Инактивация вируса что это

Инактивация вирусов в биотехнологических процессах

Повышение вирусной безопасности биотерапевтической продукции

Инактивация вируса что это. Смотреть фото Инактивация вируса что это. Смотреть картинку Инактивация вируса что это. Картинка про Инактивация вируса что это. Фото Инактивация вируса что это

Что такое инактивация вирусов?

Разрушение и денатурация вирусов

Инактивация вирусов — первый из двух стандартных этапов повышения безопасности биотерапевтической продукции. Во время инактивации все вирусы в частично очищенной терапевтической суспензии либо намеренно уничтожаются, либо лишаются своих патогенных свойств в течение короткого времени. Для необратимого разрушения и денатурации вируса обычно необходимо изменить окружающую его среду.

Обычно для необратимого разрушения и денатурации структуры вируса в окружающую его среду вносятся изменения — с помощью химических, физических или даже энергетических методов. Удаление вирусов — отдельный процесс, дополняющий инактивацию. Вывод или отделение вируса от белка (белков) или производимого продукта способствует дальнейшему повышению вирусной безопасности.

Почему необходима инактивация вирусов?

Многие биотерапевтические продукты содержат вирусы или подвергаются вирусному загрязнению в ходе производства или обработки. Для нейтрализации патогенности, устранения вирусной нагрузки (количества вируса) и исключения вреда для пациента эти препараты подвергают специальной очистке, включающей два этапа — инактивацию и удаление вирусов. Обычно применение этих процессов по отдельности недостаточно эффективно. Существуют различные методы инактивации и удаления, учитывающие специфические характеристики вируса и вид биотерапевтического продукта. Для расширения спектра уничтожаемых вирусов во многих процессах биотерапевтической обработки применяется сочетание взаимодополняющих методов.

Методы инактивации вирусов

Учет размера, вида и лабильности биотерапевтического средства

Инактивация
Существует несколько методов вирусной инактивации. Наиболее распространенные из них:

Реже используются такие методы инактивации вирусов, как пастеризация, обработка сухим теплом и применение парообразного теплоносителя (например, для продуктов на основе крови или сыворотки).

Удаление вирусов
Осаждение, хроматография и нанофильтрация широко освещены в литературе.

Выбор метода инактивации и удаления вирусов зависит от размера, вида и лабильности биотерапевтического продукта, метода (методов) очистки при производстве, происхождения и титра вирусов. Наряду с вирусной безопасностью важными показателями качества, которые необходимо контролировать в ходе всего процесса, являются структура и действие лекарственного вещества. Эффективность любого метода инактивации (с применением низкого уровня pH или ПАВ) обеспечивается точным контролем одновременно нескольких критических параметров процесса. Такой контроль необходим для всестороннего понимания процесса и его воздействия на лекарственное вещество. Современные рабочие станции химического синтеза поддерживают картирование процессов, стабильную работу в рамках заданных параметров, а также моделирование для переноса и масштабирования метода.

Метод вирусной инактивации с применением низкого уровня pH

Инактивация вируса что это. Смотреть фото Инактивация вируса что это. Смотреть картинку Инактивация вируса что это. Картинка про Инактивация вируса что это. Фото Инактивация вируса что это

На процесс инактивации вирусов с применением низкого уровня pH влияют такие характеристики, как pH, длительность, температура, содержание белка и растворителя или буфера. Необратимая денатурация и эффективное уничтожение многих вирусов возможны при уровне pH 5,0–5,5. В зависимости от объема вирусов, которые подвергаются инактивации и очистке, этого диапазона может оказаться достаточно. Однако для эффективной инактивации ряда вирусов в оболочке необходим уровень pH в диапазоне 3,5–4.

Многие биотерапевтические продукты типа mAb требуют более обширной очистки от различных вирусов. Для них целевым «низким» уровнем pH будет 3,5–4 (рис. A). Однако при длительном воздействии pH в этом диапазоне также может произойти инактивация или повреждение некоторых биотерапевтических продуктов, в частности белков или ферментов — например, белков крови, инсулина и др. (рис. B). При продолжительном воздействии низкого pH на белки и ферменты наблюдается значительное дезамидирование, денатурация и агрегация. По сравнению с другими белками или ферментами иммуноглобулины (включая моноклональные антитела IgG и IgM) обычно менее восприимчивы к pH 3,5–5,5 — хотя эта восприимчивость сохраняется у них в той или иной степени. Инфекционная вирусная нагрузка снижается до эффективного минимума при выдерживании в условиях инактивации в течение достаточно длительного времени. Однако частицы вирусов, органические и другие остатки необходимо будет удалить физическим способом (рис. C).

Для инактивации вирусов в иммуноглобулиновых продуктах типа mAb чаще всего применяется метод с низким уровнем pH, так как он достаточно прост, компактен и, в отличие от ПАВ или растворителей, практически не требует участия оператора и дополнительных шагов по удалению. Однако подходящие и оптимальные условия инактивации зависят от самой молекулы и требуемого спектра удаления вирусов. По этой причине для установления и проверки проектного поля или рабочих границ эффективной вирусной инактивации необходимы исследования молекул. Эти границы и результат процесса инактивации вирусов обычно определяются полным или частичным набором переменных — критическими параметрами процесса. Они влияют на исход вирусной инактивации и, следовательно, на качество лекарственного вещества. Выявление и учет этих факторов положительно скажется на качественных и количественных характеристиках продукта.

Обычно для исследований по вирусной инактивации с применением низкого уровня pH используется раствор иммуноглобулина заданного объема и концентрации, который помещается в емкость — например, лабораторный стакан с магнитной мешалкой. Чаще всего в качестве материала исследования выступают иммуноглобулины, у которых начальный pH близок к физиологическим условиям. Задача исследователей — определить параметры добавления реагентов. Для этого проводится ручное титрование с бюреткой или пипеткой с периодической регистрацией значений pH. После выдерживания в условиях низкого уровня pH с соблюдением других параметров в течение времени, рекомендованного для инактивации целевых вирусов, лекарственное вещество или раствор иммуноглобулина подвергают обратному титрованию. Уровень pH при этом изменяется от низкого до физиологического или слабо-щелочного. Это конечный этап вирусной инактивации с помощью выдерживания при низком уровне pH. Однако в ходе такого исследования с применением титрования при низком уровне pH для анализа в лаборатории и регистрации различных качественных характеристик (например, оценки агрегации или дезамидирования методом эксклюзионной хроматографии по размеру) требуется отбор проб. Хотя опытные ученые выполняют все процедуры с нужной точностью, инактивация вирусов — кропотливый ручной процесс, сопряженный с естественными изменениями и отклонениями, которые затрудняют получение воспроизводимых результатов.

Инактивация вируса что это. Смотреть фото Инактивация вируса что это. Смотреть картинку Инактивация вируса что это. Картинка про Инактивация вируса что это. Фото Инактивация вируса что это

Хотя главной целью изучения вирусной инактивации при низком уровне pH на последующих этапах биотехнологического процесса является определение объема добавляемых реагентов и длительности выдерживания, не менее важно определение кинетики процесса и влияния его комбинированных параметров. В конечном итоге эти характеристики необходимы для разработки надежного и оптимального процесса инактивации. Тем не менее в ходе такой разработки ученые часто не отслеживают температуру — она остается неконтролируемым параметром.

Причиной может быть использование для вирусной инактивации выдерживанием экспериментальных или даже коммерческих систем промышленного типа либо передаточных емкостей, которые регистрируют температуру, но не регулируют ее. Еще один параметр, который часто не учитывается исследователями инактивации при низком уровне pH, которые проводят опыты на ручных платформах с магнитными мешалками, — репрезентативность масштаба, в частности репрезентативность перемешивания. Без сбора данных о такой простой процедуре невозможно подтвердить правильность и стабильность заданных условий исследования.

Инактивация вируса что это. Смотреть фото Инактивация вируса что это. Смотреть картинку Инактивация вируса что это. Картинка про Инактивация вируса что это. Фото Инактивация вируса что это

Характеристика процесса инактивации вирусов при низком уровне pH

Вирусная инактивация с применением низкого уровня pH на последующих этапах обработки создает риск агрегации в продукте с моноклональными антителами. В презентации Хирен Д. Ардешна (Hiren D. Ardeshna) из компании GlaxoSmithKline представлена многофакторная экспериментальная схема, которая позволяет исследовать влияние четырех параметров процесса:

Инактивация вируса что это. Смотреть фото Инактивация вируса что это. Смотреть картинку Инактивация вируса что это. Картинка про Инактивация вируса что это. Фото Инактивация вируса что это

Обработка растворителем/ПАВ для инактивации вирусов

Методы с растворителем или ПАВ чаще всего используются для инактивации вирусов в оболочке. Применяемые реагенты оказывают незначительное влияние на лабильность терапевтических белков или антител, тогда как некоторые методы с применением низкого pH могут вызывать денатурацию или дезамидирование. Многие требования к вирусной инактивации с растворителем или ПАВ аналогичны требованиям к методам с низким уровнем pH — в первую очередь необходимо определить объем добавляемого реагента (в данном случае растворителя или ПАВ) и длительность процесса. Как и в случае с инактивацией при низком pH, конкретные условия зависят от вида иммуноглобулина или лекарственного вещества. По этой причине для установления и проверки проектного поля или рабочих границ эффективной вирусной инактивации с растворителем или ПАВ необходимы исследования молекул. Эти границы и результат процесса инактивации аналогично определяются критическими параметрами процесса. К ним относятся температура, содержание белка, содержание растворителя или ПАВ, время выдерживания в условиях инактивации, а также перемешивание и эффективность гомогенизации растворителя или ПАВ. Выявление и учет этих факторов положительно скажется на качественных и количественных характеристиках продукта.

Хотя в исследованиях вирусной инактивации с применением ПАВ не требуется такого же титрования реагента, как в методах с низким уровнем pH, оценка проектного поля с критически важными переменными остается обязательным условием. Как и в случае с низким pH, определение характеристик инактивации вирусов растворителем или ПАВ обычно полностью осуществляется вручную. Дозирование реагентов и управление экспериментом также зависят от точности действий квалифицированных специалистов, которые одновременно выполняют несколько критически важных заданий. По этой причине исследования вирусной инактивации с применением растворителя или ПАВ также сопряжены с естественными изменениями, отклонениями и трудностями обеспечения воспроизводимости.

При использовании методов инактивации с растворителем или ПАВ по существу необходимо учесть еще один аспект, не свойственный для методов с низким уровнем pH. Все добавленные растворители или ПАВ в обязательном порядке должны быть удалены из лекарственного вещества или раствора иммуноглобулина. Их вывод подтверждается с помощью подходящего метода анализа. Обычно для удаления растворителя или ПАВ используется хроматография или замена буфера путем тангенциальной поточной фильтрации. Цель вывода добавленных реагентов или ПАВ в некотором смысле аналогична цели обратного pH-титрования от низкого pH для инактивации до физиологических или слабо-щелочных показателей. В масштабе буферные или хроматографические методы чаще всего имеют вид непрерывных или полунепрерывных типовых операций, в рамках которых материал направляется из емкости для выдержки через колонку или другую подходящую мембрану для замены растворителя или буфера. При этом при разработке процесса этап инактивации вирусов растворителем или ПАВ чаще всего отделен от последующего очищения или удаления. Такая практика может усложнять обеспечение непрерывности данных или информации.

Вирусная инактивация вакцин

Вирусной инактивации подвергаются различные вакцины, включая токсоидные, на основе рекомбинантного белка, субъединичные и полисахаридные вакцины и даже некоторые вакцины с вирусоподобными частицами. Как указывалось ранее, при выборе метода учитывается характер биотерапевтического продукта и спектр вирусов, которые необходимо эффективно вывести.

Как правило, для обработки живых ослабленных вакцин с вирусными частицами (где биотерапевтический продукт представляет собой вирусную частицу) рекомендуется использовать альтернативные методы или процедуры, предотвращающие внешнее вирусное заражение. Специальные методики для таких продуктов могут включать один или несколько процессов нанофильтрации или хроматографии. Эти этапы необходимы для эффективного уменьшения внешней вирусной нагрузки соответствующих сырьевых материалов. Инактивированные или разрушенные вирусы иногда подвергаются дальнейшей обработке низким уровнем pH или растворителем/ПАВ, так как желаемый иммуностимулирующий эффект продукта может сохраняться и после денатурации или других изменений.

Вирусная инактивация олигонуклеотидных продуктов или молекулярных действующих веществ не считается необходимой. Главная причина заключается в том, что свойства реагентов, условия реакции и методы обработки создают неблагоприятную для вирусов среду. В настоящее время для очистки, концентрирования и составления рецептур многих разрабатываемых и производимых олигонуклеотидных продуктов используются различные методы хроматографического выделения или замена буфера путем тангенциальной поточной фильтрации.

Технология инактивации вирусов

Точные эксперименты с большим объемом данных

С учетом потребностей в непрерывности информации и ведении электронных записей рабочие станции химического синтеза повышают эффективность процессов инактивации вирусов не только с точки зрения планирования и проведения экспериментов, но и благодаря сбору данных и обеспечению их целостности. Независимая процессно-аналитическая технология (PAT) объединяет множество задач и рабочих процессов, включая вирусную инактивацию с заменой буфера, и способствует более точному моделированию крупномасштабных процедур.

Посмотрите онлайн-демонстрацию оборудования в любое удобное время.

Источник

Инактивация вируса что это

Д.Н. Носик, Н.Н. Носик, П.Г. Дерябин, Д.К. Львов ФГБУ «НИИ вирусологии им. Д.И. Ивановского» Минздравсоцразвития России, Москва

Существуют определенные тенденции в выборе активных соединений, которые должны входить в состав дезинфицирующего средства, чтобы инактивировать наибольший круг опасных вирусов.

Инактивация вируса что это. Смотреть фото Инактивация вируса что это. Смотреть картинку Инактивация вируса что это. Картинка про Инактивация вируса что это. Фото Инактивация вируса что это

Наиболее широко распространены сейчас композиционные препараты, разработанные на основе альдегидов, спиртов, четвертичных аммониевых соединений (ЧАС). Одно из достоинств ЧАС — это низкая токсичность. Однако выигрывая в этом, мы приобретаем другую проблему — недостаточную степень инактивации вирусов.

Нашими исследованиями показана неэффективность средств на основе ЧАС в отношении вирусов, не обладающих липидной оболочкой, на которую направлено действие этого класса препаратов. Опасность заключается в том, что именно к этой группе вирусов принадлежат вирус полиомиелита, вирус гепатита А, ротавирусы, аденовирусы, папилломавирусы.

Другой аспект этой проблемы определение реальной вирулицидной эффективности дезинфицирующих средств, применяемых для дезинфекции высокого уровня медицинских инструментов, в том числе эндоскопов. Полученные нами данные свидетельствуют о недостаточной эффективности препаратов в концентрациях и режимах предлагаемых для использования некоторыми разработчиками не позволяющими достигнуть необходимого уровня инактивации вирусов в 4,0 lg ТЦИД50.

Наименьшая устойчивость у вирусов с геномом, представленным однонитчатой РНК. Наиболее устойчивые — вирусы с двунитчатой ДНК. Подтверждение этому — высокая устойчивость аденовируса к УФИ. Для его инактивации требуется доза облучения в 5–7 раз превосходящая аналогичную дозу для полиовируса.
Однако у некоторых однонитчатых РНК-содержащих вирусов также обнаружена высокая резистентность к УФИ. Один из таких вирусов — ВИЧ-1.

Применение нами стандартной бактерицидной лампы мощностью 15 Вт, используемой для обеззараживания защитного укрытия с ламинарным током воздуха снижало инфекционный титр вируса на 3,0 lg ТЦИД50 за 3 часа. Однако это составляло только половину его исходной инфекционной активности, а остаточной дозы вполне достаточно для заражения и клеток человека, и организма. При этих же условиях вирус простого герпеса (ВПГ) полностью инактивировался через 15 минут. По-видимому, здесь вступает в действие еще один фактор — размер генома: чем больше длина генома, тем выше эффективность УФИ. Хотя у ВПГ геном, кодируется 2-спиральной ДНК, но он очень большой (по меркам царства вирусов) 130–230 кД. Очевидно, что для решения проблем эффективной инактивации вирусов необходим учет их специфических особенностей, а также организация реальных испытаний инактивирующих воздействий дезинфицирующих средств и приборов для адекватной оценки их подлинной эффективности.

Автор: Д.Н. Носик, Н.Н. Носик, П.Г. Дерябин, Д.К. Львов ФГБУ «НИИ вирусологии им. Д.И. Ивановского» Минздравсоцразвития России, Москва

Источник

Содержание

Удаление

Этот всеобъемлющий процесс, который стал известен просто как удаление вирусов, представляет собой процесс, при котором все вирусы в данном образце удаляются традиционными методами экстракции или [полной энергии]. Некоторые из наиболее известных методов включают:

Эти процессы экстракции считаются «традиционными», потому что они никоим образом не влияют на химический состав вируса; они просто физически удаляют его из образца.

Нанофильтрация

Хроматография

Хроматографические методы удаления вирусов отлично подходят для очистки белка, а также эффективны против всех типов вирусов, но уровень удаления вирусов зависит от состава колонки и используемых в процессе реагентов. Эффективность этого процесса может сильно различаться между вирусами, а его эффективность может меняться в зависимости от используемого буфера. При выполнении этой процедуры также необходимо соблюдать санитарные условия между партиями.

Мембранная хроматография становится все более популярной для очистки и удаления вирусов.

Инактивация

Чтобы добиться инактивации вирусов в образце, необходимо выполнить «специальные» процессы очистки, которые каким-то образом химически изменят вирус. Вот некоторые из наиболее широко используемых процессов:

В некоторых случаях вирусная инактивация не является жизнеспособной альтернативой удаления, поскольку даже денатурированные или инактивированные иным образом вирусные частицы могут оказывать вредное воздействие на технологический поток или сам продукт.

Инактивация растворителем / детергентом (S / D)

Инактивация вируса что это. Смотреть фото Инактивация вируса что это. Смотреть картинку Инактивация вируса что это. Картинка про Инактивация вируса что это. Фото Инактивация вируса что это

Этот процесс имеет много преимуществ перед “традиционными” методами удаления. Этот процесс не денатурирует белки, потому что детергенты влияют только на липиды и производные липидов. Благодаря этому процессу достигается 100% вирусная гибель, а оборудование относительно простое и удобное в использовании. Оборудование, предназначенное для очистки поствирусно-инактивированного материала, необходимо для защиты от загрязнения последующих технологических потоков.

Пастеризация

Кислая инактивация pH

Некоторые вирусы при воздействии низкого pH спонтанно денатурируют. Подобно пастеризации, этот метод инактивации вирусов полезен, если целевой белок более устойчив к низким pH, чем вирусная примесь. Этот метод эффективен против вирусов в оболочке, а обычно используемое оборудование простое и удобное в эксплуатации. Однако этот метод инактивации не так эффективен для вирусов без оболочки, а также требует повышенных температур. Таким образом, чтобы использовать этот метод, целевой белок должен быть устойчивым к низким pH и высоким температурам, что, к сожалению, не относится ко многим биологическим белкам. Инкубация для этого процесса обычно происходит при pH 4 и длится от 6 часов до 21 дня.

Инактивация ультрафиолетом (УФ)

УФ-лучи могут повредить ДНК живых организмов, создав димеры нуклеиновых кислот. Однако повреждения обычно не важны из-за низкого проникновения УФ-излучения через живые ткани. Однако ультрафиолетовые лучи могут использоваться для инактивации вирусов, поскольку частицы вируса малы и ультрафиолетовые лучи могут достигать генетического материала, вызывая димеризацию нуклеиновых кислот. После димеризации ДНК частицы вируса не могут реплицировать свой генетический материал, который препятствует их распространению.

Ультрафиолетовый свет в сочетании с рибофлавином показал свою эффективность в снижении количества патогенов в продуктах переливания крови. Рибофлавин и ультрафиолетовый свет повреждают нуклеиновые кислоты в вирусах, бактериях, паразитах и ​​лейкоцитах доноров, делая их неспособными к репликации и вызывая болезнь.

Исследования пиков

Во многих случаях концентрация вирусов в данном образце чрезвычайно низка. В других процессах экстракции низкие уровни примесей могут быть незначительными, но поскольку вирусы являются инфекционными примесями, даже одной вирусной частицы может быть достаточно, чтобы разрушить всю технологическую цепочку. Именно по этой причине необходимо принять специальные меры для определения подходящего метода удаления или инактивации для любого типа вируса, извлекаемого из любого типа раствора.

Метод

Экспериментально было показано, что увеличение количества вирусов (или уровня активности) в образце в 10 4 или 10 5 раз по сравнению с исходным изменением соотношения удаления / инактивации вируса только на один порядок [ссылка? ]. На основе этих знаний были созданы исследования пиков, в которых количество вирусов (или уровень активации) увеличивалось или «повышалось» в 10 4 или 10 5 раз по сравнению с исходным образцом. Это новое большое число или уровень активности затем пропускается через поток процесса и очищается. Число или уровень активности берется в начале и в конце технологического потока и используется при вычислении коэффициента снижения.

Коэффициент уменьшения

Коэффициент снижения (RF) для этапа удаления или инактивации вируса рассчитывается с использованием следующего уравнения:

Шаг РЧ = log 10 [(V1 x T1) / (V2 x T2)]

Где: V1 = объем исходного сырья до этапа очистки; T1 = концентрация вируса в добавленном сырье перед этапом очистки; V2 = объем материала после шага очистки; и T2 = концентрация вируса в материале после этапа очистки.

Коэффициент уменьшения, необходимый для определенного технологического потока, зависит от множества различных факторов, некоторые из которых включают:

Приложения

Эта технология широко используется в пищевой и фармацевтической промышленности, но есть и другие области применения вирусной обработки:

Источник

Инактивация вируса что это

Для профилактики вирусных заболеваний широко применяют инактивированные вакцины, которые имеют ряд преимуществ перед живыми вакцинами. Важным условием эффективности вакцин является количество и качество вирусного антигена, выбор инактиватора и оптимальных условий инактивации, позволяющих полностью лишить вирус инфекционности при максимальном сохранении антигенности. Понятие «инактивированный» относится к жизнеспособности вирусов, входящих в состав вакцины.

Инактивированные вирусные вакцины обычно готовят из вирулентных вирусов, разрушая вирулентность химическими или физическими методами при сохранении иммуногенности. Такие вакцины должны быть безопасны и содержать большое количество вирусного антигена, чтобы вызвать иммунный ответ и образование антител. Нормальный курс первичной вакцинации включает 2 или 3 инъекции вакцины; в дальнейшем, может потребоваться бустеризация для поддержания иммунитета.

Среди первых инактивированных вирусных вакцин были вакцины против бешенства, желтой лихорадки, ящура, классической чумы свиней, чумы плотоядных, ньюкаслской болезни и оспы животных. Поскольку не все из созданных вакцин оказались эффективными, а некоторые из них таили угрозу инфицирования из-за недостаточной полноты инактивации вируса, многие исследователи стали отдавать предпочтение живым вакцинам, приготовленным на основе аттенуированных штаммов. Лучшим примером живых вакцин служит вакцина против оспы людей.

Инактивация вируса что это. Смотреть фото Инактивация вируса что это. Смотреть картинку Инактивация вируса что это. Картинка про Инактивация вируса что это. Фото Инактивация вируса что это

Следствием недостаточной инактивации вируса явились случаи возникновения болезни, которые имели место при изготовлении инактивированной вакцины против полиомиелита. Недостаточная инактивация вируса ящура вызывала вспышки болезни у вакцинированных животных в Западной Европе. Подобные явления отмечали после применения формолвакцины против венесуэльского ЭМЛ.

Однако в последние годы тенденция использовать инактивированные вакцины вновь стала возрождаться. Этому способствовало совершенствование методов получения, концентрирования и очистки вирусных антигенов, инактивации вирусов и методов контроля, обеспечивающих полную безопасность и выраженную эффективность препаратов. С другой стороны, попытки получить безопасную эффективную живую вакцину не всегда оканчивались успешно. Так было, например, с многочисленными попытками получить живую вакцину против ящура.

Кроме того, живые вакцины против ряда вирусных заболеваний (грипп, инфекционный бронхит кур, трансмиссивный гастроэнтерит свиней и др.) зачастую не обладают гарантированной безопасностью и достаточной эффективностью.
В производстве инактивированных вакцин против вирусных инфекций имеется три критических этапа: производство антигена, инактивация, адъювант.

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *