Импульс толчок в чем разница
Импульс толчок в чем разница
Импульс и количество движения – одно и то же?
Человек, считающий, что математика способна ответить на любые вопросы, не задумываясь, ответит: «разумеется, одно и то же!».
Но зачем тогда плодить излишние термины в физике, коих и так немало?!
Для количества движения Ньютон дал вполне чёткое и ясное определение:
Количество движения есть мера такового, устанавливаемая пропорционально скорости и массе.
Из этого определения однозначно следует, что количество движения никоим образом не зависит от направления движения тела.
Т.е., говоря современным языком, количество движения – скаляр.
Количество движения является результатом действия движущей силы: mV = F движ * t
Что касается определения понятия «импульс», то в переведённых на русский язык ньютоновских «Началах» этого определения нет, видимо, потому, что как писал сам переводчик (акад. А.Н. Крылов):
Но это определение есть в современной физике, например, в БСЭ:
«Удар» или «толчок» есть результат взаимодействия, как минимум двух соударяющихся тел, значит, он зависит от направления движения тел, а коли так, то он, со всей очевидностью, является векторной величиной.
Количество движения, является характеристикой одного тела, а поскольку в ньютоновском определении нет ни слова о направлении, то, однозначно, количество движения скаляр.
Или, иначе говоря, отождествление импульса и количества движения – непонимание основ механики Ньютона.
Вы можете возразить, что никакой разницы между импульсом и количеством движения нет потому, что движения относительны.
Вот здесь-то и порылось принципиальное отличие механики Ньютона от современной механики, сведённой математиком Эйлером к кинематике.
Если основной целью ньютоновских «Начал» являлось распознание истинных движений от кажущихся, то в современной физике все движения принято считать относительными, а основная цель ньютоновских «Начал» прочно забыта.
Надеюсь, теперь Вам стало понятно фундаментальное различие «количества движения» и «импульса».
Вы можете спросить, ну и что же, собственно, даёт нам понимание этого различия?
Отвечу: понимание сути вещей, которое никакая математика дать не может в принципе.
А понимание сути вещей ведёт нас к пониманию устройства Мира.
Да, современная наука вполне успешно справляется с расчётами движения тел, т.е. даёт точный ответ на вопрос «Как?»
Но кроме вопросов «Как?», есть и вопросы «Почему?»
Например, «Почему геостационарные спутники не падают?»
Отвечает ли на этот вопрос современная физика?
Или, как волны, т.н. ЭМВ, распространяются в вакууме?
Каков механизм тяготения?
Т.е. современная физика столь же далека от понимания устройства Мира, как и во времена мрачного Средневековья.
Импульс — значит толчок
Еще Галилей интересовался проблемой «удивительной силы удара». Он описывает остроумный опыт, при помощи которого он пытался определить «силу удара». Опыт состоял в следующем: к прочному брусу, укрепленному горизонтально на оси подобно коромыслу весов (рис. 39), подвешены с одного конца два ведра, а с другого – груз (камень), уравновешивающий их. Верхнее ведро было наполнено водой, в дне этого ведра было проделано отверстие, закрытое пробкой.
Если вынуть пробку, то вода будет выливаться в нижнее ведро и сила удара струи о дно этого ведра, казалось бы, заставит правую часть коромысла опуститься. Добавка соответствующего груза слева восстановит равновесие, а его масса позволит оценить, какова сила удара струи.
Однако, к удивлению Галилея, опыт показал совершенно иное. Сначала, как только была вынута пробка и вода начала выливаться, опустилась не правая, а левая часть коромысла. И лишь когда струя достигла дна нижнего ведра, равновесие восстановилось и уже больше не нарушалось до конца опыта.
Как же объяснить этот «странный» результат? Разве ошибочно первое предположение Галилея о том, что струя, ударяя о дно нижнего ведра, заставит его опускаться? Для понимания этого довольно сложного вопроса надо знать закон сохранения количества движения, который вместе с законом сохранения энергии относится к величайшим законам природы.
Термин «количество движения» был введен современником Галилея – французским философом и математиком Декартом, но введен далеко не на научном основании, а из метафизических (не основанных на опыте) религиозных идей философа. Неопределенный, туманный термин «количество движения» заменяют сейчас термином «импульс».
В предыдущей беседе мы приводили формулировку второго закона Ньютона в том виде, какой ему дал сам Ньютон: «Изменение количества движения пропорционально движущей силе и происходит по направлению той прямой, по которой эта сила действует».
Ньютон первый ввел в механику понятие массы и, пользуясь им, дал точное определение количества движения как произведения массы тела на его скорость (mv).
Если начальная скорость v0 тела массой m под действием какой-либо силы в течение времени t увеличивается до v1, то изменение количества движения за единицу времени будет:
Это изменение пропорционально приложенной силе F:
F =
Это и есть второй закон Ньютона. Из него следует, что одно и то же изменение количества движения может произойти и при продолжительном действии малой силы, и при кратковременном действии большой силы. Произведение Ft можно рассматривать как меру действия силы. Оно получило название импульс силы. Не смешивайте только импульс силы с самой силой, а также с импульсом. Из приведенной формулы видно, что импульс силы равен не самому количеству движения, а изменению количества движения. Иными словами, импульс силы за время t равен изменению импульса тела за это время. Импульс обозначают обычно буквой p:
В общем случае надо учитывать, что импульс является векторной физической величиной:
Выше мы уже упоминали о двух величайших законах природы: законе сохранения импульса и законе сохранения энергии. Эти законы удобно продемонстрировать на примере удара. Явление удара имеет огромное значение в науке и технике. Рассмотрим это явление внимательнее.
Мы различаем материалы упругие и неупругие. Например, резиновый мячик упругий; это значит, что после прекращения действия деформирующей силы (сжатия или растяжения) он вновь возвращается к первоначальной форме. Наоборот, кусок глины, смятый рукой, к первоначальной форме не возвращается. Резина, сталь, мрамор, кость относятся к упругим материалам. Вы легко убедитесь в упругости стального шарика, уронив его с некоторой высоты на упругую же опору. Если шарик был предварительно закопчен, то на опоре останется след не в виде точки, а в виде достаточно различимого пятнышка, так как при ударе шарик смялся, хотя затем, отскочив, восстановил свою форму. Деформируется и опора. Возникающая при этом упругая сила действует со стороны опоры на шарик и постепенно уменьшает его скорость, сообщая ему ускорение, направленное вверх. При этом направление скорости шарика меняется на противоположное и он взлетает над опорой на ту же высоту, с какой упал (идеальный случай при идеальной упругости соударяющихся тел). Сама опора, как связанная с имеющей огромную массу Землей, практически остается неподвижной.
Последовательные изменения формы шарика и поверхности опоры для разных моментов времени показаны на рисунке 40. Шарик падает с высоты h и в момент приземления (положение на рисунке) имеет скорость , направленную вертикально вниз. В положении B деформация шарика максимальна; в этот момент его скорость равна нулю, а сила F, действующая на шарик со стороны плоскости опоры, максимальна: F = Fmax. Затем сила F начинает уменьшаться, а скорость шарика расти; точка C соответствует моменту, когда значение скорости
. В отличие от состояния A теперь скорость направлена вертикально вверх, вследствие чего шарик взлетает (подскакивает) на высоту h.
Предположим, что упругий шарик, движущийся с некоторой скоростью, сталкивается с неподвижным шариком такой же массы. Действие неподвижного шарика сводится опять к уменьшению скорости первого шарика и остановке его. В то же время первый шарик, действуя на второй, сообщает ему ускорение и увеличивает его скорость до своей первоначальной скорости. Описывая это явление, говорят, что первый шарик передал второму свой импульс. Вы легко можете проверить это на опыте двумя шариками, подвешенными на нитях (рис. 41). Измерить скорость, с которой движутся шарики, конечно, трудно. Но можно воспользоваться известным положением, что скорость, приобретаемая падающим телом, зависит от высоты падения (). Если не считать небольших потерь энергии вследствие неполной упругости шаров, то шар 2 взлетит от соударения с шаром 1 на такую же высоту, с какой упал шар 1. При том шар 1 остановится. Сумма импульсов обоих шаров остается, таким образом, все время постоянной.
Можно доказать, что закон сохранения импульса соблюдается при взаимодействии многих тел. Если на систему тел не действуют внешние тела, то взаимодействие тел внутри такой замкнутой системы не может изменить ее полного импульса. Вы теперь можете «на научной основе» опровергнуть хвастливые россказни барона Мюнхгаузена, уверявшего, что ему удалось вытащить себя из болота за свои собственные волосы.
Закон сохранения импульса и закон сохранения энергии являются основными законами природы. Заметим, однако, что сохранение импульса в механических процессах справедливо всегда и безусловно, в то время как при применении закона сохранения энергии в механике надо быть осторожным (справедливость его требует соблюдения некоторого условия). «Не может быть! – возмущенно воскликнете вы, – закон сохранения энергии справедлив всегда и везде!» А я и не спорю, по читайте дальше. Рассмотрим пример столкновения упругих и неупругих шаров.
Упругий удар. Пусть шар массой 2 кг движется со скоростью 10 м/с к ударяет по второму (неподвижному) шару такой же массы. Как мы уже знаем, после удара первый шар остановится, а второй будет двигаться со скоростью первого шара до столкновения.
Проверим закон сохранения импульса:
Закон сохранения энергии:
Оба закона соблюдены.
Закон сохранения импульса:
Закон соблюдается.
Закон сохранения энергии:
До удара энергия была равна 100 Дж, а после удара 50 Дж! Куда же девалась половина энергии? Вы, наверное, догадались: механическая энергия, равная 50 Дж, превратилась во внутреннюю энергию: после удара молекулы стали двигаться более оживленно – шары нагрелись. Если бы мы могли учесть все виды энергии до и после удара, то убедились бы, что и в случае неупругого удара закон сохранения энергии не нарушается. Закон сохранения энергии справедлив всегда, но надо учитывать возможность превращения энергии из одного вида в другой. В практических случаях применения законов сохранения энергии и импульса это особенно важно. Рассмотрим несколько примеров применения этих законов.
Поковка изделий в кузнечном цехе. Цель поковки – изменить форму изделия при помощи ударов молота. Для наилучшего использования кинетической энергии падающего молота необходимо класть изделие на наковальню большой массы. Такая наковальня получит ничтожно малую скорость, и большая часть энергии при ударе превратится в энергию деформации (форма изделия изменится).
Забивка свай. В этом случае желательно передать большую часть кинетической энергии свае, чтобы она могла совершить работу по преодолению сопротивления грунта и углубиться в грунт. Масса копровой бабы, т. е. груза, который падает на сваю, должна быть больше массы сваи. В соответствии с законом сохранена импульса скорость сваи в этом случае будет больше и свая глубже уйдет в грунт.
«Две лодки движутся по инерции в спокойной воде озера навстречу друг другу параллельным курсом со скоростью v1 = 6 м/с. Когда они поравнялись, то с первой лодки на вторую быстро переложили груз. После этого вторая лодка продолжала двигаться в прежнем направлении, но со скоростью v2 = 4 м/с.
Определить массу M2 второй лодки, если масса M1 первой без груза равна 500 кг, а масса m груза 60 кг. Подсчитать запас энергии лодок и груза до и после перекладывания груза. Объяснить, почему изменился этот запас энергии».
Решение. До встречи импульс первой лодки равен: (M1 + m)v1, а импульс второй лодки: M2v1.
При перекладывании груза из первой лодки во вторую скорость первой лодки не изменяется, так как она испытывает толчок в боковом направлении (отдача), который не может преодолеть сопротивление воды. Скорость же второй лодки меняется, так как переложенный груз должен резко изменить направление своей скорости на противоположное, что можно рассматривать как толчок.
Применяя закон сохранения импульса, пишем:
Энергия уменьшилась на 3500 Дж. Куда же девалась энергия? Потерянная часть механической энергии превратилась во внутреннюю энергию (в теплоту) при выравнивании скоростей груза и второй лодки.
Презентация была опубликована 8 лет назад пользователемlyc9.edu.volgadmin.ru
Похожие презентации
Презентация на тему: » Понятие импульса (толчок) было введено в физику французским ученым Рене Декартом (1596-1650 г.), который назвал эту величину количеством движения. Я принимаю,» — Транскрипт:
2 Понятие импульса (толчок) было введено в физику французским ученым Рене Декартом ( г.), который назвал эту величину количеством движения. Я принимаю, что во вселенной… есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает.
3 Импульс тела – величина равная произведению массы m точечного тела на его скорость. Импульс – величина векторная. Направление импульса совпадает с направлением скорости тела.
4 m1m1 m2m2 Импульс какого тела больше?
8 В инерциальной системе отсчёта изменение импульса тела за время t равно произведению постоянной суммы всех сил, действовавших на тело, на время действия этих сил. Δ p = p к – p 0 изменение импульса за время t
10 Если два, или несколько тел взаимодействуют только между собой, без воздействия внешних сил, то они образуют замкнутую систему.
11 ЗСИ: импульс замкнутой системы тел в инерциальной системе отсчёта не изменяется с течением времени (сохраняется).
12 1. Ввести инерциальную систему отсчёта. 2. Выбрать систему тел. 3. Проверить возможность применимости ЗСИ (сумма всех внешних сил действующих на тела системы равна нулю). 4. Записать ЗСИ 5. Записать выражения для начального и конечного импульса системы. 6. Решение уравнений Анализ решения.
13 Железнодорожный вагон массой 35 т подъезжает к стоящему на том же пути неподвижному вагону массой 28 т и автоматически сцепляется с ним. После сцепки вагоны движутся прямолинейно со скоростью 0,5 м/с. Какова была скорость вагона массой 35 т перед сцепкой?
14 На вагонетку массой 50 кг, катящуюся по горизонтальному пути со скоростью 0,2 м/с, насыпали сверху 200кг щебня. На сколько при этом изменилась (уменьшилась или увеличилась) скорость вагонетки?
15 Из ружья массой 5 кг вылетает пуля массой 5 г со скоростью 600 м\с. Найти скорость отдачи ружья.
16 На неподвижную тележку массой 100 кг прыгает человек массой 50 кг со скоростью 6 м/с. С какой скоростью начнёт двигаться тележка с человеком?
Глава 9. Двигаем объекты: количество движения и импульс
Эта глава посвящена понятиям, которые следует учитывать при изучении движения объектов, а именно с импульсом и моментом импульса. Оба эти понятия играют большую роль в двух разделах механики: кинематике, посвященной изучению движения объектов, и динамике, посвященной изучению взаимодействия объектов. Владея этими понятиями, можно легко описывать поведение объектов при столкновениях: с какой скоростью продолжат движение сталкивающиеся объекты (не хотелось бы, чтобы на их месте были ваш автомобиль или велосипед), в каком направлении продолжит движение теннисный мячик после столкновения с ракеткой, насколько глубоко дротик для игры в дартс вонзится в мишень и т.п. Чтобы получить ответы на эти и многие другие вопросы, нужно очень хорошо представлять себе, что такое импульс и момент импульса. Описанию именно этих понятий и посвящается данная глава.
Изучаем количество движения
В повседневных ситуациях мы привыкли говорить, что тому или иному объекту или событию придают импульс. Рассмотрим процесс передачи импульса более подробно на примере бильярдного кия и шара. Процесс передачи импульса начинается в момент \( t_0 \) первого соприкосновения кия с шаром и заканчивается в момент \( t_1 \) утраты контакта между кием и шаром. В общем зависимость силы воздействия кия на шар от времени имеет сложный характер. Однако доя простоты можно положить, что она линейно возрастает от нулевого значения в момент \( t_0 \) первого соприкосновения, достигает максимального значения в момент наибольшего контакта, а потом снижается до нуля в момент \( t_1 \) утраты контакта между кием и шаром. Эта идеализированная зависимость силы взаимодействия кия и шара от времени графически показана на рис. 9.1.
Время взаимодействия кия и шара очень мало (несколько долей секунды), и зафиксировать характер изменения силы можно только с помощью очень точного оборудования. Обычно физики используют не точные мгновенные значения, а усредненные величины. Например, в данном примере приобретенный шаром импульс \( \mathbf
\) равен произведению средней силы взаимодействия \( \mathbf<\overline
Обратите внимание, что эта формула связывает векторы силы и импульса. Действительно, импульс — это вектор, обладающий некоторой величиной и направлением, совпадающим с направлением силы, например результирующей векторной суммы всех действующих на объект сил.
Из этой формулы ясно, что изменение импульса измеряется в системе СИ в ньютонах в секунду (Н·с), а в системе СГС — в динах-секундах (дин·с).
Получаем импульс
Изменение импульса (т.е. определенного количества движения) объекта означает изменение характера его движения. Причем это изменение зависит от массы и скорости объекта, поскольку импульс равен произведению скорости и массы объекта. Импульс является очень важной физической концепцией, которая используется не только в начальном курсе физики, но и в некоторых очень сложных разделах физики, например в физике элементарных частиц, где компоненты атомов носятся с огромными скоростями. Именно на основании анализа импульсов до и после столкновения элементарных частиц ученые могут делать выводы о поведении субатомного мира.
Общая идея импульса понятна даже тем, кому незнакомо это понятие. Не так уж легко остановить тележку, которая катится по склону горы. Дело в том, что тележка массивна и обладает большой скоростью. Еще труднее остановить огромный нефтяной танкер. Порой для полной остановки крупного танкера требуется около 30 км тормозного пути! И все это из-за огромного импульса, которым он обладает.
Чем больше масса движущегося объекта (представьте себе огромный танкер) и чем больше скорость объекта (представьте себе быстро плывущий танкер), тем больше импульс объекта.
Итак, импульс объекта равен:
Как видите, импульс — это вектор с определенной величиной и направлением (о векторах подробнее рассказывается в главе 4). Импульс, как и количество движения, измеряется в системе СИ в ньютонах в секунду (Н·с), а в системе СГС — в динах-секундах (дин·с).
Связываем работу силы и изменение импульса
Придать объекту импульс так же просто, как ударить клюшкой для гольфа по мячу. Достаточно применить элементарные алгебраические преобразования ко второму закону Ньютона и мы получим связь между работой силы и изменением импульса. С чего начать? Начнем со связи силы и скорости. Как известно, ускорение определяется следующей формулой:
Теперь, чтобы получить связь силы с импульсом объекта, умножим эту формулу на промежуток времени \( \Delta
Посмотрите повнимательнее на правую часть формулы \( m(v_1-v_0) \) . Поскольку импульс объекта с массой \( m \) равен \( p=mv \) , то эта часть формулы выражает разницу конечного \( p_1=mv_1 \) и начального \( p_0=mv_0 \) импульса, т.е.:
Следовательно, в итоге получим:
Итак, справа имеем силу, умноженную на промежуток времени ее действия, т.е. \( F\Delta
\) . Убирая промежуточные выкладки, получим искомую формулу связи силы и изменения импульса объекта:
Произведение силы на время ее действия называется импульсом силы за то же время. (Его не следует путать с понятием импульс объекта \( p=mv \) . Применение обоих этих понятий часто приводит к путанице, и потому понятие импульс силы используется довольно редко. — Примеч. ред.)
Пример: вычисляем импульс бильярдного шара
Пусть шар имеет массу 200 г (т.е. 0,2 кг). Допустим, что путем тщательных замеров и вычислений стало известно, что для попадания в лузу с отскоком от боковой стенки шару нужно приобрести скорость 20 м/с. Какую силу нужно приложить к кию для выполнения этой задачи?
Итак, в начальный момент времени шар покоится, т.е. начальная скорость \( v_0 \) = 0, а его конечная скорость \( v_1 \) должна быть равна 20 м/с. Вычислим необходимое изменение импульса по уже известной нам формуле:
Подставив значения получим:
Итак, необходимо изменить импульс шара на 4 кг·м/с. Вычислим, какую силу нужно для этого приложить за промежуток времени 5 мс по известной формуле:
Подставив значения, получим:
Итак, чтобы загнать бильярдный шар в лузу с отскоком от боковой стенки нужно прилагать к кию силу 800 Н в течение 5 мс.
Пример: определяем импульс капель дождя
После триумфальной демонстрации своих физических познаний в бильярдной попробуем использовать их в более привычной ситуации. Предположим, что на обратном пути домой внезапно начался дождь. Не беда, ведь под рукой есть зонт. Допустим, что на раскрытый зонт ежесекундно со средней скоростью около 10 м/с падает приблизительно 100 г капель воды. Вопрос: с какой силой нужно удерживать зонт массой 1 кг, чтобы удержать его под таким дождем?
Чтобы удержать зонт даже в отсутствие дождя, потребуется сила, равная весу зонта, то есть:
А как же подсчитать воздействие капель дождя? Предположим, что капли после падения на зонт почти мгновенно стекают по его почти горизонтальной поверхности. Даже в этом случае нам нужно учесть не только их массу, но и уменьшение скорости из-за встречи с зонтом. Действительно, летящие капли имеют начальную скорость 10 м/с, а после падения на зонт останавливаются, т.е. приобретают нулевую конечную скорость. Итак, имеем изменение импульса капель дождя, вызванное взаимодействием с зонтом. Попробуем оценить это изменение с помощью известной формулы:
Подставляя значения, получим:
Такое изменение импульса капель происходит ежесекундно. Свяжем теперь его с известной нам формулой:
Подставив значения, получим:
Итак, помимо силы 9,8 Н для удержания сухого зонта потребуется еще дополнительная сила 1 Н для компенсации торможения капель, т.е. всего потребуется сила 10,8 Н.
Наибольшую трудность при вычислениях изменения импульса под действием силы вызывает оценка времени действия этой силы. Поэтому при решении задач, связанных с изменением импульса, при столкновениях объектов обычно стремятся использовать другие параметры процесса, например скорость до и после столкновения, избегая оценок трудновычислимых параметров.
Изучаем закон сохранения импульса
Согласно этому закону, в изолированной системе без внешних сил общий импульс всех объектов системы до столкновений между ними равен общему импульсу всех объектов системы после столкновений между ними.
Если для анализа импульсов взаимодействующих объектов использовать приведенные выше формулировки с указанием силы и времени ее действия, то на это придется затратить чрезвычайно много усилий. Закон сохранения импульса позволяет избежать этих сложностей. Дело в том, что, применяя этот закон, можно полностью исключить из рассмотрения силы и время их действия.
Допустим, что два беспечных пилота космических кораблей А и Б не смогли избежать лобового столкновения своих машин. Во время столкновения корабль Б воздействовал на корабль А со средней силой \( F_ <АБ>\) . Согласно известной формуле о связи между силой и изменением импульса, получим для корабля А:
где \( m_ <А>\) — это масса корабля A, \( v_ <А1>\) — скорость корабля А после столкновения и \( v_ <А0>\) — скорость корабля А до столкновения.
где \( m_ <Б>\) — это масса корабля Б, \( v_ <Б1>\) — скорость корабля Б после столкновения и \( v_ <Б0>\) — скорость корабля Б до столкновения.
Сложим оба последних равенства и получим следующее уравнение:
Опустим промежуточные выкладки и оставим только крайние левую и правую части этого равенства. Причем в правой части соберем отдельно члены начального и конечного состояний и получим:
Сумма \( m_Av_
Если теперь ввести обозначение \( \sum\!
При работе с изолированной, или замкнутой, системой объектов внешних сил нет. Именно такая ситуация рассматривается в данном примере.
Если два космических корабля столкнутся при отсутствии внешних сил, то согласно третьему закону Ньютона, \( F_<АБ>=-F_ <БА>\) . Иначе говоря, в замкнутой системе имеем:
А это означает, что:
Это равенство означает, что в изолированной системе без внешних сил начальный импульс двух сталкивающихся объектов до их столкновения равняется конечному импульсу после столкновения, что соответствует закону сохранения импульса.
Извлекаем тепло из суммарного импульса.
Всегда ли сохраняется суммарный импульс объектов при их лобовом столкновении и сцеплении? В реальном мире далеко не всегда. Дело в том, что часто при столкновениях объектов они необратимо деформируются и часть их кинетической энергии расходуется на необратимую деформацию и рассеивается в виде тепловой энергии. Однако для точного расчета такого преобразования кинетической энергии в тепловую требуется учесть много других сложных физических процессов. Эти процессы обычно не рассматриваются в начальном курсе физики, а тем более в этом курсе.
Измеряем скорость с помощью закона сохранения импульса
Попробуем применить закон сохранения импульса для расчета некоторых параметров движения. Предположим, что при игре в хоккей игрок А с массой 100 кг решил применить силовой прием против другого неподвижного игрока Б тоже с массой 100 кг (который оказался его братом-близнецом). Для этого игрок А разогнался до скорости 11 м/с, грубо толкнул игрока Б и, схватив его руками, устроил потасовку. С какой скоростью будут двигаться оба сцепившихся руками игрока после столкновения?
Будем считать, что в данном примере мы имеем дело с замкнутой системой (см. предыдущий раздел), поскольку мы пренебрегаем всеми внешними силами, включая силу трения. Хотя в вертикальном направлении на хоккеистов со стороны ледяного катка действует нормальная сила (подробнее о ней см. в главе 6), но она равна по величине весу игроков и противоположна по направлению и в сумме дает нуль.
Итак, рассмотрим горизонтальные проекции импульсов игроков. Согласно закону сохранения импульса, имеем:
Подставим в эту формулу массу и начальную скорость игроков (на самом деле нужно подставить массу \( m_А \) и начальную скорость \( v_ <А0>\) только игрока А, поскольку игрок Б имел нулевую начальную скорость):
Конечный импульс \( p_1 \) должен быть равен произведению общей массы \( m_А+m_Б \) игроков на их конечную скорость \( v_ <АБ1>\) , т.е. получаем:
Из двух последних уравнений получаем:
откуда легко можно выразить конечную скорость \( v_ <АБ1>\) :
Подставляя значения, получим:
Конечная скорость двух игроков равна половине начальной скорости одного игрока. Этого следовало ожидать, ведь масса движущихся объектов увеличилась вдвое, а поскольку импульс сохраняется, то скорость должна уменьшиться во столько же раз.
Измеряем начальную скорость пули с помощью закона сохранения импульса
Закон сохранения импульса очень удобно использовать для определения скорости объекта, если ее нельзя или очень трудно измерить с помощью секундомера. Предположим, что изготовитель пуль хочет знать, какой будет начальная скорость новой пули. Как ему поступить? Для решения этой задачи ему предложили использовать приспособление, показанное на рис. 9.3.
Итак, начальный суммарный импульс пули и мишени равен:
Поскольку пуля застряла в мишени, то конечный суммарный импульс пули и мишени равен:
Если пренебречь потерями энергии на преодоление трения при попадании пули в мишень, то согласно закону сохранения импульса, эти два импульса должны быть равны:
и искомая начальная скорость равна:
Итак, остается только определить конечную скорость \( v_1 \) мишени с застрявшей в ней пулей. Для этого нужно вспомнить закон сохранения энергии, который описывается в главе 8. Ведь после попадания пули мишень отклонится и поднимется на некоторую максимальную высоту \( h \) , на которой ее скорость станет равной нулю. В этой точке ее кинетическая энергия \( \frac<(m+M)v^2_1> <2>\) преобразуется в потенциальную \( (m+M)gh \) . Итак, согласно закону сохранения энергии получим:
Откуда легко вывести формулу для конечной скорости мишени с застрявшей в ней пулей \( v_1 \) :
Подставим эту формулу в прежнее выражение для искомой начальной скорости пули:
Пусть пуля имеет массу 50 г, деревянная мишень — 10 кг, а после попадания пули в нее мишень отклонилась и поднялась на максимальную высоту 0,5 м. Подставляя значения в приведенную выше формулу, получим:
Таким образом, мы определили начальную скорость пули. Изготовитель пуль будет просто в восторге от такого простого и удобного способа.
Упругие и неупругие столкновения
Изучение физики на примере столкновений разных тел — это очень интересное и увлекательное занятие. Во многом это объясняется тем, что многие вычисления значительно упрощаются благодаря закону сохранения импульса (более подробно он рассматривается в предыдущих разделах этой главы). Однако, как мы уже убедились в предыдущих примерах, в некоторых столкновениях одного этого закона недостаточно и нужно применять закон сохранения энергии. Это особенно полезно для анализа столкновений объектов со скоростями, векторы которых направлены не вдоль одной прямой (как в предыдущих примерах), а лежат в одной плоскости.
В реальной жизни такие ситуации происходят сплошь и рядом. Например, при изучении причин дорожно-транспортного происшествия часто требуется проанализировать начальные и конечные скорости столкнувшихся автомобилей. При сортировке вагонов нужно учитывать начальные и конечные скорости сталкивающихся вагонов и составов.
Что происходит в таких столкновениях, если столкнувшиеся объекты не “слипаются” друг с другом? Рассмотрим более общий пример: пусть два бильярдных шара сталкиваются дуг с другом с разными скоростями, направленными друг к другу под произвольным углом. Как определить их величину и направление их скоростей после столкновения? Для этого потребуется не только закон сохранения импульса, но и закон сохранения энергии.
Когда сталкивающиеся объекты отскакивают друг от друга: упругие столкновения
В реальном мире при столкновении тел всегда наблюдаются потери энергии на деформацию и рассеивание тепла. В некоторых случаях эти потери столь малы, что ими можно пренебречь, как, например, при столкновении двух бильярдных шаров. В физике такие столкновения с сохранением кинетической энергии сталкивающихся объектов называют упругими столкновениями. Итак, в упругом столкновении сохраняется общая кинетическая энергия замкнутой системы объектов, т.е. суммарная кинетическая энергия после столкновения равна суммарной кинетической энергии до столкновения.
Когда сталкивающиеся объекты не отскакивают друг от друга: неупругие столкновения
Если во время столкновения объектов какая-то часть энергии тратится на работу каких-то неконсервативных сил (например, на преодоление силы трения, деформацию и т.п.), то кинетическая энергия системы не сохраняется. Она частично преобразуется в другие формы энергии. Такие столкновения в физике называют неупругими столкновениями. Итак, в неупругом столкновении общая кинетическая энергия замкнутой системы объектов не сохраняется, т.е. суммарная кинетическая энергия после столкновения не равна суммарной кинетической энергии до столкновения. Примеры неупругих столкновений можно наблюдать в дорожно-транспортных происшествиях, когда столкнувшиеся машины деформируют друг друга или даже сцепляются и движутся как единое целое.
Совсем не обязательно, чтобы после неупругого столкновения объекты сцеплялись друг с другом. Достаточно, чтобы часть кинетической энергии “утрачивалась”, т.е. переходила в другую форму, например в тепловую энергию. Неупругое столкновение внешне может быть очень похоже на упругое столкновение, например при касательном столкновении двух машин с образованием легких повреждений. На образование этих повреждений необратимо тратится часть кинетической энергии, но машины могут независимо продолжить движение.
Упругие столкновение на прямой
Итак, мы уже выяснили, что при упругом столкновении кинетическая энергия сталкивающихся объектов сохраняется. Проще всего изучать особенности упругого столкновения, когда векторы скоростей находятся на одной прямой. Рассмотрим идеализированный пример столкновения двух машин с совершенно упругими (т.е. недеформирую- щимися) бамперами, которые движутся по прямой.
Упругое столкновение с более тяжелым объектом
Предположим, что вы решили прокатиться на автомобиле А с массой 300 кг и на скорости около 10 м/с столкнулись с внезапно остановившимся перед вами другим автомобилем Б с массой 400 кг. Какими будут скорости обоих автомобилей после их упругого столкновения?
Итак, до столкновения автомобиль А с массой \( m_А \) = 300 кг имел начальную скорость \( v_ <А0>\) = 10 м/с, а автомобиль Б с массой \( m_Б \) = 400 кг — начальную скорость \( v_ <Б0>\) = 0. Если считать систему двух автомобилей замкнутой, то их общий импульс должен сохраняться, то есть:
где \( v_ <А1>\) — это конечная скорость автомобиля А после столкновения, a \( v_ <Б1>\) — это конечная скорость автомобиля Б после столкновения.
Теперь у нас есть два уравнения и две неизвестных величины. С помощью простых алгебраических операций можно легко получить выражения для неизвестных скоростей \( v_ <А1>\) и \( v_ <Б1>\) :
Подставляя значения в обе эти формулы, получим:
Анализируя полученные значения, можно легко восстановить ход событий. Итак, автомобиль А на скорости 10 м/с столкнулся с неподвижным автомобилем Б. После столкновения автомобиль А отскочил назад (об этом свидетельствует отрицательный знак конечной скорости \( v_ <А1>\) ) со скоростью 1,43 м/с, а автомобиль Б начал движение вперед со скоростью 8,57 м/с. Автомобиль А легче автомобиля Б, а что если бы было наоборот?
Упругое столкновение с более легким объектом
Предположим, что в предыдущем примере движущийся автомобиль А тяжелее неподвижного автомобиля Б. Пусть автомобиль А с массой 400 кг на скорости около 10 м/с сталкивается с внезапно остановившимся перед вами другим автомобилем Б с массой 300 кг. Вопрос остается прежним: какими будут скорости обоих автомобилей после их упругого столкновения?
Итак, до столкновения автомобиль А с массой \( m_А \) = 400 кг имеет начальную скорость \( v_ <А0>\) = 10 м/с, а автомобиль Б с массой \( m_Б \) = 300 кг — начальную скорость \( v_ <Б0>\) = 0. Используем уже известные нам формулы скоростей \( v_ <А1>\) и \( v_ <Б1>\) :
Подставим в них новые значения и получим:
Как видите, более тяжелый движущийся автомобиль А после столкновения с более легким автомобилем Б смог продолжить движение в том же направлении, но с меньшей скоростью. Причем часть своего импульса он передал более легкому автомобилю Б.
Упругие столкновения в одной плоскости
Столкновения объектов не всегда происходят по прямой линии. Например, бильярдные шары сталкиваются так, что векторы их скоростей могут быть направлены не вдоль одной прямой, а находится в одной плоскости под произвольным углом друг к другу. В этом случае нужно учитывать не только величину, но и направление скорости. Пусть во время игры в гольф два игрока одновременно (простим им это нарушение правил) ударяют по разным мячам А и Б, мячи упруго сталкиваются и продолжают движение, как показано на рис. 9.4. Какими будут скорости мячей после столкновения?
Попробуем решить эту задачу, учитывая, что мячи имеют одинаковую массу \( m \) = 46 г. Мяч А имеет начальную скорость \( v_ <А0>\) = 1,0 м/с, а мяч Б — начальную скорость \( v_ <Б0>\) = 2,0 м/с. Кроме того, пусть нам известны направления векторов начальных скоростей обоих мячей (см. рис. 9.4).
Для решения задачи нам потребуются закон сохранения импульса и закон сохранения энергии. Поскольку столкновение считается упругим, то кинетическая энергия системы сохраняется, т.е. согласно закону сохранения энергии, имеем:
или в более простой форме:
Если подставить вместо скоростей их компоненты по осям X и Y, то получим:
Так как трение здесь не учитывается, то в процессе столкновения внутренние силы упругого взаимодействия мячей направлены только по вертикальной оси Y. Эти силы не изменяют компоненты импульсов мячей по горизонтальной оси X:
Отсюда следует, что компоненты скоростей мячей по горизонтальной оси X после столкновения тоже не изменяются:
(То есть компоненты скоростей мячей по горизонтальной оси X в результате столкновения не изменились.)
Соотношение, полученное ранее из закона сохранения энергии:
с учетом постоянства компонент скоростей по оси X теперь будет иметь следующий вид:
или (поскольку \( v_ <Б0у>\) = 0);
Согласно закону сохранения импульса, для компонент импульса по вертикальной оси Y имеем \( mv_<А1у>+mv_<Б1у>=mv_<А0у>+mv_ <Б0у>\) или в более простой форме (поскольку \( v_ <Б0у>\) = 0):
Из двух последних равенств нетрудно получить выражения для компонент скоростей по вертикальной оси Y:
где знак “минус” перед значением угла означает, что на рис. 9.4 угол откладывается в направлении против часовой стрелки.
А скорости мячей после столкновения будут равны