты флэш-памяти устанавливаются прямо в разъемы материнской платы. Флэш-память обладает рядом преимуществ в использовании: высокая надежность и ударопрочность, малое энергопотребление. Одним из основных преимуществ флэш-памяти является ее компактность, поэтому она удобна для хранения и переноса данных.

Статьи к прочтению:

Микросхемы памяти, общие сведения

Похожие статьи:

Запоминающее устройство большой емкости с относительно низким быстродействием. Целостность содержимого ВЗУ не зависит от того, включен или выключен…

Запоминающие устройства можно классифицировать по целому ряду параметров и признаков. На рис.5.1 представлена классификация по типу обращения и…

Источник

Запоминающее устройство

что такое запоминающее устройство какая общая классификация. Смотреть фото что такое запоминающее устройство какая общая классификация. Смотреть картинку что такое запоминающее устройство какая общая классификация. Картинка про что такое запоминающее устройство какая общая классификация. Фото что такое запоминающее устройство какая общая классификация

что такое запоминающее устройство какая общая классификация. Смотреть фото что такое запоминающее устройство какая общая классификация. Смотреть картинку что такое запоминающее устройство какая общая классификация. Картинка про что такое запоминающее устройство какая общая классификация. Фото что такое запоминающее устройство какая общая классификация

Запоминающее устройство — носитель информации, предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.

Содержание

Классификация

По форме записанной информации запоминающие устройства (ЗУ) делятся на:

По устойчивости записи и возможности перезаписи ЗУ делятся на:

По геометрическому исполнению:

По физическому принципу:

По количеству устойчивых (распознаваемых) состояний одного элемента памяти:

Цифровые запоминающие устройства

Цифровые запоминающие устройства — устройства, предназначенные для записи, хранения и считывания информации, представленной в цифровом коде.

К основным параметрам цифровых ЗУ относятся информационная ёмкость (битов, тритов и т. д.), потребляемая мощность, время хранения информации, быстродействие.

Самое большое распространение цифровые запоминающие устройства приобрели в компьютерах (компьютерная память). Кроме того, они применяются в устройствах автоматики и телемеханики, в приборах для проведения экспериментов, в бытовых устройствах (телефонах, фотоаппаратах, холодильниках, стиральных машинах и т. д.), в пластиковых карточках, замках.

Информационная ёмкость цифрового запоминающего устройства

Ёмкость запоминающего устройства равна количеству устойчивых (распознаваемых) состояний запоминающего устройства.

Количество состояний запоминающего устройства, состоящего из что такое запоминающее устройство какая общая классификация. Смотреть фото что такое запоминающее устройство какая общая классификация. Смотреть картинку что такое запоминающее устройство какая общая классификация. Картинка про что такое запоминающее устройство какая общая классификация. Фото что такое запоминающее устройство какая общая классификацияэлементарных ячеек, определяется в комбинаторике и равно количеству размещений с повторениями:

Внешние хранилища данных Windows

Несмотря на устойчивую тенденцию к снижении стоимости пространства на жёстких дисках, одного из наиболее распространённых типов накопителей данных персональных компьютеров и серверов начального уровня, практикуется реализация идеи о том, что редко используемые данные должны архивироваться и храниться на менее дорогие, но вполне надёжные носители (запоминающие устройства, далее — ЗУ).

В семействе операционных систем Windows 2000 этой цели посвящена соответствующая оснастка Управление сменными носителями (англ. Removable Storage Manager ). Основной задачей, которая решается при помощи данного инструмента — централизованное управление магнитными лентами (которые могут использоваться как носители для резервного копирования), дисками Иерархической системы управления (англ. Hierarchical Storage Management, HSM ) и архивами баз данных.

Расширенные возможности управления файлами на съёмных ЗУ, например операции по расширению дисков (англ. disk-extender operation ), выполняются средствами управления данными — программой архивации (англ. Backup ) и службой внешних хранилищ (англ. Remote Storage ), которые не входит в поставку Professional, а имеется только в версиях Server.

Съёмные носители

В системе съёмных носителей используются:

Для идентификации носителей могут использоваться:

Логический набор однотипных носителей, применительно к которому действуют одинаковые атрибуты и свойства, назначаемые при управлении носителями. Использование пулов носителей позволяет определить набор свойств, применимых ко всем носителям в пределах логической группировки, что позволяет системе съёмных ЗУ выделять в совместное пользование множеству приложений одни и те же типы носителей в пределах одной библиотеки. Каждый носитель в системе съёмных ЗУ принадлежит к определенному пулу носителей, и каждый пул содержит носители только одного типа. Приложения получают доступ к конкретным носителям в пределах конкретной библиотеки используя определенный пул носителей.

Библиотеки

В системе съёмных ЗУ существует три типа библиотек:

По способу установки носителя библиотеки разделяются на:

Одна библиотека может содержать носители из разных пулов, каждый из которых имеет свои свойства. Любой пул носителей может охватывать несколько библиотек, кроме того система съёмных ЗУ позволяет на базе пулов носителей создавать иерархические структуры.

Система съёмных ЗУ

Состоит из трёх программных компонентов:

Администрирование системы съёмных ЗУ, осуществляемое при помощи оснастки MMC выполняет следующие задачи:

Служба съёмных ЗУ

Упрощает оперативное управление библиотеками и устройствами с автоматической подачей дисков (англ. jukebox ), отслеживает использование съёмных носителей типа магнитных лент и съёмных дисков, упрощает взаимодействие между библиотеками съёмных носителей и программными приложениями обеспечивающими управление данными (например, встроенной программой архивации и службой внешних хранилищ англ. Remote Storage ).

Наиболее распространённые в настоящее время ЗУ

Переносные накопители данных

Некоторые типы запоминающих устройств оформлены как компактные, носимые человеком устройства, приспособленные для переноса информации. В частности:

См. также

Литература

что такое запоминающее устройство какая общая классификация. Смотреть фото что такое запоминающее устройство какая общая классификация. Смотреть картинку что такое запоминающее устройство какая общая классификация. Картинка про что такое запоминающее устройство какая общая классификация. Фото что такое запоминающее устройство какая общая классификация

Полезное

Смотреть что такое “Запоминающее устройство” в других словарях:

ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО — (ЗУ) функциональная часть цифровой вычислительной машины или самостоятельное устройство, предназначенное для (см.), хранения и выдачи информации, представленной цифровыми кодами. Часто ЗУ называют (см.) (или модулем памяти), т. е. слова… … Большая политехническая энциклопедия

ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО — ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО, устройство для автоматической записи, хранения и выдачи (по запросу) информации. Используется в ЭВМ, базах данных, автоматических и автоматизированных системах управления и др. Информация записывается и хранится на… … Современная энциклопедия

ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО — устройство для записи, хранения и выдачи информации, представленной в кодовой форме. Используется в вычислительных машинах, системах автоматического управления, телемеханики, технологических агрегатах с программным управлением. Носители… … Большой Энциклопедический словарь

запоминающее устройство — запоминающее устройство; память; отрасл. устройство хранения; накопитель Часть вычислительной машины, предназначенная для записи, хранения и выдачи информации, представленной в кодовой форме … Политехнический терминологический толковый словарь

запоминающее устройство — ЗУ Устройство, реализующее функцию памяти данных. [ГОСТ 15971 90] Тематики системы обработки информации Синонимы ЗУ EN storage unit … Справочник технического переводчика

запоминающее устройство — (машинная) память, накопитель (информации) Словарь русских синонимов … Словарь синонимов

ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО — Носитель информации, предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям Словарь бизнес терминов.… … Словарь бизнес-терминов

Запоминающее устройство — ОБЩИЕ ПОНЯТИЯ 1. Запоминающее устройство ЗУ Storage unit По ГОСТ 15971 Источник: ГОСТ 25492 82: Устройства цифровых вычислительных машин запоминающие. Термины и определения … Словарь-справочник терминов нормативно-технической документации

запоминающее устройство — устройство для записи, хранения и выдачи информации, представленной в кодовой форме. Используется в вычислительных машинах, системах автоматического управления, телемеханики, технологических агрегатах с программным управлением. Носители… … Энциклопедический словарь

Запоминающее устройство — (ЗУ) блок вычислительной машины или самостоятельное устройство, предназначенное для записи, хранения и воспроизведения информации. Наибольшее распространение ЗУ получили в цифровых вычислительных машинах (См. Цифровая вычислительная… … Большая советская энциклопедия

запоминающее устройство — (ЗУ), устройство для записи, хранения и выдачи (по запросу) информации, представленной обычно в цифровом коде. При записи информация преобразуется в электрические, оптические или акустические сигналы либо механические перемещения с целью… … Энциклопедия техники

Источник

Запоминающие устройства

Памятью ЭВМ называется совокупность устройств, служащих для запоминания, хранения и выдачи информации.

Отдельные устройства, входящие в эту совокупность, называются запоминающими устройствами ( ЗУ ) того или иного типа [7].

Запоминающие устройства играют важную роль в общей структуре ЭВМ. По некоторым оценкам производительность компьютера на разных классах задач на 40-50% определяется характеристиками ЗУ различных типов, входящих в его состав.

Емкость запоминающего устройства измеряется количеством адресуемых элементов (ячеек) ЗУ и длиной ячейки в битах. В настоящее время практически все запоминающие устройства в качестве минимально адресуемого элемента используют 1 байт (1 байт = 8 двоичных разрядов ( бит )). Поэтому емкость памяти обычно определяется в байтах, килобайтах (1Кбайт=2 10 байт ), мегабайтах (1Мбайт = 2 20 байт ), гигабайтах (1Гбайт = 2 30 байт ) и т.д.

За одно обращение к запоминающему устройству производится считывание или запись некоторой единицы данных, называемой словом, различной для устройств разного типа. Это определяет разную организацию памяти. Например, память объемом 1 мегабайт может быть организована как 1М слов по 1 байту, или 512К слов по 2 байта каждое, или 256К слов по 4 байта и т.д.

В то же время, в каждой ЭВМ используется свое понятие машинного слова, которое применяется при определении архитектуры компьютера, в частности при его программировании, и не зависит от размерности слова памяти, используемой для построения данной ЭВМ. Например, компьютеры с архитектурой IBM PC имеют машинное слово длиной 2 байта.

Быстродействие памяти определяется продолжительностью операции обращения, то есть временем, затрачиваемым на поиск нужной информации в памяти и на ее считывание, или временем на поиск места в памяти, предназначаемого для хранения данной информации, и на ее запись :

Классификация запоминающих устройств

что такое запоминающее устройство какая общая классификация. Смотреть фото что такое запоминающее устройство какая общая классификация. Смотреть картинку что такое запоминающее устройство какая общая классификация. Картинка про что такое запоминающее устройство какая общая классификация. Фото что такое запоминающее устройство какая общая классификация

что такое запоминающее устройство какая общая классификация. Смотреть фото что такое запоминающее устройство какая общая классификация. Смотреть картинку что такое запоминающее устройство какая общая классификация. Картинка про что такое запоминающее устройство какая общая классификация. Фото что такое запоминающее устройство какая общая классификация

Иерархическая структура памяти позволяет экономически эффективно сочетать хранение больших объемов информации с быстрым доступом к информации в процессе ее обработки.

Внешняя память организуется, как правило, на магнитных и оптических дисках, магнитных лентах. Емкость дисковой памяти достигает десятков гигабайт при времени обращения менее 1 мкс. Магнитные ленты вследствие своего малого быстродействия и большой емкости используются в настоящее время в основном только как устройства резервного копирования данных, обращение к которым происходит редко, а может быть и никогда. Время обращения для них может достигать нескольких десятков секунд.

Следует отметить, что электронная вычислительная техника развивается чрезвычайно быстрыми темпами. Так, согласно эмпирическому “закону Мура”, производительность компьютера удваивается приблизительно каждые 18 месяцев. Поэтому все приводимые в данном пособии количественные характеристики служат по большей части только для отражения основных соотношений и тенденций в развитии тех или иных компонентов и устройств компьютеров.

Источник

Характеристики и классификация запоминающих устройств.

Памятью ЭВМ называется совокупность устройств, служащих для запоминания, хранения и выдачи информации.

Отдельные устройства, входящие в эту совокупность, называются запоминающими устройствами ( ЗУ ) того или иного типа.

Запоминающие устройства играют важную роль в общей структуре ЭВМ. По некоторым оценкам производительность компьютера на разных классах задач на 40-50% определяется характеристиками ЗУ различных типов, входящих в его состав.

К основным параметрам, характеризующим запоминающие устройства, относятся емкость и быстродействие.

Емкость запоминающего устройства измеряется количеством адресуемых элементов (ячеек) ЗУ и длиной ячейки в битах. В настоящее время практически все запоминающие устройства в качестве минимально адресуемого элемента используют 1 байт (1 байт = 8 двоичных разрядов (бит)). Поэтому емкость памяти обычно определяется в байтах, килобайтах (1Кбайт=2 10 байт), мегабайтах (1Мбайт = 2 20 байт), гигабайтах (1Гбайт = 2 30 байт) и т.д.

За одно обращение к запоминающему устройству производится считывание или запись некоторой единицы данных, называемойсловом, различной для устройств разного типа. Это определяет разную организацию памяти. Например, память объемом 1мегабайт может быть организована как 1М слов по 1 байту, или 512К слов по 2 байта каждое, или 256К слов по 4 байта и т.д.

В то же время, в каждой ЭВМ используется свое понятие машинного слова, которое применяется при определении архитектуры компьютера, в частности при его программировании, и не зависит от размерности слова памяти, используемой для построения данной ЭВМ. Например, компьютеры с архитектурой IBM PC имеют машинное слово длиной 2 байта.

Быстродействие памяти определяется продолжительностью операции обращения, то есть временем, затрачиваемым на поискнужной информации в памяти и на ее считывание, или временем на поиск места в памяти, предназначаемого для хранения данной информации, и на ее запись:

Классификация запоминающих устройств

Запоминающие устройства можно классифицировать по целому ряду параметров и признаков. На рис.5.1 представлена классификацияпо типу обращения и организации доступа к ячейкам ЗУ.

что такое запоминающее устройство какая общая классификация. Смотреть фото что такое запоминающее устройство какая общая классификация. Смотреть картинку что такое запоминающее устройство какая общая классификация. Картинка про что такое запоминающее устройство какая общая классификация. Фото что такое запоминающее устройство какая общая классификация

Рис. 5.1.Классификация запоминающих устройств

что такое запоминающее устройство какая общая классификация. Смотреть фото что такое запоминающее устройство какая общая классификация. Смотреть картинку что такое запоминающее устройство какая общая классификация. Картинка про что такое запоминающее устройство какая общая классификация. Фото что такое запоминающее устройство какая общая классификация

Рис. 5.2.Иерархическая организация памяти в современных ЭВМ

Иерархическая структура памяти позволяет экономически эффективно сочетать хранение больших объемов информации с быстрым доступом к информации в процессе ее обработки.

Внешняя память организуется, как правило, на магнитных и оптических дисках, магнитных лентах. Емкость дисковой памяти достигает десятков гигабайт при времени обращения менее 1 мкс. Магнитные ленты вследствие своего малого быстродействия и большойемкости используются в настоящее время в основном только как устройства резервного копирования данных, обращение к которым происходит редко, а может быть и никогда. Время обращения для них может достигать нескольких десятков секунд.

В настоящее время существует большое количество различных типов ЗУ, используемых в ЭВМ и системах.

Эти устройства различаются рядом признаков: принципом действия, логической организацией, конструктивной и технологической реализацией, функциональным назначением и т.д.

Большое количество существующих типов ЗУ обусловливает различия в структурной и логической организации (систем) памяти ЭВМ. Требуемые характеристики памяти достигаются не только за счет применения ЗУ с соответствующими характеристиками, но в значительной степени за счет особенностей ее структуры и алгоритмов функционирования.

Классификация запоминающих устройств и систем памяти позволяет выделить общие и характерные особенности их организации, систематизировать базовые принципы и методы, положенные в основу их реализации и использования.

Один из возможных вариантов классификации ЗУ:

что такое запоминающее устройство какая общая классификация. Смотреть фото что такое запоминающее устройство какая общая классификация. Смотреть картинку что такое запоминающее устройство какая общая классификация. Картинка про что такое запоминающее устройство какая общая классификация. Фото что такое запоминающее устройство какая общая классификация

При разделении ЗУ по функциональному назначению иногда рассматривают два класса: внутренние и внешние ЗУ ЭВМ. Такое деление первоначально основывалось на различном конструктивном расположении их в ЭВМ. В настоящее время, например, накопители на жестких магнитных дисках, традиционно относимые к внешним ЗУ, конструктивно располагаются непосредственно в основном блоке компьютера. Поэтому разделение на внешние и внутренние ЗУ имеет в ряде случаев относительный, условный характер.

Обычно к внутренним ЗУ относят устройства, непосредственно доступные процессору, а к внешним – такие, обмен информацией которых с процессором происходит через внутренние ЗУ.

Общий вид иерархии памяти ЭВМ :

что такое запоминающее устройство какая общая классификация. Смотреть фото что такое запоминающее устройство какая общая классификация. Смотреть картинку что такое запоминающее устройство какая общая классификация. Картинка про что такое запоминающее устройство какая общая классификация. Фото что такое запоминающее устройство какая общая классификация

1. Верхнее место в иерархии памяти занимают регистровые ЗУ, которые входят в состав процессора и часто рассматриваются не как самостоятельный блок ЗУ, а просто как набор регистров процессора. Такие ЗУ в большинстве случаев реализованы на том же кристалле, что и процессор, и предназначены для хранения небольшого количества информации (до нескольких десятков слов, а в RISC-архитектурах – до сотни), которая обрабатывается в текущий момент времени или часто используется процессором. Это позволяет сократить время выполнения программы за счет использования команд типа регистр-регистр и уменьшить частоту обменов информацией с более медленными ЗУ ЭВМ. Обращение к этим ЗУ производится непосредственно по командам процессора.

2. Следующую позицию в иерархии занимают буферные ЗУ. Их назначение состоит в сокращении времени передачи информации между процессором и более медленными уровнями памяти компьютера. Буферная память может устанавливаться на различных уровнях, но здесь речь идет именно об указанном ее местоположении. Ранее такие буферные ЗУ в отечественной литературе называли сверхоперативными, сейчас это название практически полностью вытеснил термин “кэш-память” или простокэш.

Принцип использования буферной памяти во всех случаях сводится к одному и тому же. Буфер представляет собой более быстрое (а значит, и более дорогое), но менее емкое ЗУ, чем то, для ускорения работы которого он предназначен. При этом в буфере размещается только та часть информации из более медленного ЗУ, которая используется в настоящий момент. Если доля hобращений к памяти со стороны процессора, удовлетворяемых непосредственно буфером (кэшем) высока (0,9 и более), то среднее время для всех обращений оказывается близким ко времени обращения к кэшу, а не к более медленному ЗУ.

Размеры кэш-памяти существенно изменяются с развитием технологий. Так, если в первых ЭВМ, где была установлена кэш-память, во второй половине 1960-х годов (большие ЭВМ семейства IBM-360) ее емкость составляла всего от 8 до 16 КБайт, то уже во второй половине 1990-х годов емкость кэша рядовых персональных ЭВМ составляла 512 КБайт.

Причем сама кэш-память может состоять из двух (а в серверных системах – даже трех) уровней: первого (L1) и второго (L2), также отличающихся своей емкостью и временем обращения.

Конструктивно кэш уровня L1 входит в состав процессора (поэтому его иногда называют внутренним). Кэш уровня L2 либо также входит в микросхему процессора, либо может быть реализован в виде отдельной памяти. Как правило, на параметры быстродействия процессора большее влияние оказывают характеристики кэш-памяти первого уровня.

Время обращения к кэш-памяти, которая обычно работает на частоте процессора, составляет от десятых долей до единиц наносекунд, т.е. не превышает длительности одного цикла процессора.

Обмен информацией между кэш-памятью и более медленными ЗУ для улучшения временных характеристик выполняется блоками, а не байтами или словами. Управляют этим обменом аппаратные средства процессора и операционная система, и вмешательство прикладной программы не требуется. Причем непосредственно командам процессора кэш-память недоступна, т.е. программа не может явно указать чтение или запись в кэш-памяти, которая является для нее, как иногда говорят, “прозрачной” (прямой перевод используемого в англоязычной литературе слова transparent).

3. Еще одним (внутренним) уровнем памяти являются служебные ЗУ. Они могут иметь различное назначение.

Одним из примеров таких устройств являются ЗУ микропрограмм, которые иногда называют управляющей памятью. Другим – вспомогательные ЗУ, используемые для управления многоуровневой памятью.

В управляющей памяти, использующейся в ЭВМ с микропрограммным управлением, хранятся микропрограммы выполнения команд процессора, а также различных служебных операций.

Вспомогательные ЗУ для управления памятью (например, теговая память, используемая для управления кэш-памятью, буфер переадресации TLB – translation location buffer) представляют собой различные таблицы, используемые для быстрого поиска информации в разных ступенях памяти, отображения ее свойств, очередности перемещения между ступенями и пр.

Емкости и времена обращения к таким ЗУ зависят от их назначения. Обычно – это небольшие (до нескольких Кбайт), но быстродействующие ЗУ. Специфика назначения предполагает недоступность их командам процессора.

4. Следующим уровнем иерархии памяти является оперативная память. Оперативное ЗУ (ОЗУ) является основным запоминающим устройством ЭВМ, в котором хранятся выполняемые в настоящий момент процессором программы и обрабатываемые данные, резидентные программы, модули операционной системы и т.п. Название оперативной памяти также несколько изменялось во времени. В некоторых семействах ЭВМ ее называли основной памятью, основной оперативной памятью и пр. В англоязычной литературе также используется термин RAM (random access memory), означающий память с произвольным доступом.

Эта память используется в качестве основного запоминающего устройства ЭВМ для хранения программ, выполняемых или готовых к выполнению в текущий момент времени, и относящихся к ним данных. В оперативной памяти располагаются и компоненты операционной системы, необходимые для ее нормальной работы. Информация, находящаяся в ОЗУ, непосредственно доступна командам процессора, при условии соблюдения требований защиты.

Оперативная память реализуется на полупроводниках (интегральных схемах), стандартные объемы ее составляют (в начале 2000-х годов) сотни мегабайт – единицы гигабайт, а времена обращения – единицы÷десятки наносекунд.

5. Еще одним уровнем иерархии ЗУ может являться дополнительная память, которую иногда называли расширенной или массовой. Первоначально (1970-е годы) эта ступень использовалась для наращивания емкости оперативной памяти до величины, соответствующей адресному пространству (например, 24-битного адреса) команд, с помощью подключения более дешевого и емкого, чем ОЗУ, запоминающего устройства.

Это могла быть ферритовая память или даже память на магнитных дисках. Конечно, она была более медленной, а хранимая в ней информация сперва передавалась в оперативную память и только оттуда попадала в процессор. При записи путь был обратный.

Затем, в ранних моделях ПЭВМ, дополнительная память также использовалась для наращивания емкости ОЗУ и представляла собой отдельную плату с микросхемами памяти. А еще позже термин дополнительная память (extended или expanded memory) стал обозначать область оперативного ЗУ с адресами выше одного мегабайта. Конечно, этот термин применим только к IBM PC совместимым ПЭВМ.

6. В состав памяти ЭВМ входят также ЗУ, принадлежащие отдельным функциональным блокам компьютера. Формально эти устройства непосредственно не обслуживают основные потоки данных и команд, проходящие через процессор. Их назначение обычно сводится к буферизации данных, извлекаемых из каких-либо устройств и поступающих в них.

Типичным примером такой памяти является видеопамять графического адаптера, которая используется в качестве буферной памяти для снижения нагрузки на основную память и системную шину процессора.

Другими примерами таких устройств могут служить буферная память контроллеров жестких дисков, а также память, использовавшаяся в каналах (процессорах) ввода-вывода для организации одновременной работы нескольких внешних устройств.

Емкости и быстродействие этих видов памяти зависят от конкретного функционального назначения обслуживаемых ими устройств. Для видеопамяти, например, объем может достигать величин, сравнимых с оперативными ЗУ, а быстродействие – даже превосходить быстродействие последних.

7. Следующей ступенью памяти, ставшей фактически стандартом для любых ЭВМ, являются жесткие диски. В этих ЗУ хранится практически вся информация, которая используется более или менее активно, начиная от операционной системы и основных прикладных программ и кончая редко используемыми пакетами и справочными данными.

Емкость этой ступени памяти, которая может включать в свой состав до десятков дисков, обеспечивая хранение очень большого количества данных, зависит от области применения ЭВМ. Типовая емкость жесткого диска, составляющая на начало 2000-х годов десятки гигабайт, удваивается примерно каждые полтора года.

Со временами обращения дело обстоит несколько иначе: компоненты этого времени, обусловленные перемещением блока головок чтения-записи уменьшаются сравнительно медленно (примерно вдвое за 10 лет). Компонента, обусловленная временем подвода сектора и зависящая от скорости вращения шпинделя диска, также уменьшается с ростом этой скорости примерно такими же темпами. А скорость передачи данных растет значительно быстрее, что связано с увеличением плотности записи информации на диски.

8. Все остальные запоминающие устройства можно объединить с точки зрения функционального назначения в одну общую группу, охарактеризовав ее как группувнешних ЗУ. Под словом “внешние” следует подразумевать то, что информация, хранимая в этих ЗУ, в общем случае расположена на носителях не являющихся частью собственно ЭВМ. Под это определение подпадают гибкие диски, компакт диски, накопители на сменных магнитных дисках и магнитооптические диски, твердотельные (флэш) диски и флэш-карты, стримеры, внешние винчестеры и др. Естественно, что параметры этих устройств достаточно различны. Функциональное назначение их обычно сводится либо к архивному хранению информации, либо к переносу ее од одного компьютера к другому.

Некоторые сомнения в принадлежности к данной категории могут вызвать сменные диски, устанавливаемые в салазки (rack). Такие диски, действительно, лучше отнести к предыдущей (седьмой) группе.

Особенности организации ЗУ определяются, в первую очередь, используемыми технологиями, логикой их функционирования, а также некоторыми другими факторами. Эти особенности и соответствующие разновидности ЗУ перечисляются ниже.

1. По функциональным возможностям ЗУ можно разделять:
– на простые, допускающие только хранение информации;
– многофункциональные, которые позволяют не только хранить, но и перерабатывать хранимую информацию без участия процессора непосредственно в самих ЗУ [2].

Подход, используемый во второй группе ЗУ, в принципе, позволяет создать производительные системы с параллельной обработкой данных. В частности, похожие подходы используются в различных частях видеотракта компьютера.

2. По возможности изменения информации различают ЗУ:
– постоянные (или с однократной записью);
– односторонние (с перезаписью или перепрограммируемые);
– двусторонние.

В постоянных ЗУ (ПЗУ) информация заносится либо при изготовлении, либо посредством записи (или, как иначе называют эту процедуру, программирования или прожига), которая может быть выполнена только однократно. В ходе такой записи изменяется сам носитель информации, например, пережигаются проводники в микросхемах ПЗУ или формируются лунки в отражающем слое CD-ROM.

Односторонними называют ЗУ, которые имеют существенно различные времена записи и считывания информации. Наиболее распространенными типами таких ЗУ являются перепрограммируемые постоянные ЗУ или компакт-диски с перезаписью – CD-RW. Время записи в устройствах этих типов значительно превышает время считывания информации.

К односторонним ЗУ можно отнести и ЗУ на приборах с зарядовой связью (ПЗС), в которых время записи (формирования изображения), вообще говоря, заметно меньше времени считывания (передачи изображения).

Двусторонние ЗУ имеют близкие значения времен чтения и записи. Типичными представителями таких ЗУ являются оперативные ЗУ и ЗУ на жестких дисках.

3. По способу доступа различают ЗУ:
– с адресным доступом;
– с ассоциативным доступом.

При адресном доступе для записи или чтения место расположения информации в ЗУ определяется ее адресом. Логически адрес может иметь различную структуру. Например, в оперативных ЗУ адрес представляет собой двоичный код, одна часть разрядов которого указывают строку матрицы элементов памяти, а другая – столбец этой матрицы. На пересечении заданных строки и столбца находится искомая информация. В ЗУ на магнитных дисках адрес может представлять собой либо комбинацию номеров цилиндра, головки и сектора (так называемая CHS-геометрия), либо логический номер сектора (LBA-адресация). Возможны и иные варианты.

В любом случае, заданный адрес отрабатывается схемами доступа ЗУ (дешифратором, блоком позиционирования головок и т.п.) таким образом, что в операции участвует соответствующая адресу область матрицы элементов памяти, запоминающей среды или носителя информации.

При этом, в зависимости от того, как именно срабатывает механизм доступа, различают следующие виды адресного доступа:
– произвольный;
– прямой (циклический);
– последовательный.

Термин “память с произвольным доступом” (random access memory – RAM) применяют к ЗУ, в которых выбор места хранения информации производится непосредственным подключением входов и выходов элементов памяти (через буферы, усилители и логические элементы) к входным и выходным шинам ЗУ. Это наиболее быстрый вид адресного доступа, применяемый в оперативных ЗУ и кэш-памяти.

При прямом (циклическом) доступе непосредственной коммутации связей оказывается недостаточно. В таких ЗУ обычно происходит еще и перемещение данных относительно механизма чтения/записи, механизма чтения/записи относительно данных или и то и другое. Физически это может быть как механическое перемещение, например, в жестких дисках, перемещение областей намагниченности, как в ЗУ на магнитных доменах, перенос зарядов и др.

С логической точки зрения такие ЗУ можно сопоставить набору сдвигающих регистров, информация в которых сдвигается циклически и может вводиться в регистр или выводиться из него только в одном из разрядов. Термины “циклический” и “прямой” доступ близки по содержанию, хотя “прямой доступ” – имеет более широкий смысл.

Последовательный доступ характерен для ЗУ, использующих в качестве носителя информации (запоминающей среды) магнитную ленту, например, для стримеров. В таких ЗУ для доступа к блоку данных необходимо переместить носитель так, чтобы участок, на котором располагается требуемый блок данных, оказался под блоком головок чтения/записи.

Кроме того, при всех формах адресного доступа адресуемым элементом может быть не только байт или слово (как в оперативной памяти и кэш-памяти), но целый блок данных. Это обычно связано либо с конструктивными особенностями ЗУ, либо с большим временем доступа.

При ассоциативном доступе место хранения информации при чтении и записи определяется не адресом, а значением некоторого ключа поиска. Каждое записанное и хранимое в ассоциативной памяти слово имеет поле ключа. Значение этого ключа сравнивается со значением ключа поиска при чтении данных из памяти. В случае совпадения сравниваемых значений информация считывается из памяти.

Ассоциативная память эффективна для решения задач, связанных с поиском данных. Однако ее использование ограничено в силу сравнительно высокой ее сложности.

Действительно, с аппаратной точки зрения сам поиск может быть организован по-разному: последовательно по разрядам ключевых полей или параллельно по всем ключам во всем массиве памяти. Второй способ, конечно, более быстрый, но требует соответствующей организации (ключевой части) памяти, которая должна иметь для этого в ключевой части каждого хранимого слова схемы сравнения. Именно поэтому такая память существенно более дорогая, чем оперативная, и используется в основном для решения задач, требующих быстрого поиска в небольших объемах информации.

Одним из частых применений ассоциативной памяти является быстрое преобразование логических (линейных) адресов данных в физические (т.е. адреса ячеек памяти), выполняемое, например, так называемым буфером трансляции адресов. Другой близкой задачей является определение того, имеется ли требуемая информация в верхних уровнях ЗУ или необходима ее подкачка из более медленных ЗУ.

4. По организации носителя различают ЗУ:
– с неподвижным носителем;
– с подвижным носителем.

В первых из них носитель механически неподвижен в процессе чтения и записи информации, что имеет место, например, в оперативных и кэш ЗУ, твердотельных дисках, ЗУ с переносом зарядов и др.

Для ЗУ второй группы чтение и запись информации сопровождаются механическим перемещением носителя, что обычно имеет место в различных ЗУ с магнитной записью, например в жестких и гибких дисках.

Однако, возможны и иные варианты. Например, фирмой IBM разрабатывается ЗУ с механическим перемещением записывающих и считывающих элементов (микроигл) и неподвижным носителем информации (пластиковой пленкой).

5. По возможности смены носителя ЗУ могут быть:
– с постоянным носителем;
– со сменным носителем.

В ЗУ первого вида носитель является частью самого устройства и не может быть извлечен из него в процессе нормального функционирования (оперативные ЗУ, жесткие диски).

В ЗУ второй группы носитель не является собственной частью устройства и может устанавливаться в ЗУ и извлекаться из него в процессе работы (гибкие диски, CD-ROM-дисководы, карты памяти, магнито-оптические диски).

6. По способу подключения к системе ЗУ делятся:
– на внутренние (стационарные);
– внешние (съемные).

В первом случае ЗУ, как правило, является обязательным компонентом вычислительной системы, устанавливается в корпусе системы (например, оперативная память) или интегрируется с другими ее компонентами (например, кэш-память).

Во втором случае устройство подключается к системе дополнительно и представляет собой отдельный блок. Подключение (и отключение) таких ЗУ, в зависимости от особенности их реализации, может производиться как при выключенной системе – так называемое “холодное подключение”, так и в работающей системе – “горячее подключение”.

Последний вариант в серверных системах предусматривают и для стационарных ЗУ (жестких дисков).

7. По количеству блоков, образующих модуль или ступень памяти, можно различать:
– одноблочные ЗУ;
– многоблочные ЗУ.

Такое разделение может представлять интерес в том случае, когда в многоблочное ЗУ входят блоки (или банки памяти), допускающие возможность параллельной работы. В этом случае за счет одновременной работы блоков можно повысить общую производительность модуля (ступени) ЗУ, иначе называемую его пропускной способностью и измеряемую количеством информации, которое модуль может записать или считать в единицу времени.

Но возможность одновременной работы блоков еще не означает, что они именно так и будут работать. Чтобы это произошло, необходимо обращения системы к памяти более или менее равномерно распределять по различным блокам. Достичь этого можно различными способами, например запустить параллельные задачи или процессы (threads), работающие с разными блоками, либо разместить информацию, относящуюся к одному процессу, в разных блоках.

Однако, поскольку параллельные процессы в действительности выполняются параллельно только в многопроцессорных системах (в крайнем случае, в гиперпоточных архитектурах), то часто используют второй путь, прибегая к так называемому чередованию (interleave) адресов между блоками. Т.е. последовательные адреса или группы адресов адресного пространства назначают в различные блоки памяти.

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *