Инверсия 9 хромосомы у мужчин что это
Инверсия 9 хромосомы у мужчин что это
Хромосомные перестройки обычно не имеют фенотипического эффекта, если они сбалансированы, поскольку весь хромосомный материал присутствует, даже если он иначе упакован. Важно различать разницу между истинно сбалансированными перестройками и теми, которые цитогенетически представляются сбалансированными, но на молекулярном уровне не сбалансированы.
Более того, из-за высокой частоты в геноме CNP, увеличивающей и без того существующие различия в много миллионов пар оснований между геномами неродственных индивидуумов, понятие сбалансированности или несбалансированности отчасти произвольно и подлежит дальнейшему исследованию и уточнению.
Даже когда структурные перестройки истинно сбалансированы, они могут представлять угрозу последующим поколениям, поскольку носители могут иметь высокую частоту несбалансированных гамет и, следовательно, имеют повышенный риск аномального потомства с несбалансированными кариотипами; в зависимости от специфической перестройки, риск может колебаться от 1 до 20%.
Существует также возможность, что один из хромосомных разрывов повредит ген, вызвав мутацию. Это хорошо описаная причина Х-сцепленных болезней у женщин-носителей сбалансированных транслокаций Х-хромосомы и аутосом, такие транслокации могут быть путеводной нитью к уточнению позиции гена, ответственного за развитие болезни.
Инверсия хромосом
Инверсия появляется, когда в хромосоме происходят два разрыва, а сегмент между ними переворачивается. Инверсии бывают двух типов: парацентрические (не включающие центромеру), при которых оба разрыва происходят в одном плече; и перицентрические (включающие центромеру), при которых разрывы находятся в разных плечах. Поскольку парацентрические инверсии не изменяют соотношение плеч хромосомы, их можно выявить (если это вообще удастся) только при дифференциальной окраске или FISH-методом с локусспецифическими зондами.
Перицентрические инверсии цитогенетически выявить легче, поскольку они могут изменять соотношение плеч хромосом, а также расположение полос.
Инверсия обычно не вызывает аномалий фенотипа у носителей, поскольку относится к сбалансированным перестройкам. Ее медицинское значение — влияние на потомство; носитель любой инверсии попадает в группу риска по наличию аномальных гамет, приводящих к несбалансированному потомству, так как при инверсии при конъюгации хромосом в мейозе I формируется петля. Рекомбинация отчасти подавляется в пределах инверсионных петель, но если она происходит, то может вести к формированию несбалансированных гамет.
Формируются как гаметы со сбалансированным хромосомным набором (нормальным или с инверсией), так и гаметы с несбалансированными хромосомами в зависимости от позиции точек рекомбинации. Если инверсия парацентрическая, несбалансированные рекомбинантные хромосомы обычно ацентрические или дицентрические и не могут привести к жизнеспособному потомству, хотя есть и редкие исключения. Таким образом, на самом деле риск того, что носитель парацентрической инверсии будет иметь живорожденного ребенка с аномальным кариотипом, очень низкий.
Перицентрическая инверсия, со своей стороны, может привести к появлению несбалансированных гамет как с дупликацией, так и с делецией хромосомных сегментов. Удвоенный и потерянный сегменты — расположенные дистальнее инверсии. В целом риск для носителя перицентрической инверсии родить ребенка с несбалансированным кариотипом оценивают в 5-10%. Каждая перицентрическая инверсия, тем не менее, связана с конкретным риском.
Большие перицентрические инверсии с большей вероятностью, чем малые, приводят к жизнеспособному рекомбинантному потомству, так как в случае больших инверсий несбалансированные сегменты в рекомбинантном потомстве имеют меньший размер. Это положение иллюстрируют три хорошо изученных инверсии.
Перицентрическая инверсия хромосомы 3, происходящая от семейной пары из Ньюфаундленда, вступивших в брак в начале XIX в. — одна из немногих, для которой получено достаточно данных, чтобы оценить расхождение инвертированной хромосомы в потомстве носителей. Кариотип с inv(3) (p25q21) с тех пор был описан в ряде центров Северной Америки, в семьях, предки которых прослеживались до приморских провинций Канады.
Носители хромосомы inv(3) нормальны, но некоторые их дети имеют характерный аномальный фенотип, ассоциирующийся с рекомбинантной хромосомой 3, в которой отмечена дупликация дистального сегмента 3q21 и делеция дистального сегмента 3р25. Девять человек — носителей этой инверсии — имели 53 зарегистрированных беременности. Высокий риск аномального исхода беременности в группе (22/53, или больше 40%) указывает значение семейных хромосомных исследований для идентификации носителей, генетического консультирования и дородовой диагностики.
Другая перицентрическая инверсия, связанная с выраженным дупликационным или делеционным синдромом в рекомбинантных потомках, находится в хромосоме 8, inv(8) (p23.1q22.1) и первоначально обнаружена среди испанцев юго-запада США. Эмпирические исследования показали, что носители inv(8) имеют 6% риска родить ребенка с синдромом рекомбинантной хромосомы 8, летальным нарушением с серьезными сердечными аномалиями и умственным недоразвитием. В рекомбинантной хромосоме дублирован дистальный участок 8q22.1 и утерян дистальный участок 8р23.1.
Наиболее частая инверсия у человека — небольшая перицентрическая инверсия хромосомы 9, которую отмечают почти у 1% обследованных лабораториями цитогенетики. Кариотип inv(9)(pllql2) не имеет известных опасных эффектов у носителей и не дает значимого риска выкидыша или несбалансированного потомства; поэтому обычно считается вариантом нормы.
Дополнительно к цитогенетически видимым инверсиям геномными методами обнаруживают все большее количество малых инверсий. Полагают, что многие из них клинически благоприятны, без отрицательного влияния на потомство.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Хромосомная инверсия
Инверсия — хромосомная перестройка, при которой происходит поворот участка хромосомы на 180°. Инверсии являются сбалансированными внутрихромосомными перестройками. Различают парацентрические (инвертированный фрагмент лежит по одну сторону от центромеры) и перицентрические (центромера находится внутри инвертированного фрагмента) инверсии. Инверсии играют роль в эволюционном процессе, видообразовании и в нарушениях фертильности.
Инверсии, как правило, не влияют на фенотип носителя. Патологический фенотип при инверсии может формироваться, если разрыв находится в пределах гена, или если перестройка нарушает регуляцию гена. Гетерозигота по инверсии может иметь сниженную фертильность и вероятность рождения потомства с аномальным фенотипом из-за образования аберрантных рекомбинантных хромосом в мейозе.
Содержание
Гетерозиготные инверсии в мейозе
При прохождении мейоза в профазе I между гомологичными хромосомами происходит синапсис, после чего возможен кроссинговер и рекомбинация между ними. Гетерозиготность по инверсии осложняет поиск гомологичных последовательностей при синапсисе хромосом. Короткие гетерозиготные инверсии обычно испытывают трудности при синапсисе, но, как правило, в их случае запускается процесс так называемой синаптической подгонки (или синаптической пригонки), в результате которой на месте инверсии осуществляется негомологичный синапсис (гетеросинапсис), в котором существует запрет на рекомбинацию. Достаточно протяжённые гетерозиготные инверсии могут образовывать полноценный гомологичный синапсис за счёт формирования инверсионной петли, и, следовательно, в пределах инвертированного участка может произойти кроссинговер.
Таким образом, гетерозиготность по инверсии приводит к подавлению рекомбинации в пределах инверсии за счёт двух основных механизмов: из-за запрета рекомбинации в случае гетеросинапсиса и за счёт низкой вероятности появления рекомбинантных продуктов в потомстве вследствие генетической несбалансированности гамет.
Выявление инверсий
В настоящее время существует три основных подхода для выявления инверсий: с помощью классического генетического анализа, цитологически и на основе данных секвенирования полного генома. Наиболее распространённым является цитологический подход.
Цитологически инверсии впервые наблюдали на политенных хромосомах слюнных желез у дрозофил, и двукрылые по-прежнему являются наиболее удобным объектом для наблюдения инверсий. В других таксономических группах крупные инверсии можно выявить при помощи дифференциальной окраски метафазных хромосом. Известные полиморфные варианты инверсий можно анализировать при помощи флуоресцентной гибридизации in situ с использованием локус-специфических ДНК-проб.
Возникновение инверсий
Для возникновения инверсии необходимым условием является повреждение ДНК в виде двунитевого разрыва с последующей ошибкой репарации. Репарация двунитевого разрыва ДНК может проходить двумя способами: негомологичным соединением разрывов и гомологичной рекомбинацией. При репарации путём негомологичного соединения могут ошибочно соединиться два внутрихромосомных разрыва с разворотом участка между ними на 180°. При гомологичной рекомбинации может произойти неверный выбор последовательности ДНК, на основе которой идёт репарация повреждённой ДНК. Вместо аллельной гомологичной последовательности происходит ошибочный выбор паралогичной последовательности на этой же хромосоме. В последнем случае для формирования инверсии необходимо возникновение двунитевого разрыва ДНК в одной из двух повторяющихся последовательностей, находящихся на одной хромосоме в инвертированном положении по отношению друг к другу.
Двунитевые разрывы ДНК могут возникать вследствие воздействия экзогенными факторами, такими как ионизирующее излучение или химиотерапия, а также вследствие воздействия на ДНК эндогенно образующимися свободными радикалами.
Роль инверсий в видообразовании
Инверсии и половые хромосомы
Обозначение инверсий
В медицинской генетике для обозначения инверсий используют Международную систему по цитогенетической номенклатуре человека (The International System for Human Cytogenetic Nomenclature — ISCN). Запись inv(A)(p1;q2) обозначает инверсию в хромосоме А. Информация во вторых скобках даётся дополнительно для локализации точек разрыва внутри хромосомы А. Буква p означает короткое плечо хромосомы, буква q — длинное плечо, цифры после p и q относятся к нумерации хромосомных бэндов. Инверсии гетерохроматиновых районов хромосом 1, 9 и 16 предложено обозначать как 1ph, 9ph и 16ph соответственно.
Полиморфизм по инверсиям у человека
Хромосомные нарушения
Наша команда профессионалов ответит на ваши вопросы
Данная брошюра содержит информацию о том, что такое хромосомные нарушения, как они могут наследоваться, и какие проблемы могут быть с ними связаны. Данная брошюра не может заменить Ваше общение с врачом, однако она может помочь Вам при обсуждении интересующих Вас вопросов.
Для того, чтобы лучше понять, что представляют собой хромосомные нарушения, вначале будет полезно узнать, что такое гены и хромосомы.
Что такое гены и хромосомы?
Наше тело состоит из миллионов клеток. Большинство клеток содержат полный набор генов. У человека тысячи генов. Гены можно сравнить с инструкциями, которые используются для контроля роста и согласованной работы всего организма. Гены отвечают за множество признаков нашего организма, например, за цвет глаз, группу крови или рост.
Гены расположены на нитевидных структурах, называемых хромосомами. В норме в большинстве клеток организма содержится по 46 хромосом. Хромосомы передаются нам от родителей – 23 от мамы, и 23 от папы, поэтому мы часто похожи на своих родителей. Таким образом, у нас два набора по 23 хромосомы, или 23 пары хромосом. Так как на хромосомах расположены гены, мы наследуем по две копии каждого гена, по одной копии от каждого из родителей. Хромосомы (следовательно, и гены) состоят из химического соединения, называемого ДНК.
Рисунок 1: Гены, хромосомы и ДНК
Рисунок 2: 23 пары хромосом, распределенные по размеру; хромосома под номером 1 – самая большая. Две последние хромосомы – половые.
Хромосомные изменения
Правильный хромосомный набор является очень важным для нормального развития человека. Это связано с тем, что гены, которые дают «инструкции к действиям» клеткам нашего организма, находятся на хромосомах. Любое изменение количества, размера или структуры наших хромосом может означать изменение количества или последовательности генетической информации. Такие изменения могут привести к трудностям в обучении, задержке развития и другим проблемам здоровья ребенка.
Хромосомные изменения могут быть унаследованы от родителей. Чаще всего хромосомные изменения возникают на этапе формирования яйцеклетки или сперматозоида, или при оплодотворении (вновь возникшие мутации, или мутации de novo). Эти изменения невозможно контролировать.
Существует два основных типа хромосомных изменений. Изменение числа хромосом. При таком изменении существует увеличение или уменьшение числа копий какой-либо хромосомы. Изменение структуры хромосом. При таком изменении материал какой-либо хромосомы поврежден, или изменена последовательность генов. Возможно появление дополнительного или утрата части исходного хромосомного материала.
В данной брошюре мы рассмотрим хромосомные делеции, дупликации, инсерции, инверсии и кольцевые хромосомы. Если Вас интересует информация о хромосомных транслокациях, пожалуйста, обратитесь к брошюре «Хромосомные транслокации».
Изменение числа хромосом.
В норме в каждой клетке человека содержится 46 хромосом. Однако, иногда ребенок рождается либо с большим, либо с меньшим числом хромосом. В таком случае возникает, соответственно, либо избыточное, либо недостаточное число генов, необходимых для регуляции роста и развития организма.
Один из наиболее распространенных примеров генетического заболевания, вызванного избыточным числом хромосом, является синдром Дауна. В клетках людей с этим заболеванием находится 47 хромосом вместо обычных 46-ти, так как присутствует три копии 21-ой хромосомы вместо двух. Другими примерами заболеваний, вызванных избыточным числом хромосом являются синдромы Эдвардса и Патау.
Рисунок 3: Хромосомы девочки (последняя пара хромосом ХХ) с синдромом Дауна. Видны три копии 21-ой хромосомы вместо двух.
Изменение структуры хромосом.
Изменения в структуре хромосом происходят, когда материал определенной хромосомы поврежден, или изменена последовательность генов. К структурным изменениям также относятся избыток или утрата части хромосомного материала. Это может происходить несколькими путями, описанными ниже.
Изменения структуры хромосом могут быть очень небольшими, и специалистам в лабораториях бывает сложно их выявить. Однако даже если структурное изменение найдено, часто бывает сложно предсказать влияние этого изменения на здоровье конкретного ребенка. Это может разочаровать родителей, которые хотят получить исчерпывающую информацию о будущем своего ребенка.
Транслокации
Если Вы хотите больше узнать о транслокациях, пожалуйста, обратитесь к брошюре «Хромосомные транслокации».
Делеции
Термин «хромосомная делеция» означает, что часть хромосомы утрачена или укорочена. Делеция может случиться в любой хромосоме и на протяжении любой части хромосомы. Делеция может быть любого размера. Если утраченный при делеции материал (гены) содержал важную информацию для организма, то у ребенка могут возникать трудности в обучении, задержка развития и другие проблемы со здоровьем. Тяжесть этих проявлений зависит от размеров утраченной части и локализации внутри хромосомы. Примером такого заболевания является синдром Жубер.
Дупликации
Термин «хромосомная дупликация» означает, что часть хромосомы удвоена, и из-за этого возникает избыток генетической информации. Этот избыточный материал хромосомы означает, что организм получает слишком большое число «инструкций», и это может привести к трудностям в обучении, задержке развития и другим проблемам здоровья ребенка. Примером заболевания, вызванного дупликацией части хромосомного материала является моторно-сенсорная нейропатия типа IA.
Инсерции
Хромосомная инсерция (вставка) означает, что часть материала хромосомы оказалась «не на своем месте» на этой же или на другой хромосоме. Если общее количество хромосомного материала не изменилось, то такой человек, как правило, здоров. Однако если такое перемещение приводит к изменению количества хромосомного материала, то у человека могут возникать трудности в обучении, задержка развития и другие проблемы здоровья ребенка.
Кольцевые хромосомы
Термин «кольцевая хромосома» означает, что концы хромосомы соединились, и хромосома приобрела форму кольца ( внорме хромосомы человека имеют линейную структуру). Обычно это происходит, когда оба конца одной и той же хромосомы укорочены. Оставшиеся концы хромосомы становятся «липкими» и соединяются, формируя «кольцо». Последствия формирования кольцевых хромосом для организма зависят от размера делеций на концах хромосомы.
Инверсии
Хромосомная инверсия означает такое изменение хромосомы, при котором часть хромосомы развернута, и гены в этом участке расположены в обратном порядке. В большинстве случаев носитель инверсии здоров.
Если у родителя обнаружена необычная хромосомная перестройка, как это может отразиться на ребенке?
Возможны несколько исходов каждой беременности:
Таким образом, у носителя хромосомной перестройки могут рождаться здоровые дети, и во многих случаях происходит именно так. Так как каждая перестройка уникальна, Вашу конкретную ситуацию следует обсудить с врачом–генетиком. Часто бывает, что ребенок рождается с хромосомной перестройкой, несмотря на то, что хромосомный набор родителей нормальный. Такие перестройки называют вновь возникшими, или возникшими “de novo” (от латинского слова). В этих случаях риск повторного рождения ребенка с хромосомной перестройкой у этих же родителей очень мал.
Диагностика хромосомных перестроек
Возможно проведение генетического анализа для выявления носительства хромосомной перестройки. Для анлиза берется образец крови, и клетки крови исследуют в специализированной лаборатории для выявления хромосомных перестроек. Такой анализ называется кариотипированием. Также возможно проведение теста во время беременности для оценки хромосом плода. Такой анализ называется пренатальной диагностикой, и этот вопрос следует обсудить с врачом-генетиком. Более подробная информация на эту тему представлена в брошюрах «Биопсия ворсин хориона» и «Амниоцентез».
Как это касается других членов семьи
Если у одного из членов семьи обнаружена хромосомная перестройка, возможно, Вы захотите обсудить этот вопрос с другими членами семьи. Это даст возможность другим родственникам, при желании, пройти обследование (анализ хромосом в клетках крови) для определения носительства хромосомной перестройки. Это может быть особенно важно для родственников, уже имеющих детей или планирующих беременность. Если они не являются носителями хромосомной перестройки, они не могут передать ее своим детям. Если же они являются носителями, то им может быть предложено пройти обследование во время беременности для анализа хромосом плода.
Некоторым людям сложно обсуждать проблемы, связанные с хромосомной перестройкой, с членами семьи. Они могут бояться причинить беспокойство членам семьи. В некоторых семьях люди из-за этого испытывают сложности в общении и теряют взаимопонимание с родственниками. Врачи-генетики, как правило, имеют большой опыт в решении подобных семейных ситуаций и могут помочь Вам в обсуждении проблемы с другими членами семьи.
Инверсия пола 46 XY
OMIM 400044
Наша команда профессионалов ответит на ваши вопросы
Инверсия пола, 46,XY
Наличие женского фенотипа при нормальном мужском кариотипе характеризует XY-инверсию пола. Наиболее частой причиной данного нарушения формирования пола является синдром Свайера – это полная или «чистая» дисгенезия гонад при кариотипе 46,XY. Частота XY-дисгенезии гонад составляет 1 на 30000 человек. Больные имеют женский фенотип без признаков двойственности полового развития: феминное телосложение, развитые по женскому типу наружные половые органы, нормально развитую или гипоплазированную матку и маточные (фаллопиевы) трубы. Однако у пациентов с синдромом Свайера практически отсутствуют женские половые железы, которые в данном случае представлены дисгенетичными гонадами, представляющими собой соединительнотканные тяжи (стреки) с небольшими включениями железистой ткани, овариально-подобной стромы без фолликулов. Как правило, диагностирование синдрома Свайера происходит у девочек в пубертатный период, когда у них не происходит нормального полового развития. Причиной обращения к врачу при этом является задержка полового развития и отсутствие начала менструаций, реже наличие злокачественных новообразований, происходящих из дисгенетичных гонад. Так как дисгенетичные гонады подвержены озлокачествлению, показано их удаление в детстве или на момент постановки диагноза XY-дисгенезии гонад. После оперативного лечения пациенткам, как правило, еще в подростковом возрасте назначается заместительная гормональная терапия, чтобы достичь нормального развития вторичных половых признаков и предотвратить развитие остеопороза. У женщин с XY-дисгенезией гонад нет собственных яйцеклеток, однако в некоторых случаях она в состоянии выносить плод, полученный в программе ЭКО при оплодотворении донорской яйцеклетки сперматозоидами супруга.
Инверсия пола, 46,XY тип 1 (OMIM 400044)
Наиболее частой из известных причин «чистой» формы дисгенезии гонад 46,XY являются микроструктурные перестройки Y-хромосомы c утратой гена SRY (Sex-determining region Y), а также точковые мутации данного гена. У 10-15% больных с синдромом Свайера обнаруживают отсутствие локуса SRY. В большинстве случаев это обусловлено утратой фрагмента дистальной части короткого плеча Y-хромосомы (Yp11.3), вследствие X-Y транслокации. Еще у 10-15% пациентов с данным синдромом выявляют мутации гена SRY.
Ген SRY локализован на коротком плече Y хромосомы и кодирует транскрипционный фактор – белок, связывающийся с генами, определяющими развитие пола плода по мужскому типу. Мутации в гене SRY приводят к синтезу функционально неполноценного белка и к нарушению дифференцировки клеток Сертоли и формирования семенных канальцев в развивающихся бипотенциальных гонадах плода, что вызывает дисгенезию гонад и развитие остальных органов половой системы по женскому типу, несмотря на наличие Y-хромосомы в кариотипе.
Инверсия пола, 46,XYтип 2 (OMIM 300018)
Данный тип XY-инверсии пола обусловлен дупликаций гена NR0B1 (DAX-1). Ген NR0B1локализован на коротком плече Х хромосомы (локус Хp21.3). Кодируемый этим геном белок DAX-1 играет важную роль в развитии и функции некоторых органов эндокринной системы, в том числе и половых желез. Еще внутриутробно он контролирует активность генов, участвующих в формировании этих тканей, а в постнатальном периоде DAX-1 регулирует выработку в них гормонов. Белок DAX-1 оказывает дозо-зависимый эффект на органы эндокринной системы. Дупликация гена NR0B1, а также делеция располагающегося рядом с геном NR0B1 локуса, негативно-регулирующего его транскрипцию приводит к XY-инверсии пола, обусловленной XY-дисгенезией гонад часто сочетающейся с нарушением функции надпочечников. Точковые мутации этого гена у пациентов с кариотипом 46,XY вызывают нарушение развития тестикулярной ткани, приводят к дефициту маскулинизации. Мутации в этом гене также вызывают Х-сцепленную гипоплазию надпочечников, как у пациентов с кариотипом 46,ХХ так и 46,XY.
Инверсия пола, 46,XY тип 3 (OMIM 612965)
Инверсия пола, 46,XY тип 4 (OMIM 154230)
Эта форма XY-инверсии пола обусловлена делецией локуса 9p24.3. У пациенток отмечают нормально развитые по женскому типу наружные половые органы, нормально развитую или гипоплазированную матку, при гистологическом исследовании гонад обнаруживают наличие незрелой тестикулярной ткани, содержащей клетки Сертолли, и отсутствие зрелых половых клеток. Инверсия пола у данных пациентов, вероятно, обусловлена потерей одной из копий дозо-чувствительного гена, локализованного в данном локусе. Генами-кандидатами являются DMRT1 и DMRT2.
Инверсия пола, 46,XY тип 5 (OMIM 613080)
Данная аутосомно-рецессивная форма инверсии 46,XY обусловлена наличием мутаций в гене CBX2, расположенного на хромосоме 17 (локус 17q25). В 2009 году Байсон-Лаубер описал случай новорожденной девочки с кариотипом 46,XY, у которой в результате секвенированияв гене CBX2 были обнаружены две мутации (P98L и R443P). В результате исследований у девочки были обнаружены нормально развитые яичники, с наличием овариальной ткани и первичных фолликулов, а также влагалище и матка. Однако возраст еще был слишком мал, чтобы оценить ее фертильность и дальнейшее половое развитие.
Инверсия пола, 46,XY тип 6 (OMIM 613762)
XY-инверсия пола связана с наличием мутации в гетерозиготном состоянии в гене MAP3K1, расположенном в локусе 5q11.2. Пациентки с данной формой дисгенезии гонад имеют высокий рост, который, вероятно, обусловлен избыточной продукцией андрогенов, тяжевидные яичники, гипоплазированную матку, иногда наблюдается клиторомегалия.
Инверсия пола, 46,XY тип 7 (OMIM 233420)
Инверсия пола обусловлена наличием у пациенток мутаций в гомозиготном или компаунд-гетерозиготном состоянии в гене DHH, расположенного в локусе 12q13.12. У нескольких пациенток было описано наличие недоразвитой матки, также присутствовали фаллопиевы трубы и наблюдали полную форму ХY-дисгенезии гонад (тяжевидные гонады, которые часто озлокачествлялись).
Инверсия пола, 46,XYтип 8 (OMIM 614279)
Данный тип XY-инверсии пола обусловлен мутациями гена AKR1C2, лежащего в локусе 10p15, отвечающего за альтернативный путь синтеза дигидротестостерона. Мутации сцепленного с ним гена AKR1C4, который сегрегирует вместе с геном AKR1C2, могут влиять на выраженность фенотипических проявлений.
В Центре Молекулярной Генетики проводится молекулярный анализ ключевых генов, контролирующих дифференцировку пола, в частности выполняется секвенирование генов SRY и NR5A1 (SF1), а также с помощью количественного метода MLPA проводится поиск делеций и дупликаций генов SRY, NR5A1 (SF1), NR0B1 (DAX-1).








