Иерархическая модель данных организует данные в виде чего
IT-блог о веб-технологиях, серверах, протоколах, базах данных, СУБД, SQL, компьютерных сетях, языках программирования и создание сайтов.
Иерархическая база данных. Иерархическая модель данных
Здравствуйте, уважаемые посетители моего скромного блога для начинающих вебразработчиков и web мастеров ZametkiNaPolyah.ru. Продолжаем рубрику Заметки о MySQL, в которой уже были публикации: Нормальные формы и транзитивная зависимость, избыточность данных в базе данных, типы и виды баз данных, настройка MySQL сервера и файл my.ini, MySQL сервер, установка и настройка, Архитектура СУБД и архитектура баз данных, Сетевая база данных, сетевая модель данных. Я продолжаю рассматривать различные модели данных, и сегодня мы поговорим про иерархическую модель данных или иначе – иерархическую базу данных.
Стоит сказать, что иерархическая база данных является частным случаем сетевой модели данных, о которой мы говорили в предыдущей публикации. Но дело все в том, что и иерархическая модель данных, и сетевые базы данных являются мало эффективными, и постепенно от их использования отказываются. Иерархические и сетевые СУБД остались только в некоторых крупных фирмах, которые наполняли такие базы годами. И сейчас основной проблемой для таких фирм является проблема совместимости иерархических и сетевых баз данных с реляционными базами данных. Ну а сегодня мы просто поговорим про иерархическую базу данных.
Иерархическая модель данных
Иерархическая модель данных является частным случаем сетевой модели данных, структура иерархической базы данных немного проще сетевой и, соответственно, иерархические базы данных даже менее эффективны, чем сетевые. Иерархическая модель данных, как и сетевые БД опирается на теорию графов.
Иерархическая база данных. Иерархическая модель данных.
В основе иерархической модели данных лежит один главный элемент (главный узел), с которого все и начинается, такой элемент называет корневым элементом, в теории графов это называется корнем дерева. Вообще, по сути, что сетевая база данных, что иерархическая база данных имеет древовидную структуру. Все элементы или узлы, которые находятся ниже корневого узла иерархической модели, являются потомками корня. Стоит сказать, что и иерархическая база данных, и сетевая база данных оптимизированы на чтение информации из БД, но не на запись информации в базу данных, эта особенность обусловлена самой моделью данных.
Узлы дерева, которые находятся на одном уровне, обычно называются братьями. Узлы, которые находятся ниже какого-то определенного уровня, являются дочерними узлами по отношению к нему. Иерархическую модель данных можно сравнить с файловой системой компьютера. Компьютер умеет очень быстро работать с отдельными файлами: удалять конкретный файл, редактировать файл, копировать или перемещать файл. Но операция проверки компьютера антивирусом может происходить достаточно длительное время.
Точно такие же особенности присуще иерархической СУБД, то есть базы данных, имеющие иерархическую структуру, умеют очень быстро находить и выбирать информацию и отдавать ее пользователю. Но структура иерархической модели данных не позволяет столь же быстро перебирать информацию. Ну, это видно из рисунка, представленного выше. Допустим, что нам необходимо найти все записи, содержащие слово «сотрудник». Как будет поступать иерархическая СУБД в этом случае? А поступать она будет следующим образом: свой поиск она начнет с корневого элемента иерархической модели данных, проверив его, она начнет проверять его связи, если связей будет несколько, то она пойдет проверять в крайний левый дочерний элемент, расположенный на уровень ниже.
Затем иерархическая СУБД проверит содержимое этого элемента и его связи, если связей опять будет несколько, то она отправится опять-таки в крайний левый дочерний элемент, чтобы проверить его содержимое, проверив его содержимое она увидит, что у этого узла нет дочерних элементов и вернется в родительский узел этого узла, чтобы проверить, есть ли у него еще дочерние элементы. И так постепенно, узел за узлом, спуская и поднимаясь по иерархии узлов СУБД переберет все узлы и выдаст нам все записи, в которых есть слово «сотрудник». Ну, думаю, что с иерархической моделью данных мы более-менее разобрались (если не разобрались, то пишите в комментарии), можно приступить к рассмотрению структуры иерархической базы данных.
Структура иерархической базы данных
Самые первые в мире СУБД использовали иерархическую модель данных, иерархические базы данных появились даже раньше, чем сетевая модель хранения данных. Поэтому структура иерархической базы данных немного проще, чем структура сетевой БД. И так, основными информационными единицами иерархической модели данных являются сегмент и поле. Поле данных является наименьшей неделимой информационной единицей иерархической базы данных, доступной пользователю. У сегмента данных можно определить его тип и экземпляр сегмента.
Иерархическая база данных. Иерархическая модель данных.
Экземпляр сегмента образуется из конкретных значений полей данных. Тип сегмента – это именованная совокупность всех типов полей данных, входящих в данный сегмент. Если ориентироваться по рисунку выше, то тип сегмента – это родительский элемент и все его дочерние элементы. Как я уже говорил: иерархическая модель данных базируется на теории графов, но если структура сетевой БД описывается ориентированным графом (графом со стрелочками), то структура иерархической базы данных описывается неориентированным графом. Характерной особенностью структуры иерархической модели данных является то, что у любого потомка или дочернего элемента может быть только один предок или родительский элемент.
Каждый узел иерархического дерева или каждый элемент иерархической базы данных является сегментом данных. Линии, соединяющие сегменты – это связи между информационными объектами иерархической базы данных. Рисунок должен внести дополнительную ясность:
На концептуальном уровне иерархическая база данных является частным случаем сетевой модели данных.
Преобразование концептуальной модели в иерархическую модель данных
Преобразование концептуальной модели в иерархическую модель данных происходит аналогично преобразованию в сетевую модель данных, но существую некоторые тонкости, о которых мы и поговорим. Эти тонкости связаны с тем, что структура иерархической базы данных должна быть представлена в виде дерева, то есть данные иерархической модели должны быть организованы в виде дерева.
Как вы помните: дуги, соединяющие узлы между собой, – это связи. Связи бывают один к одному и один ко многим. Преобразование связей один ко многим происходит автоматически в том случае, если потомок иерархического дерева имеет только одного предка. Происходит это следующим образом: Каждый объект с его атрибутами, участвующий в такой связи, становится логическим сегментом. Между двумя логическими сегментами устанавливается связь типа «один ко многим». Сегмент со стороны «много» становится потомком, а сегмент со стороны «один» становится предком. Согласитесь, что преобразование в иерархическую модель данных похоже на преобразование в сетевую модель.
Ситуация значительно усложняется, если потомок в связи имеет не одного, а двух и более предков. Так как подобное положение является невозможным для иерархической модели, то отражаемая структура данных нуждается в преобразованиях, которые сводятся к замене одного дерева, например, двумя (если имеется два предка). В результате такого преобразования в базе данных появляется избыточность, так как единственно возможный выход из этой ситуации — дублирование данных.
Управление иерархическими данными
У иерархической модели данных существует два средства управления данными: языковые средства описания данных (ЯОД) и языковые средства манипулирования данными (ЯМД). Физическая структура иерархической базы данных описывает: логическую структуру иерархической модели данных и саму структуру хранения базы данных.
При этом способ доступа устанавливает способ организации взаимосвязи физических записей. Определены следующие способы доступа:
Помимо того, что обязательно должно быть задано имя иерархической базы данных и способа доступа к каждому элементу иерархической модели данных, описание иерархической БД должно содержать определение типов каждого сегмента данных, входящих в базу данных, в соответствие с выстроенной иерархией. Описание типов сегмента следует начинать с корня иерархической модели. Особенностью иерархических баз данных является то, что каждая физическая база данных может содержать только один корень, но в одной иерархической системе может находиться несколько физических баз данных.
Среди операторов манипулирования данными для иерархической базы данных можно выделить операторы поиска данных, операторы поиска данных с возможностью модификации, операторы модификации данных. Набор операций манипулирования данными в иерархической модели данных не так уж обширен, но этого набора вполне достаточно для управления и поддержания иерархических баз данных. Примеры типичных операторов поиска данных:
Примеры типичных операторов поиска данных с возможностью модификации:
Примеры типичных операторов модификации иерархически организованных данных, которые выполняются после выполнения одного из операторов второй группы (поиска данных с возможностью модификации):
Информационные системы с базами данных
Обзор основных моделей данных
Иерархическая модель
Деревом в информатике называют совокупность корневого элемента и множества подчиненных ему элементов, в которой отношения между элементами носят подчиненный вертикальный характер. Горизонтальные связи в такой системе отношений не допускаются.
Между исходным узлом и порожденными узлами по условию модели существует связь “один-ко-многим” (или “многие-к-одному”).
Иерархия должна удовлетворять следующим условиям:
К основным недостаткам иерархической модели можно отнести:
Пример. Пусть требуется построить иерархическую модель о преподавателях, студентах и дисциплинах, которые преподаватели преподают, а студенты изучают.
Предположим, что каждый преподаватель может читать несколько дисциплин, а каждый студент также может изучать несколько дисциплин.
Один из возможных вариантов построения иерархической модели может быть таковым. Корневым узлом является студент (Номер студента, ФИО, Номер группы). Для каждого студента при данном представлении имеется экземпляр корневого узла. Преподаватель и дисциплина объединяются в один порожденный узел (Табельный номер преподавателя, ФИО, Ученое звание, Кафедра, Дисциплина, Дата экзамена, Оценка, Зачет).
При такой организации данных достаточно легко получать ответы на запросы типа “выдать информацию о сдаче экзаменов студентами по различным дисциплинам”. Однако при ответе на вопрос, какие преподаватели принимают экзамены по ВТ, необходимо просмотреть все записи порожденных узлов для каждого корневого узла. Для этого вопроса более подходит модель, в которой корневым узлом является преподаватель (Табельный номер преподавателя, ФИО, ученое звание, кафедра), а порожденным является студент (номер студента, ФИО, номер группы, дисциплина, дата сдачи, оценка, зачет).
При удалении исходного узла автоматически удаляются экземпляры порожденных узлов. Так, для второго варианта представления модели удаления сведения о преподавателе (уволился) удаляются все сведения о студентах, у него обучавшихся, а следовательно, теряется информация, необходимая для оценки качества обучения студентов.
Основной единицей обработки здесь является запись, к которой применимы операции ЗАПОМНИТЬ, МОДИФИЦИРОВАТЬ, УДАЛИТЬ, ИЗВЛЕЧЬ, НАЙТИ. В операциях создания и уничтожения связей для этой модели нет необходимости потому, что все связи предопределены заранее древовидной структурой отношений. Операция “найти” сводится к одной из трех процедур обхода дерева.
Основные виды баз данных и их модели
Модели баз данных — иерархическая база данных
Иерархическая модель базы данных подразумевает, что элементы организованы в структуры, связанные между собой иерархическими или древовидными связями. Родительский элемент может иметь несколько дочерних элементов. Но у дочернего элемента может быть только один предок.
« Система управления информацией » ( Information Management System ) компании IMB — пример иерархической СУБД.
Иерархическая база данных — пример
Будем считать, что в рамках данной статьи примером иерархической базы данных является организация, хранящая информацию о своём работнике: имя, номер сотрудника, отдел и зарплату. Организация также может хранить информацию о его детях, их имена и даты рождения.
Данные о сотруднике и его детях формируют иерархическую структуру, где информация о сотруднике – это родительский элемент, а информация о детях — дочерний элемент. Если у сотрудника три ребёнка, то с родительским элементом будут связаны три дочерних. Иерархическая база данных подразумевает, что отношение « родитель-потомок » — это отношение « один ко многим ». То есть у дочернего элемента не может быть больше одного предка.
Иерархические БД были популярны, начиная с конца 1960-х годов, когда компания IBM представила свою СУБД «Система управления информацией. Иерархическая схема состоит из типов записей и типов « родитель-потомок »:
Сетевая модель базы данных
Сетевая модель базы данных подразумевает, что у родительского элемента может быть несколько потомков, а у дочернего элемента — несколько предков. Записи в такой модели связаны списками с указателями. IDMS (« Интегрированная система управления данными ») от компании Computer Associates international Inc. — пример сетевой СУБД.
Иерархическая модель данных структурирует данные в виде древа записей, где есть один родительский элемент и несколько дочерних. Сетевая модель позволяет иметь несколько предков и потомков, формирующих решётчатую структуру.
Популярность сетевой модели совпала с популярностью иерархической модели. Некоторые данные намного естественнее моделировать с несколькими предками для одного дочернего элемента. Сетевая модель как раз и позволяла моделировать отношения «многие ко многим». Её стандарты были формально определены в 1971 году на конференции по языкам систем обработки данных ( CODASYL ).
Основной элемент сетевой модели данных — набор, который состоит из типа « запись-владелец », имени набора и типа « запись-член ». Запись подчинённого уровня (« запись-член ») может выполнять свою роль в нескольких наборах. Соответственно, поддерживается концепция нескольких родительских элементов.
Известные сетевые базы данных:
Реляционная модель базы данных
« В реляционной модели, как объекты, так и их отношения представлены только таблицами, и ничем более ».
РСУБД — реляционная система управления базами данных, основанная на реляционной модели Э. Ф. Кодда. Она позволяет определять структурные аспекты данных, обработки отношений и их целостности. В такой базе информационное наполнение и отношения внутри него представлены в виде таблиц — наборов записей с общими полями.
Реляционные таблицы обладают следующими свойствами:
Некоторые поля могут быть определены как ключевые. Это значит, что для ускорения поиска конкретных значений будет использоваться индексация. Когда поля двух различных таблиц получают данные из одного набора, можно использовать оператор JOIN для выбора связанных записей двух таблиц, сопоставив значения полей.
Часто у полей будет одно и то же имя в обеих таблицах. Например, таблица « Заказы » может содержать пары « ID-покупателя » и « код-товара ». А в таблице « Товар » могут быть пары « код-товара » и « цена ». Поэтому чтобы рассчитать чек для определённого покупателя, необходимо суммировать цену всех купленных им товаров, использовав JOIN в полях « код-товара » этих двух таблиц. Такие действия можно расширить до объединения нескольких полей в нескольких таблицах.
Поскольку отношения здесь определяются только временем поиска, реляционные базы данных классифицируются как динамические системы.
Сравниваем три модели баз данных
Первая, иерархическая модель данных, имеет древовидную структуру (« родитель-потомок »), и поддерживает только отношения типа « один к одному » или « один ко многим ». Эта модель позволяет быстро получать данные, но не отличается гибкостью. Иногда роль элемента ( родителя или потомка ) неясна и не подходит для иерархической модели.
Третья модель — реляционная — более гибкая, чем иерархическая и проще для управления, чем сетевая. Реляционная модель сегодня используется чаще всего.
Объект в реляционной модели баз данных определяется как позиция информации, хранимой в базе данных. Объект может быть осязаемым или неосязаемым. Примером осязаемого объекта может быть сотрудник организации, а примером неосязаемой сущности — учётная запись покупателя. Объекты определяются атрибутами — информационным отображением свойств объекта. Эти атрибуты также известны как столбцы, а группа столбцов — как ряд. Ряд также можно определить как экземпляр объекта.
Объекты связываются отношениями, основные типы которых можно определить следующим образом:
«Один к одному»
У каждого менеджера может быть только один отдел, и наоборот.
«Один ко многим»
Каждый сотрудник может быть только в одном отделе, но в самом отделе может быть больше одного сотрудника.
«Многие ко многим»
Сотрудник может участвовать в нескольких проектах, и каждый проект может объединять несколько сотрудников.
В реляционной модели объекты и их отношения представлены двухмерным массивом или таблицей.
Каждая таблица представляет объект.
Каждая таблица состоит из рядов и столбцов.
Отношения между объектами представлены столбцами.
Каждый столбец представляет атрибут объекта.
Значения столбцов выбираются из области или набора всех возможных значений.
Столбцы, которые используются для связи объектов, называются ключевыми. Есть два типа ключей — первичные и внешние.
Первичные служат для однозначного определения объекта. Внешний ключ — это первичный ключ одного объекта, существующий как атрибут в другой таблице.
Преимущества реляционной модели данных:
Другие модели баз данных (ООСУБД)
В последнее время на рынке СУБД появились продукты, представленные объектными и объектно-ориентированной моделью данных, такие как Gem Stone и Versant ОСУБД. Также производятся исследования в области многомерных и логических моделей данных.
Особенности объектно-ориентированных систем управления базами данных (ООСУБД):
А также поддержку классов объектов и наследование свойств и методов классов подклассами и их объектами.
На данный момент не существует общепринятого стандарта ООСУБД. Считается, что подобные модели данных находится на ранней стадии развития.
Пожалуйста, оставляйте ваши отзывы по текущей теме статьи. За комментарии, отклики, дизлайки, лайки, подписки низкий вам поклон!
Пожалуйста, оставьте ваши комментарии по текущей теме материала. Мы очень благодарим вас за ваши комментарии, лайки, отклики, подписки, дизлайки!
Основные понятия иерархической модели базы данных
Иерархическая модель базы данных — что это такое в информатике
Иерархическая модель базы данных — это древовидная структура, состоящая из данных или объектов разных уровней.
Преимуществами модели являются:
Среди несовершенств выделяют:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Работа с иерархическими базами данных требует значительных ресурсов основной и дисковой памяти вычислительной машины. А это заметно понижает скорость считывания параметров, обработки информации.
Основные понятия, принцип построения
Между объектами иерархической базы присутствуют связи. Каждый из них может включать в себя объекты низшего уровня, быть зависимым от стоящего выше.
Если из двух объектов один расположен ближе к корню, его называют предком. Если дальше — потомком. Потомок всегда имеет только одного предка. А у предка может быть несколько потомков. При этом потомки одного уровня, имеющие единого предка, именуются близнецами или братьями.
Структурная часть
Основными элементами, информационными единицами выступают:
Экземпляр — это образование из определенных значений полей данных. Тип — поименованная совокупность составляющих сегмент типов полей.
Иерархическая модель основана на графовой форме построения: вершине графа соответствует сегмент или тип сегмента, дугам — связи «предок-потомок». Модель представляет собой связный неориентированный граф объединяющей сегменты древовидной структуры. База данных состоит из строго упорядоченного набора деревьев.
Управляющая часть
Для рассматриваемой модели разработаны языковые средства описания данных и манипулирования ими. База описывается набором операторов, определяющих структуру хранения и логику построения. При этом вариант создания связей между физическими записями определяется способом доступа, который может быть:
Описание должно содержать имя БД, способ доступа, уточнение типа сегмента в соответствии с иерархией.
Каждая база имеет один корневой сегмент. А система может включать несколько физических баз.
Операций манипулирования данными в рассматриваемой модели немного. Это поиск данных, их модификация и поиск с возможностью модификации. Но, несмотря на сравнительно небольшой набор, его вполне достаточно для корректного и эффективного управления.
Характерные особенности, какие операции можно производить
В качестве примера операций по поиску данных можно привести такие задачи, как:
Типичные операторы модификации:
Примеры поиска данных с возможностью модификации:
Особенной характеристикой иерархической базы данных является то, что она оптимизирована на чтение, а не запись. Система быстро производит поиск, выбор и представление информации пользователю, но не позволяет оперативно обновлять и заменять ее.
В сравнении с базами, построенными на основе цикла, иерархическая структура более функциональна: одна циклическая база хранит только один неизменный набор данных.
Применение иерархической структуры данных на практике
Самым простым практическим применением структуры является традиционная файловая система ОС Windows. Зайдя в знакомый всем Проводник, мы попадаем в корень и видим крупные структурные единицы: «Этот компьютер», «Сеть» и другие. Продвигаясь в направлении от корня и выбирая одну из единиц, мы переходим к папкам, затем к файлам и находим нужную информацию.
Широко известными иерархическими базами данных считаются:
К этой же категории принадлежит System 2000 от американской частной компании SAS Institute.
Если отойти от информатики, то практическое применение можно обнаружить в биологии, географии, анатомии. По принципу нисходящей ветвящейся структуры организована классификация живых организмов, выстроены объекты гидросферы, отображены разветвления нервов и кровеносных сосудов.
Прямым аналогом, отображающим свойства и основы построения иерархических баз данных, является генеалогическое дерево.
Информационные системы с базами данных
Обзор основных моделей данных
Иерархическая модель
Деревом в информатике называют совокупность корневого элемента и множества подчиненных ему элементов, в которой отношения между элементами носят подчиненный вертикальный характер. Горизонтальные связи в такой системе отношений не допускаются.
Между исходным узлом и порожденными узлами по условию модели существует связь “один-ко-многим” (или “многие-к-одному”).
Иерархия должна удовлетворять следующим условиям:
К основным недостаткам иерархической модели можно отнести:
Пример. Пусть требуется построить иерархическую модель о преподавателях, студентах и дисциплинах, которые преподаватели преподают, а студенты изучают.
Предположим, что каждый преподаватель может читать несколько дисциплин, а каждый студент также может изучать несколько дисциплин.
Один из возможных вариантов построения иерархической модели может быть таковым. Корневым узлом является студент (Номер студента, ФИО, Номер группы). Для каждого студента при данном представлении имеется экземпляр корневого узла. Преподаватель и дисциплина объединяются в один порожденный узел (Табельный номер преподавателя, ФИО, Ученое звание, Кафедра, Дисциплина, Дата экзамена, Оценка, Зачет).
При такой организации данных достаточно легко получать ответы на запросы типа “выдать информацию о сдаче экзаменов студентами по различным дисциплинам”. Однако при ответе на вопрос, какие преподаватели принимают экзамены по ВТ, необходимо просмотреть все записи порожденных узлов для каждого корневого узла. Для этого вопроса более подходит модель, в которой корневым узлом является преподаватель (Табельный номер преподавателя, ФИО, ученое звание, кафедра), а порожденным является студент (номер студента, ФИО, номер группы, дисциплина, дата сдачи, оценка, зачет).
При удалении исходного узла автоматически удаляются экземпляры порожденных узлов. Так, для второго варианта представления модели удаления сведения о преподавателе (уволился) удаляются все сведения о студентах, у него обучавшихся, а следовательно, теряется информация, необходимая для оценки качества обучения студентов.
Основной единицей обработки здесь является запись, к которой применимы операции ЗАПОМНИТЬ, МОДИФИЦИРОВАТЬ, УДАЛИТЬ, ИЗВЛЕЧЬ, НАЙТИ. В операциях создания и уничтожения связей для этой модели нет необходимости потому, что все связи предопределены заранее древовидной структурой отношений. Операция “найти” сводится к одной из трех процедур обхода дерева.
