Ионный обмен что это
Реакции ионного обмена
Реакции ионного обмена – это реакции между сложными веществами в растворах, в результате которых реагирующие вещества обмениваются своими составными частями. Так как в этих реакциях происходит обмен ионами – они называются ионными.
| Правило Бертолле: Реакции обмена в растворах электролитов протекают до конца (возможны) только тогда, когда в результате реакции образуется либо твердое малорастворимое вещество (осадок), либо газ, либо вода или любой другой слабый электролит. |
| Например, нитрат серебра взаимодействует с бромидом калия |
AgNО3 + КВr = АgВr↓ + КNО3
Правила составления уравнений реакций ионного обмена
1. Записываем молекулярное уравнение реакции, не забывая расставить коэффициенты:
3KOH +FeCl3 = Fe(OH)3 + 3KCl
2. С помощью таблицы растворимости определяем растворимость каждого вещества. Подчеркнем вещества, которые мы не будем представлять в виде ионов.
р р н р
3KOH + FeCl3 = Fe(OH)3 + 3KCl
3. Составляем полное ионное уравнение. Сильные электролиты записываем в виде ионов, а слабые электролиты, малорастворимые вещества и газообразные вещества записываем в виде молекул.
3K + + 3OH — + Fe 3+ + 3Cl — = Fe(OH)3 + 3K + + 3Cl —
4. Находим одинаковые ионы (они не приняли участия в реакции в левой и правой частях уравнения реакции) и сокращаем их слева и справа.
3K + + 3OH — + Fe 3+ + 3Cl — = Fe(OH)3 + 3K + + 3Cl —
5. Составляем итоговое сокращенное ионное уравнение (выписываем формулы ионов или веществ, которые приняли участие в реакции).
Fe 3+ + 3OH — = Fe(OH)3
На ионы мы не разбиваем:
| Например, взаимодействие сульфида цинка и серной кислоты |
Составляем уравнение реакции и проверяем растворимость всех веществ. Сульфид цинка нерастворим.
ZnS + H2SO4 = ZnSO4 + H2S
Реакция протекает до конца, т.к. выделяется газ сероводород, который является слабым электролитом. Полное ионно-молекулярное уравнение:
ZnS + 2H + + SO4 2 — = Zn 2+ + SO4 2 — + H2S
Сокращаем ионы, которые не изменились в процессе реакции – в данном случае это только сульфат-ионы, получаем сокращенное ионное уравнение:
ZnS + 2H + = Zn 2+ + H2S
| Например, взаимодействие гидрокарбоната натрия и гидроксида натрия |
Составляем уравнение реакции и проверяем растворимость всех веществ:
NaHCO3 + NaOH = Na2CO3 + H2O
Кислые анионы слабых кислот являются слабыми электролитами и на ионы не разбиваются:
Na + + НСО3 — + Na + + ОН — = 2Na + + CO3 2- + H2O
Сокращаем одинаковые ионы, получаем сокращенное ионное уравнение:
НСО3 — + ОН — = CO3 2- + H2O
| Например, взаимодействие тетрагидроксоалюмината натрия и соляной кислоты |
Составляем уравнение реакции и проверяем растворимость всех веществ:
Na[Al(OH)4] + 4HCl = NaCl + AlCl3 + H2O
Комплексные ионы являются слабыми электролитами и на ионы не разбиваются:
Na + + [Al(OH)4] — + 4H + + 4Cl — = Na + + Cl — + Al 3+ + 3Cl — + H2O
Сокращаем одинаковые ионы, получаем сокращенное ионное уравнение:
[Al(OH)4] — + 4H + = Al 3+ + 4H2O
Ионный обмен
Ионный обмен — это обратимая химическая реакция, при которой происходит обмен ионами между твердым веществом (ионитом) и раствором электролита. Ионный обмен может происходить как в гомогенной среде (истинный раствор нескольких электролитов), так и в гетерогенной, в которой один из электролитов является твёрдым (при контакте раствора электролита с осадком, ионитом и др.).
Катио́нный обмен — частный случай ионного обмена, под которым в химии понимают обратимый процесс стехиометрического обмена ионами между двумя контактирующими фазами.
Основные принципы ионного обмена
Ионный обмен основан на использовании ионитов — сетчатых полимеров разной степени сшивки, гелевой микро- или макропористой структуры, ковалентно связанных с ионогенными группами. Обменивающиеся ионы называются противоионами. Иониты состоят из неподвижного каркаса — матрицы и функциональных групп — фиксированных ионов, которые жестко прикреплены к матрице и взаимодействуют с противоионами. В зависимости от знака заряда противоионов иониты делят на катиониты и аниониты. Если противоионы заряжены положительно, то они являются катионами (например, ионы водорода Н + или ионы металлов), ионит называют катионитом. Если противоионы заряжены отрицательно, то есть являются анионами (например, ион гидроксила ОН- или кислотные остатки), ионит называют анионитом.
Кинетика ионного обмена
Кинетика ионного обмена определяет скорость протекания ионообменной реакции. На скорость ионного обмена влияют следующие факторы:
Общая скорость процесса ионного обмена может быть представлена как совокупность процессов, происходящих в растворе (диффузия противоионов к зерну и от зерна ионита) и в ионите (диффузия противоионов от поверхности к центру зерна ионита и в обратном направлении; обмен противоионов ионита на противоионы из раствора). В условиях, приближенных к реальным условиям очистки воды, доминирующим фактором, определяющим скорость ионного обмена, является диффузия ионов внутри зерна ионита. Следовательно, скорость ионного обмена, прежде всего, зависит от размера зерна ионита и увеличивается с уменьшением размера зерна. В зависимости от природы матрицы различают неорганические и органические иониты.
Кроме того, под ионным обменом подразумевают:
Ионообменные смолы
Технология ионного обмена
Ионный обмен — разновидность обратимой химической реакции, при которой твердое вещество обменивается ионами с раствором электролита. Ионный обмен реализуется на веществах — ионитах, которые представляют собой сетчатые полимеры природного, искусственного или синтетического происхождения.
Иониты состоят из неподвижного каркаса – матрицы, и функциональных групп, которыми они обмениваются с ионами электролита. По знаку заряда обменивающихся противоионов иониты разделяют на:
Процесс ионного обмена состоит из следующих стадий:
Скорость ионного обмена зависит от следующих факторов:
Реакция ионного обмена — совокупность процессов, характерных для раствора и для самого ионита. В реальных условиях водного раствора доминирующим фактором будет диффузия ионов внутри зерна ионита. Поэтому скорость ионного обмена будет расти с уменьшением размера зерна ионита.
В водоочистке под ионным обменом понимают реакции разделения, выделения и очистки веществ, проведенные при помощи ионообменных материалов (ионообменных смол, природных цеолитов и др.).
Происхождение ионообменных смол
Неорганические природные иониты могут иметь кристаллическое или слоистое строение — цеолиты, глины, оксиды графита и др. Природные иониты чаще всего катиониты.
Иониты могут проявлять и амфотерные свойства, то есть в зависимости от условий и кислотности среды проявлять себя как катиониты или аниониты.
Синтетические ионообменные материалы (ионообменные смолы) представляют собой гибкие макромолекулы, скрепленные поперечными связями — углеводородными мостиками. Макромолекула имеет вид трехмерной сетки, в некоторых узлах которой имеются заряженные функциональные группы с нейтрализующими их противоионами.
Синтетические иониты способны к набуханию в воде, что обусловлено присутствием в их составе фиксированных гидрофильных групп. Однако полному растворению в воде препятствуют поперечные связи в составе ионообменной смолы. Стандартные умягчающие ионообменные смолы содержат около 8% сшивающего агента — дивинилбензола (ДВБ).
Степень набухания иона зависит от количественного содержания ДВБ, содержания гидрофильных ионогенных групп в составе ионита и вида противоинов, находящихся в ионите.
По внешнему виду синтетические ионообменные смолы представляют собой гранулы разных размеров и форм. Если гранулы получены в результате реакции полимеризации, то их форма почти шарообразная. Если в результате реакции поликонденсации — гранулы неправильной формы.
Характеристики ионитов
Иониты характеризуются следующими параметрами:
Селективность ионита — важная характеристика, показывающая, насколько эффективно ионит удаляет определенные противоионы в присутствии других, конкурентных противоионов. Селективность зависит от строения матрицы ионита, типов функциональных групп, содержания противоионов в растворе и т.д. [2].
Селективность ионитов растет с увеличением заряда противоиона. Если у ионов один и тот же заряд, то селективность возрастает с увеличением атомного веса. Наибольшую селективность ионит будет проявлять к противоиону с самым большим атомным весом и с наибольшим зарядом.
Типичный ряд селективности ионитов выглядит следующим образом:
В зависимости от противоиона, которым насыщен рабочий раствор, различают H-форму, Na-форму, Ca-форму и для катионитов, и OH-форму, Cl-форму для анионитов.
Еще в 19-м веке люди стали замечать, что почва (земля) обладает способностью заменять одни вещества на другие. Данный феномен был изучен учеными по всему миру и были выявлены вещества способные обменивать одни ионы на другие. Так возникли иониты — материалы, способные изменять свойства воды.
Ионообменные смолы иначе называют ионитами — это твердые вещества, способные к ионному обмену при определенных условиях. Иониты, в простонародье называемые смолами удерживают на своей поверхности ионы одних веществ (например, натрия) и с легкостью отдают их, забирая взамен ионы других веществ, например металлов, различных солей, органических веществ.
Ионный обмен — химическая реакция, обратимая. При этой реакции происходит обмен ионами между ионитом и раствором электролита (раствором солей).
Основные принципы ионного обмена
Ионный обмен основан на использовании ионитов — сетчатых полимеров разной степени сшивки, гелевой микро- или макропористой структуры, ковалентно связанных с ионогенными группами. Обменивающиеся ионы называются противоионами. Иониты состоят из неподвижного каркаса — матрицы и функциональных групп — фиксированных ионов, которые жестко прикреплены к матрице и взаимодействуют с противоионами. В зависимости от знака заряда противоионов иониты делят на катиониты и аниониты. Если противоионы заряжены положительно, то они являются катионами (например, ионы водорода Н + или ионы металлов), ионит называют катионитом. Если противоионы заряжены отрицательно, то есть являются анионами (например, ион гидроксила ОН- или кислотные остатки), ионит называют анионитом.
Кинетика ионного обмена
Кинетика ионного обмена определяет скорость протекания ионообменной реакции. На скорость ионного обмена влияют следующие факторы:
Общая скорость процесса ионного обмена может быть представлена как совокупность процессов, происходящих в растворе (диффузия противоионов к зерну и от зерна ионита) и в ионите (диффузия противоионов от поверхности к центру зерна ионита и в обратном направлении; обмен противоионов ионита на противоионы из раствора). В условиях, приближенных к реальным условиям очистки воды, доминирующим фактором, определяющим скорость ионного обмена, является диффузия ионов внутри зерна ионита. Следовательно, скорость ионного обмена, прежде всего, зависит от размера зерна ионита и увеличивается с уменьшением размера зерна. В зависимости от природы матрицы различают неорганические и органические иониты.
Кроме того, под ионным обменом подразумевают:
Видео об ионном обмене. Советский учебный фильм.
Реакции ионного обмена
Реакция ионного обмена — один из видов химических реакций, характеризующаяся выделением в продукты реакции воды, газа или осадка.
Введение, правило Бертолле
Химические реакции в растворах электролитов (кислот, оснований и солей) протекают при участии ионов. Если такие реакции не сопровождаются изменением степеней окисления, они называются реакциями двойного обмена.
В соответствии с правилом Бертолле: реакции обмена протекают только тогда, когда образуется малорастворимое соединение (осадок), легколетучее вещество (газ), или малодиссоциирующее соединение (очень слабый электролит, в том числе и вода). В таких случаях реакции будут практически не обратимы.
Изображение реакций ионного обмена
Реакцию обмена в растворе принято изображать тремя уравнениями: молекулярным, полным ионным и сокращённым ионным. В ионном уравнении слабые электролиты, газы и малорастворимые вещества изображают молекулярными формулами.
Правила написания реакций двойного обмена
Полезное
Смотреть что такое “Реакции ионного обмена” в других словарях:
Реакции химические — Химическая реакция превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). В отличие от ядерных реакций, при химических реакциях ядра атомов не меняются … Википедия
Химические реакции — Химическая реакция превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). В отличие от ядерных реакций, при химических реакциях ядра атомов не… … Википедия
ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ — (р ции окисления восстановления) происходят с изменением степени окисления атомов, входящих в состав реагирующих в в. При окислении в в степень окисления элементов возрастает, при восстановлении понижается. Первоначально окислением называли… … Химическая энциклопедия
Ионный обмен — Ионный обмен это обратимая химическая реакция, при которой происходит обмен ионами между твердым веществом (ионитом) и раствором электролита. Ионный обмен может происходить как в гомогенной среде (истинный раствор нескольких электролитов),… … Википедия
Геобаротермометрия — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (11 мая 2011) … Википедия
Актиноиды — Общие сведения Состав группы торий, протактиний, уран, нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделевий, нобелий … Википедия
Химическая реакция — Химическая реакция превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). В отличие от ядерных реакций, при химических реакциях ядра атомов не… … Википедия
Катионный обмен — Ионный обмен обмен ионов между двумя электролитами. Ионный обмен может происходить как в гомогенной среде (истинный раствор нескольких электролитов), так и в гетерогенной, в которой один из электролитов является твёрдым (при контакте раствора… … Википедия
Химический процесс — Химическая реакция превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). В отличие от ядерных реакций, при химических реакциях ядра атомов не меняются … Википедия
Нитрат меди(II) — Нитрат меди(II) … Википедия
