Инженерная графика и начертательная геометрия в чем разница
Adblock Plus: Инициатива Ненавязчивой Рекламы. Для блогов и небольших веб-сайтов бесплатно!
Adblock Plus, самое популярное расширение для браузеров по блокировке рекламы, с 2011 года развивает инициативу Ненавязчивой Рекламы для блогов и небольших сайтов. Данная инициатива направлена на предоставление блогам и сайтам возможности поддерживать себя при помощи неназойливого способа рекламы. С момента старта проекта Adblock Plus с открытым исходным кодом в 2006 году главная цель заключалась в том, чтобы сделать интернет приятным местом для всех пользователей, блокируя любого рода рекламу.
Дело в том, что интернет пользователи не любят онлайн рекламу, потому что в большинстве своем она очень раздражает: всплывающие окна, мелькания, прыгающие баннеры, выдвигающиеся блоки, громкое видео и т.д. Сегодня более 60 миллионов активных пользователей Adblock Plus выбрали серфинг в интернете именно без такой отвлекающей рекламы. Эти люди щелчком мыши «проголосовали» за Adblock Plus, сделав ABP самым скачиваемым расширением для браузеров в мире.
Однако не стоит забывать о миллионах небольших и средних размеров сайтов и блогов, выживание которых полностью зависит от дохода, полученного от рекламы. Многие из них уделяют огромное внимание расположению содержимого на их сайте и выбирают ненавязчивый путь представления рекламы. За 2013 год использование Adblock Plus возросло на 49%. Чем больше становится число пользователей ABP, тем сильнее страдает жизнеспособность таких сайтов и блогов. Именно поэтому Adblock Plus разработал концепцию ненавязчивой рекламы (Acceptable Ads policy).
Ненавязчивая реклама рассматривается как компромисс между интересами пользователей и разработчиков небольших веб-сайтов или авторов блогов. ABP нацелен на то, что все сайты и блоги в долгосрочной перспективе найдут золотую середину, когда они могут поддерживать существование за счет рекламы и, в то же время, не отталкивать и не беспокоить своих пользователей.
Белый список ABP растёт с каждым днём. Множество небольших сайтов и блогов уже извлекают выгоду из этого: 98% 60-миллионной аудитории Adblock Plus видят ненавязчивую рекламу каждый день, увеличивая трафик и доход разработчиков сайтов и авторов богов. Если у Вас есть небольшой или средних размеров сайт, и Вы хотите бесплатно участвовать в Инициативе ненавязчивой рекламы, то ознакомьтесь с условиями и подайте заявку!
Инженерная графика и начертательная геометрия в чем разница
Для того чтоб понять разницу между НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИЕЙ и ИНЖЕНЕРНОЙ ГРАФИКОЙ я приведу определения данных понятий.
1)Начерта́тельная геоме́трия — инженерная дисциплина, представляющая двумерный геометрический аппарат и набор алгоритмов для исследования свойств геометрических объектов.
Практически, начертательная геометрия ограничивается исследованием объектов трёхмерного евклидова пространства. Исходные данные должны быть представлены в виде двух независимых проекций. В большинстве задач и алгоритмов используются две ортогональные проекции на взаимно перпендикулярные плоскости.
В настоящее время дисциплина не имеет практической ценности в силу развития вычислительной техники и аппарата линейной алгебры, но незаменима как составляющая общего инженерного образования на машиностроительных и строительных специальностях.
Начерта́тельная геоме́трия — наука, изучающая пространственные фигуры при помощи их проецирования (проложения) перпендикулярами на некоторые три плоскости, которые рассматриваются затем совмещёнными одна с другой.
При обыкновенном способе изображения предметов линии, распространяющиеся вдаль от глаза наблюдателя, хотя и изображаются, соответственно с тем, какими они нам представляются, сокращёнными, но это сокращение определяется рисовальщиком обыкновенно на глаз, а фотографией оно хотя в известных случаях и достаточно точно может быть передано, но отношение, в каком потерпели сокращения разные линии изображаемого предмета, остаётся трудно определимым; вдобавок, во многих случаях и фотография ведёт к перспективным ошибкам. Всякий мастер, будет ли то плотник, слесарь, токарь, каменотёс и т. д., может выполнить заказанный предмет согласно желанию заказчика только в том случае, если ему будет дан совершенно такой же предмет на образец, либо его модель, либо конструкторский чертёж, по которому легко и точно определялись бы размеры всех начерченных линий, хотя бы и таких, которые удаляются в глубь картины и потому изображаются сокращёнными. Начертательная геометрия учит изготовлению таких чертежей, в которых предмет изображается почти таким, каким мы его видим, и притом так, что по начерченным линиям можно в точности определить размеры и истинный вид изображаемого предмета.(ВИККАПЕДИЯ)
2) инженерная графика — это дисциплина, которая изучает, как строится и оформляется технический чертеж. А чертеж представляет собой документ, содержащий контурное изображение предмета, а также иные данные, требуемые при изготовлении, контроле и идентификации изделия. Кроме того, он содержит информацию, необходимую для операций непосредственно с самим документом.
Что же между этими понятиями одинакового? Базой для данного предмета является начертательная геометрия. Это раздел геометрии, где изучаются пространственные фигуры путем создания изображений на плоскости, а также методики исследования и решения пространственных задач на плоской поверхности. В школах, техникумах этот предмет проще назывался так «ЧЕРЧЕНИЕ». так мы его называли.
Инженерная графика и начертательная геометрия в чем разница
Контрольные задания по теме:
Рабочая тетрадь задача 7, задача 8, задача 9, задача 10
Начертательная геометрия занимает особое положение среди других наук. Она является лучшим средством развития у человека пространственного мышления и воображения.
Начертательная геометрия – один из разделов геометрии, в котором пространственные фигуры, представляющие собой совокупность точек, линий, поверхностей, изучаются по их плоским изображениям или проекциям.
Основная задача начертательной геометрии заключается в сопоставлении трёхмерного объекта с его плоской проекционной моделью.
Плоское изображение предмета или детали называется её чертежом. Чертёж – это не просто рисунок, а конструкторский документ. Он выполняется по соответствующим требованиям, единым стандартом. Его можно назвать своеобразным языком, в котором используются точки, линии, буквы, цифры, причём этот язык является интернациональным, т.к. он понятен любому инженеру и не зависит от языка.
При помощи этих простых геометрических элементов (точек, линий и т.д.) человек имеет возможность изобразить сложнейшие механизмы, приборы, здания и т.д.
Методы начертательной геометрии находят широкое применение в физике, химии, механике, кристаллографии, архитектуре и применяются практически во всех отраслях промышленности, начиная от лесного хозяйства и заканчивая сложнейшей электроникой космических летательных аппаратов.
Начертательная геометрия, как и другие разделы математики, развивает логическое мышление и поэтому входит в число фундаментальных дисциплин инженерного образования.
Начертательная геометрия и инженерная графика укладываются в рамки одной учебной дисциплины и выполняют одну и ту же задачу – сопоставление трёхмерного объекта с его плоской проекционной моделью. Отличие между ними заключается в том, что в инженерной графике под трёхмерным объектом понимается конкретное, материально воплощённое задание, строительное сооружение или деталь, в то время как начертательная геометрия имеет дело с абстрактными, отвлечёнными моделями. В этом смысле инженерная графика представляет собой очень частное ответвление начертательной геометрии, её узкоспециализированный подраздел. Но, благодаря такой узкой практической направленности инженерной графики, в ней появляются совершенно новые вопросы, к начертательной геометрии отношения не имеющие. Сюда относятся правила оформления чертежей, сведения об использовании технических стандартов и ряд других вопросов.
История развития начертательной геометрии уходит корнями в глубокую древность. Об этом свидетельствуют памятники древнего искусства, строительные и архитектурные формы, сохранившиеся до нашего времени. Ещё древние египтяне пытались изображать объекты в виде плоских проекций, но это всё осуществлялось стихийно, без использования твёрдо установленных правил и закономерностей.
Первое сохранившееся систематизированное изложение инженерного опыта относится к 16-13 годам до н.э.: сочинение под названием «Десять книг об архитектуре» написал римский зодчий и инженер Марк Витрувий Поллион.
Примерно в это же время расцвета культуры древней Греции шло интенсивное накопление геометрических знаний. Появилась вычислительная геометрия. Пифагор, Эвклид и др. систематизировали геометрические сведения. Эвклид издал труд под названием «Начала» –15 книг, куда вошли определения, постулаты, основные аксиомы и теоремы. Он построил науку геометрию так, как она есть сейчас. Мы до сих пор пользуемся ей почти без изменений. Из учёных этой же эпохи можно назвать также Архимеда, Фалеса.
Следующим рывком в развитии наук, искусств и техники явилась эпоха Возрождения. Вопросам построения наглядных изображений (перспективы) уделяли в то время большое внимание многие известные учёные, инженеры, зодчие и художники. Среди них Леонардо да Винчи, Альбрехт Дюрер, Леон Баттист, Гвидо Убальди. Такое повышенное внимание к этой теме было вызвано развитием техники, усложнением архитектурно-строительных задач, а также общим духом времени, направленным на культ научного метода и научного знания.
С тех пор начертательная геометрия пополнилась некоторыми вспомогательными вариантами проекционных изображений (аксонометрия) и постепенно оформлялась жёсткими правилами, требованиями, стандартами. Весь этот материал в совокупности составил основу современной инженерной графики.
Наряду с этим тенденция к обобщению привела к объединению идей Г. Монжа и исследователей эпохи Возрождения. В результате этого возникла классическая начертательная геометрия, предназначенная для изучения геометрических образов трёхмерного пространства. Развивалась проективная геометрия (Х. Винер, Г. Гаук, Э. Мюллер), рассматривались проблемы отображения многомерного геометрического пространства и способы построения нелинейных изображений (В. Фидлер, Е.С. Фёдоров). Эти исследования составили область математически абстрагированной начертательной геометрии.
Русские инженеры и зодчие пользовались на практике проекционными чертежами, в том числе и системой ортогональных проекций задолго до появления Г. Монжа. Об этом свидетельствуют сохранившиеся документы, относящиеся к началу XIX века (изобретатель Кулибин и зодчие С.И. Чевакинский, К.А. Ухтомский, В.И. Баженов). В те времена в инженерных школах преподавалось черчение. В Перновском военно-техническом училище 1731-1733 г. преподавание математических наук, фортификации и черчения вёл А.П. Ганнибал – прадед А.С. Пушкина. В начале XIX века в высших и средних учебных заведениях началось преподавание начертательной геометрии. Шарль Потье читал курс лекций в Московском институте инженеров путей сообщения. Появились первые учебные пособия (Я.С. Севастьянов, Н.И. Макаров, В.И. Курдюмов ) по начертательной геометрии в строго классическом её понимании. И в этом виде дисциплина сохранилась до 20 века.
Примерно с середины 40-х годов началось развитие вычислительной техники, появились ЭВМ. Среди разнообразных функций, доступных компьютеру, могут быть: выполнение графиков, схем и чертежей. Возникла специальная учебная дисциплина – «Машинная графика», которая, с 1987 г. вошла в учебную программу подготовки инженеров.
При выполнении чертежей и изображений в начертательной геометрии приняты следующие условные обозначения:
а) точки обозначаются прописными буквами латинского алфавита или цифрами. Например: A, B, C или 1, 2, 3. Цифры и буквы могут быть снабжены индексами: A1, B2;
б) линии принято обозначать строчными буквами латинского алфавита: а1, в2, m3 и т.д.;
в) плоскости обозначаются заглавными буквами греческого алфавита: Γ, Σ, Ω, Ψ;
г) знак параллельности: //. Например, прямая А параллельна прямой В записывается: А//В;
д) пересечение: а Ç в;
ж) обозначение угла: Ð ABC;
з) принадлежность: Ì
Точка М принадлежит прямой t: М Ì t;
Прямая l перпендикулярна плоскости S: l ^ S.
Для решения основной задачи начертательной геометрии, т.е. для установления адекватного соответствия положения точки в пространстве и её изображения на плоскости применяется конструктивный приём, который именуется операцией проецирования. Для этого вводится некоторая плоскость, которая называется плоскостью проекций, и некоторая точка в пространстве – центр проекций. Через центр проекций и данную точку проводится луч до пересечения с плоскостью проекций.
Рисунок 1
На рисунке 1 точка S- центр проекций; П1- плоскость проекций; точка A1 и B2- проекции точек A и B на плоскость П1.
Однако для того, чтобы проделать обратную процедуру, т.е. по проекции точки получить ее положение в пространстве, недостаточно одной ее проекции. Имея две проекции точки А и два центра проекций, можно получить точку А (рисунок 2).
Рисунок 2
Параллельное проецирование является частным случаем центрального, когда центр проекции удалён в бесконечность. В этом случае задаётся направление проецирования – луч S1 или S2. Проекцией точки А в данном случае будет точка пересечения луча, проведённого через эту точку параллельно направлению проецирования до пересечения с плоскостью проекций (рисунок 3).
Рисунок 3
Для того, чтобы по проекциям точки А получить её истинное положение в пространстве, необходимо иметь две её проекции на плоскость П. Точка пересечения лучей, восстановленных из точки А1 и А2 параллельно S1 и S2, будет являться точкой А.
Частным случаем параллельного проецирования является ортогональное проецирование. При этом направление проецирования всегда перпендикулярно плоскости проекций (рисунок 4).
Рисунок 4
В случае ортогонального проецирования, для того чтобы определить положение точки в пространстве по её проекции, необходимо ввести дополнительную плоскость проекций П2, которая была бы перпендикулярна П 1 (рисунок 5).
Рисунок 5
На рисунке 5 показано построение проекций точки А на две взаимно ортогональные плоскости П 1 и П2. И наоборот, имея две проекции точки А – А1 и А2, мы всегда можем получить положение точки А в пространстве, восстановив перпендикуляры к плоскостям проекций.
Преимущества ортогонального проецирования:
1. Простота графических построений для определения ортогональных проекций.
2. Возможность сохранить при определённых условиях на проекциях форму и размеры проецируемой фигуры.
Рисунок 6
Рисунок 6 представляет пространственное изображение точки А и плоскостей проекций, но в инженерной практике пользоваться такими изображениями не всегда удобно. Поэтому применяется плоский чертёж, на котором совмещены все три плоскости и который носит название Эпюр Монжа. Образуется он следующим образом: горизонтальная плоскость П 1 поворачивается вокруг оси Х на 90 градусов вниз до совмещения с фронтальной плоскостью, а профильная поворачивается вокруг оси Z на 90 градусов вправо. В результате получим плоское изображение всех трёх плоскостей проекций (рисунок 7). Этот чертёж называется эпюром Монжа или комплексным чертежом.
Рисунок 7
Построим проекции точки А, изображённой на рисунке 6, на эпюре Монжа. Для этого отложим по оси X (рис.7) координату точки А по оси Х – расстояние Ах. Затем из этой точки восстановим перпендикуляры к оси Х на плоскости П 2 и П1.
Вверх, на плоскость П2, отложим высоту точки А или её координату по оси Z, а вниз, на плоскость П1, откладываем глубину точки два раза. Это искажение по оси У получается из-за того, что ось У повернулась на 45 градусов по сравнению с пространственным изображением. Для того чтобы построить профильную проекцию точки А, из её фронтальной проекции А2 проводим перпендикуляр к оси Z и откладываем на нём от оси Z глубину точки или её координату по оси У. Полученные три проекции точки А(А1, А2, А3) дают полное представление о положении точки в пространстве. Этот чертёж называется комплексным чертежом точки. Линии, соединяющие проекции точки, называются линиями связи.
1. Что изучает начертательная геометрия?
2. Что называется чертежом?
3. В чем отличие начертательной геометрии от инженерной графики?
4. Назовите основные этапы развития геометрии.
5. Какие специальные символы существуют для обозначения параллельности, перпендикулярности, пересечения, скрещивания? Какие обозначения вы знаете, кроме этих?
6. В чем сущность центрального проецирования?
7. Как образуется проекция точки при параллельном проецировании?
8. Назовите основные плоскости проекций.
9. Что такое эпюр Монжа? Как он образуется?
© ФГБОУ ВПО Красноярский государственный аграрный университет
Поступив в технический или строительный ВУЗ многие однокурсники сталкиваются со сложными предметами. Для некоторых студентов сложнее всего разобраться в начертательной геометрии и понять инженерную графику. Преимущественно практические все студенты в самом начале начинают изучение именно с начертательной графики, так уж устроены образовательные программы российских технических высших учебных заведений. Обосновывается это необходимостью развить у обучающихся необходимых навыков пространственного мышления. Развить навыки пространственного мышления можно пройдя обучающие курсы 101 Курс по Автокаду. Также при изучении начертательной геометрии в сознании студента появятся теоретические основы для того, чтобы в дальнейшем изучать инженерную графику. Но большое число психологов считают, что пространственное мышление дано не всем людям, и задатки к нему есть у ограниченного числа студентов.
Преподаватели подчеркивают, что переходя от изучения начертательной геометрии к изучению инженерной графики, многие студенты значительно повышают уровень своей успеваемости. Это связано с тем, что инженерная графика предмет имеющий практическую направленность в отличии от начертательной геометрии, которая требует значительного уровня абстрактного мышления от студентов. Поэтому работу с чертежами при изучении инженерной графики студенты выполняют более успешно, чем в начертательной геометрии.
Начертательная геометрия в свою очередь должна решать задачи формирования формальной модели расширенного Евклидового пространства у обучающихся, системного подхода к решению позиционных и метрических задач, умения моделировать сложные технические формы, системы и процессы.
Чтобы решить эти задачи, необходимо пересмотреть современную учебную программу в наших вузах. Так как сейчас для выполнения этих задач не хватает количества часов для изучения некоторых разделов начертательной геометрии и инженерной графики, а также следует обратить большое внимание на формирование у студентов необходимых навыков проектирования различных геометрических форм и объектов.
Начертательная геометрия и инженерная графика
Одними из самых ”трудных” предметов для студентов первых курсов инженерных, особенно строительных, специальностей Вузов являются Начертательная геометрия и Инженерная графика.
Традиционно, в преподавательской среде, считается, что основное предназначение курса Начертательная геометрия — это развитие пространственного мышления у студентов и создание теоретической базы для последующего курса, Инженерной графики (технического черчения). Вместе с тем, не оспаривая этот тезис, нужно отметить следующее. В психологии восприятия давно уже известно, что изначально зачатками пространственного мышления обладает всего несколько процентов населения. Целенаправленный отбор, по признаку наличия пространственного мышления у абитуриентов основных технических специальностей, не ведется. Следовательно, у большей части студентов просто отсутствует то, что предполагается развивать.
Попытка же развить пространственное мышление ”на пустом месте”, вкупе с отсутствием четкого представления (у обучающего и обучаемого) о том, зачем это все нужно и приводит к такому положению, когда Начертательная геометрия попадает в разряд ”трудных” курсов.
Исторически Начертательная геометрия развивалась как прикладная математическая дисциплина, призванная решать инженерно-технические задачи с использованием графических методов. До недавнего времени она была единственным ”поставщиком” алгоритмов решения сложных инженерных задач. Глубоко формализованный математический аппарат, используемый Начертательной геометрией, позволяет ей обходиться и без пространственного представления процесса решения той или иной задачи. Наиболее характерно это задач многомерного пространства.
С точки зрения прикладной математики Начертательная геометрия является системой моделирования пространства, базирующейся на собственном методе – проецировании. В этом случае проекционные чертежи рассматриваются как плоские эквиваленты пространств различной размерности.
При таком подходе к изучению Начертательной геометрии на первый план выходит задача по изучению формальных методов реализации моделей объектов пространства на чертежах (плоских эквивалентах). А это уже не требует наличия у обучаемого пространственного мышления. Решение той или иной задачи сводится к изучению системы, правил, реализующих методы Начертательной геометрии, базирующихся на формальной логике. Рассмотрение расширенного Евклидова пространства (пространства, дополненного несобственными элементами) позволяет значительно сократить число таких правил. А подход к геометрии трехмерного пространства с точки зрения многомерного еще более упрощает задачу. Все позиционные и метрические задачи для объектов различной размерности решаются с использованием одних и тех же алгоритмов.
Рассмотрение метода двух изображений, как базового для построения чертежей объектов трехмерного расширенного Евклидова пространства, позволяет единообразно подходить к построению, как ортогональных чертежей (эпюр Монжа), так и наглядных (аксонометрии и линейная перспектива), что весьма важно в дальнейшем для изучения алгоритмов машинной графики. Переход от классического Эпюра Монжа к арифметизированному (координированному) делает осязаемой связь Начертательной геометрии с компьютерными технологиями проектирования сложных инженерных объектов.
Опытные преподаватели хорошо знают, что даже самые слабые студенты при переходе от начертательной геометрии к изучению основ Технического черчения (Инженерной графики) как бы обретают второе дыхание. Это в большей степени объясняется тем, что осуществляется переход от теоретических чертежей абстрактных геометрических объектов, таких как: точки, линии, поверхности, к чертежам реальных объектов. Абстрактное мышление, необходимое для теоретических чертежей, может быть замещено практическим, менее трудоемким для многих обучаемых.
Не смотря на то, что оба курса, Начертательная геометрия и Инженерная графика, используют общий метод построения чертежей, технические чертежи не являются точными, они условны. Правила их выполнения в, основной своей массе, базируются на ограничениях, налагаемых ГОСТами. Если исключить требование проекционной связи, то вряд ли можно найти что-нибудь объединяющее теоретические и технические чертежи. Построение технических чертежей регламентируется системой условностей и упрощений. Более того, для чертежей различных видов изделий эти условности и упрощения носят различный характер.
С учетом всего сказанного утверждение о том, что начертательная геометрия — это база для Инженерной графики, является весьма спорным. Этот тезис подтверждается и многолетним опытом работы с выпускниками колледжей и техникумов. Такие студенты очень грамотно выполняют чертежи технических изделий и совершенно беспомощны при выполнении теоретических чертежей абстрактных объектов, чертежей Начертательной геометрии.
Подводя некоторый промежуточный итог, можно сказать, что Начертательная геометрия не обеспечивает формирование и развитие пространственного мышления и не является базой для изучения Инженерной графики.
Итак, возникает вопрос, какое же место, в настоящее время, занимает Начертательная геометрия в системе подготовки специалистов технического профиля?
Как ни странно это может показаться, ответ на этот, казалось бы, риторический вопрос, может быть следующий. Начертательная геометрия является основополагающим предметом при подготовке высококвалифицированного специалиста. И это объясняется следующим.
Подготовка современного специалиста ориентирована на использование им в практической деятельности средств вычислительной техники, моделирующей те или иные производственные процессы, работу технических объектов и сами объекты. Все это базируется на формальном описании объектов и процессов. Последнее же невозможно без обращения к объектам расширенного Евклидова пространства, знания позиционных и метрических их свойств, методов их преобразования, без соответствующей ”геометрической культуры” пользователя.
Именно эту геометрическую культуру и формирует Начертательная геометрия. Основными ее задачами на нынешнем этапе становятся:
– формирование формальной модели расширенного Евклидова пространства;
– формирование системного подхода к процессу решения позицион-ных и метрических задач;
– формирование умений геометрического моделирования процессов, систем и сложных технических форм.
Решение этих задач лежит в плоскости модернизации рабочих учеб-ных программ. В пределах, допускаемых образовательными стандартами, необходимо увеличить объемы часов, планируемых на изучение разделов конструирования кривых и поверхностей. Использование в промышленности идеологии 3D проектирования требует более полной увязки методов построения ортогональных чертежей с метрически определенными чертежами ”наглядных изображений” (аксонометрии и перспективы).
При проведении практических занятий, в первую очередь, необходимо обращать внимание на выработку у студентов устойчивых навыков в конструировании геометрических объектов по наперед заданным свойствам. Нельзя противопоставлять решение задач ”в пространстве и на чертеже”, ибо чертеж, будучи эквивалентом пространства, служит только для визуализации тех или иных его объектов, в той или иной форме.
Различные методы решения на чертежах задач, в основном, определяются особенностями получения (построения) их как эквивалентов. Наибольшее внимание следует уделять тем методам решения геометрических задач, которые в дальнейшем используются в CAD/CAM системах.
Последнее справедливо и для курса инженерная графика (Техническое черчение). В первую очередь студент должен усвоить ту информацию, которая необходима для настройки системы при выполнении той или иной проектной задачи. По окончании курса Инженерная графика студент должен иметь устойчивое представление о тех общих условностях и упрощения, которые применяются при выполнении технических чертежей.
Изучение правил выполнения специальных чертежей должны быть отнесены на специальные курсы. Понимание, зачем и почему именно так выполняются эти чертежи, в большинстве случаев, невозможно без знания технологии производства. Обучение черчению не заканчивается на первом курсе вуза. Как писал В.С.Левицкий «… инженер учиться чертить всю свою сознательную жизнь …».