Икс в квадрате разделить на 3 равно 3 чему равен икс
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Решение квадратного уравнения.
С помощью этой математической программы вы можете решить квадратное уравнение.
Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).
Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.
В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.
Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)
Немного теории.
Квадратное уравнение и его корни. Неполные квадратные уравнения
Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.
В каждом из уравнений вида ax 2 +bx+c=0, где \( a \neq 0 \), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.
Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.
Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
\( x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)
Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \( c \neq 0 \);
2) ax 2 +bx=0, где \( b \neq 0 \);
3) ax 2 =0.
Рассмотрим решение уравнений каждого из этих видов.
Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \( b \neq 0 \) всегда имеет два корня.
Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.
Формула корней квадратного уравнения
Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.
Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.
Решим квадратное уравнение ax 2 +bx+c=0
Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\( x^2+\fracx +\frac
Преобразуем это уравнение, выделив квадрат двучлена:
\( x^2+2x \cdot \frac<2a>+\left( \frac<2a>\right)^2- \left( \frac<2a>\right)^2 + \frac
Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
\( D = b^2-4ac \)
Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \( x=-\frac <2a>\).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D
Теорема Виета
Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\( \left\< \begin
Онлайн калькулятор квадратных уравнений
Калькулятор решения квадратных уравнений позволит решить полное или неполное квадратное уравнение, найти корни и дискриминант квадратного уравнения по известным коэффициентам.
Наш калькулятор вычисляет квадратные уравнения с помощью формулы дискриминанта. Если один или несколько коэффициентов уравнения равны нулю, могут применяться более простые методы. Калькулятор проводит анализ квадратного уравнения и выбирает самый подходящий способ решения. Вы можете решить квадратное уравнение бесплатно, используя удобную панель калькулятора. При необходимости вы можете посмотреть обучающее видео по использованию нашего решателя.
Добро пожаловать на сайт Pocket Teacher
Наш искусственный интеллект решает сложные математические задания за секунды
Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!
начать
Квадратное уравнение
Что такое квадратное уравнение и как его решать
Квадратное уравнение имеет вид: a∙x 2 + b∙x + c = 0
Значение переменной x считается корнем квадратного уравнения в случае если при ее подстановке данное уравнение обращается в верное равенство.
Значение переменной x считается корнем квадратного уравнения в случае если при ее подстановке данное уравнение обращается в верное равенство. Корней квадратного уравнения может быть несколько, или один. Один корень квадратного уравнения получается когда дискриминант равен нулю. При необходимости, при помощи калькулятора можно посчитать отдельно значение дискриминанта.
В калькулятор в качестве коэффициентов a, b и c можно вводить не только числа и дроби, но и параметры. Коэффициент a при x2 не может равняться нулю, иначе это не будет получаться квадратное уравнение. Смысл квадратного уравнения заключается в том, что в уравнении есть переменная x2, которая и создаёт дополнительные корни. В случае если коэффициент перед x2 будет равен нулю, то получится простое линейное уравнение, которое Вы также сможете решить с помощью нашего калькулятора и которое будет иметь только один корень. Скопируйте или введите самостоятельно в строку решателя квадратное уравнение, которое необходимо решить.
Как пользоваться калькулятором квадратных уравнений?
Наш искусственный интеллект решает сложные математические задания за секунды.
Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Решение показательных уравнений.
Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Немного теории.
Показательная функция, её свойства и график
7) a n > 1, если a > 1, n > 0
Показательная функция обладает следующими свойствами
1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.
2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, \( a \neq 1\), не имеет корней, если \( b \leqslant 0\), и имеет корень при любом b > 0.
3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.
График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х
Показательные уравнения
Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, \( a \neq 1\), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \( a \neq 1\) равны тогда и только тогда, когда равны их показатели.
Уравнения
Решение уравнений онлайн
Если вы это читаете, значит вас интересует вопрос решения уравнений.
Да, наши калькуляторы могут решить все уравнения, которые встречаются в школьном курсе и не только. Но нужно понимать, что большинство уравнений имеют несколько способов решения, а калькулятор выдает лишь только какое-то одно.
Бесспорно все способы решения хороши по-своему, но каждому методу отводится свое место в программе обучения.
Поэтому не стоит злоупотреблять калькуляторами, если ваш школьный учитель или личный репетитор требует решить уравнение одним способом, а вы предоставляете ему альтернативное решение.
Да, это может быть похвально, но опытный педагог сразу поймет, что решение уравнения не ваше.
Калькулятор решения уравнений
Калькулятор уравнений незаменимый помощник. Именно помощник, а не решатель проблем. Всегда старайтесь своими силами решать уравнения, а калькулятор используйте в качестве проверки вашего ответа.
Для грамотного учителя не столько важен конечный ответ, сколько сам ход решения уравнения.
Как вы могли заметить, при решении некоторых уравнений, например, квадратных, калькулятор может выполнить три разных способа решения. Это разложение уравнения на множители, выделение полного квадрата или найти корни уравнения через дискриминант.
Попытайтесь сначала самостоятельно решить заданное уравнение, вспомните чему вас учили на уроке.
Даже если вы ошибетесь в числах, то ничего страшного, ученик имеет право на ошибку, главное правильно мыслить.
С нашим калькулятором уравнений вы с легкостью исправите допущенную в вычислениях ошибку.