Используя результат описанного выше опыта джоуля определите чему равна удельная теплоемкость воды
Удельная теплоемкость вещества
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Нагревание и охлаждение
Эти два процесса знакомы каждому. Вот нам захотелось чайку, и мы ставим чайник, чтобы нагреть воду. Или ставим газировку в холодильник, чтобы охладить.
Логично предположить, что нагревание — это увеличение температуры, а охлаждение — ее уменьшение. Все, процесс понятен, едем дальше.
Но не тут-то было: температура меняется не «с потолка». Все завязано на таком понятии, как количество теплоты. При нагревании тело получает количество теплоты, а при нагревании — отдает.
В процессах нагревания и охлаждения формулы для количества теплоты выглядят так:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует и изменение температуры, о котором мы сказали выше, и удельная теплоемкость, речь о которой пойдет дальше.
А вот теперь поговорим о видах теплопередачи.
Виды теплопередачи
Здесь все совсем несложно, их всего три: теплопроводность, конвекция и излучение.
Теплопроводность
Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.
Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.
Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.
Конвекция
Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.
Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.
Излучение
Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.
Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.
Удельная теплоемкость: понятие и формула для расчета
Формулы количества теплоты для нагревания и охлаждения мы уже разбирали, но давайте еще раз:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует такая величина, как удельная теплоемкость. По сути своей — это способность материала получать или отдавать тепло.
С точки зрения математики удельная теплоемкость вещества — это количество теплоты, которое надо к нему подвести, чтобы изменить температуру 1 кг вещества на 1 градус Цельсия:
Удельная теплоемкость вещества
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Также ее можно рассчитать через теплоемкость вещества:
Удельная теплоемкость вещества
c — удельная теплоемкость вещества [Дж/кг*˚C]
C — теплоемкость вещества [Дж/˚C]
Величины теплоемкость и удельная теплоемкость означают практически одно и то же. Отличие в том, что теплоемкость — это способность всего вещества к передаче тепла. То есть формулу количества теплоты для нагревания тела можно записать в таком виде:
Количество теплоты, необходимое для нагревания тела
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!
Таблица удельных теплоемкостей
Удельная теплоемкость — табличная величина. Часто ее указывают в условии задачи, но при отсутствии в условии — можно и нужно воспользоваться таблицей. Ниже приведена таблица удельных теплоемкостей для некоторых (многих) веществ.
8.2. Нагретый кирпич массой 3 кг опускают в холодную воду. Остывая на 1°С кирпич отдает воде количество теплоты, примерно равное 2700 Дж. Вычислите удельную теплоемкость кирпича.
8.3. Проанализируйте числовые данные, приведенные в таблице 1 учебника, и ответьте на вопросы.
а) У какого металла удельная теплоемкость самая маленькая?
У золота
б) Вычислите, во сколько раз удельная теплоемкость меди меньше, чем удельная теплоемкость стали.
8.4. Вычислите и запишите в таблицу количество теплоты, которое необходимо передать серебряным образцам массой m (см. табл.), чтобы их температура изменилась от t1 до t2. Известно, что для нагревания 1 кг серебра на 1°С необходимо затратить количество теплоты, равное 250 Дж (см. табл. 1 учебника).
8.5. Для сопоставления между собой удельных теплоемкостей двух жидкостей провели эксперимент. В первый сосуд налили 1 кг воды, а во второй – 1 кг подсолнечного масла. Жидкости нагревали с помощью одинаковых нагревателей, отдающих одинаковые количество теплоты за один и тот же промежуток времени. В ходе эксперимента измерялась температура жидкостей в разные моменты времени. Результаты измерений заносили в таблицу.
а) Постройте графики зависимости температуры воды и подсолнечного масла от времени.
б) По данным таблицы оцените, во сколько раз удельная теплоемкость одной жидкости больше удельной теплоемкости другой.
Теплоемкость воды примерно в 2,5 раза больше теплоемкости масла.
Удельная теплоемкость
Содержание
Вам уже известно, что количество теплоты зависит от массы вещества, разности температур и рода вещества. Количество теплоты ($Q$) в СИ измеряется в джоулях ($Дж$).
В данном уроке мы рассмотрим это новое для нас определение, узнаем его физическое значение, познакомимся с удельной теплоемкостью различных веществ.
Удельная теплоемкость вещества
Рассмотрим на примерах, как удельная теплоемкость характеризует вещество.
Единица измерения удельной теплоемкости
Удельная теплоемкость обозначается буквой $c$.
Измеряется удельная теплоемкость вещества в $\frac<Дж><кг \cdot \degree C>$.
Из этого значения мы можем сказать, что:
Табличные значения удельной теплоемкости
Существуют уже известные значения удельной теплоемкости различных веществ. Они представлены таблице 1.
Вещество | $c, \frac<Дж><кг \cdot \degree C>$ | Вещество | $c, \frac<Дж><кг \cdot \degree C>$ |
Золото | 130 | Песок | 820 |
Ртуть | 140 | Стекло | 840 |
Свинец | 140 | Кирпич | 880 |
Олово | 230 | Алюминий | 920 |
Серебро | 250 | Масло подсолнечное | 1700 |
Медь | 400 | Лед | 2100 |
Цинк | 400 | Керосин | 2100 |
Латунь | 400 | Эфир | 2350 |
Железо | 460 | Дерево (дуб) | 2400 |
Сталь | 500 | Спирт | 2500 |
Чугун | 540 | Вода | 4200 |
Графит | 750 | Гелий | 5200 |
Таблица 1. Удельные теплоемкости некоторых веществ.
Удельная теплоемкость и агрегатные состояния вещества
Давайте взглянем в таблицу 1 и сравним значения удельной теплоемкости льда и воды.
Удельная теплоемкость вещества, находящегося в различных агрегатных состояниях, различна.
Удельная теплоемкость
Содержание
Вам уже известно, что количество теплоты зависит от массы вещества, разности температур и рода вещества. Количество теплоты ($Q$) в СИ измеряется в джоулях ($Дж$).
В данном уроке мы рассмотрим это новое для нас определение, узнаем его физическое значение, познакомимся с удельной теплоемкостью различных веществ.
Удельная теплоемкость вещества
Рассмотрим на примерах, как удельная теплоемкость характеризует вещество.
Единица измерения удельной теплоемкости
Удельная теплоемкость обозначается буквой $c$.
Измеряется удельная теплоемкость вещества в $\frac<Дж><кг \cdot \degree C>$.
Из этого значения мы можем сказать, что:
Табличные значения удельной теплоемкости
Существуют уже известные значения удельной теплоемкости различных веществ. Они представлены таблице 1.
Вещество | $c, \frac<Дж><кг \cdot \degree C>$ | Вещество | $c, \frac<Дж><кг \cdot \degree C>$ |
Золото | 130 | Песок | 820 |
Ртуть | 140 | Стекло | 840 |
Свинец | 140 | Кирпич | 880 |
Олово | 230 | Алюминий | 920 |
Серебро | 250 | Масло подсолнечное | 1700 |
Медь | 400 | Лед | 2100 |
Цинк | 400 | Керосин | 2100 |
Латунь | 400 | Эфир | 2350 |
Железо | 460 | Дерево (дуб) | 2400 |
Сталь | 500 | Спирт | 2500 |
Чугун | 540 | Вода | 4200 |
Графит | 750 | Гелий | 5200 |
Таблица 1. Удельные теплоемкости некоторых веществ.
Удельная теплоемкость и агрегатные состояния вещества
Давайте взглянем в таблицу 1 и сравним значения удельной теплоемкости льда и воды.
Удельная теплоемкость вещества, находящегося в различных агрегатных состояниях, различна.
Удельная теплоемкость
Содержание
Вам уже известно, что количество теплоты зависит от массы вещества, разности температур и рода вещества. Количество теплоты ($Q$) в СИ измеряется в джоулях ($Дж$).
В данном уроке мы рассмотрим это новое для нас определение, узнаем его физическое значение, познакомимся с удельной теплоемкостью различных веществ.
Удельная теплоемкость вещества
Рассмотрим на примерах, как удельная теплоемкость характеризует вещество.
Единица измерения удельной теплоемкости
Удельная теплоемкость обозначается буквой $c$.
Измеряется удельная теплоемкость вещества в $\frac<Дж><кг \cdot \degree C>$.
Из этого значения мы можем сказать, что:
Табличные значения удельной теплоемкости
Существуют уже известные значения удельной теплоемкости различных веществ. Они представлены таблице 1.
Вещество | $c, \frac<Дж><кг \cdot \degree C>$ | Вещество | $c, \frac<Дж><кг \cdot \degree C>$ |
Золото | 130 | Песок | 820 |
Ртуть | 140 | Стекло | 840 |
Свинец | 140 | Кирпич | 880 |
Олово | 230 | Алюминий | 920 |
Серебро | 250 | Масло подсолнечное | 1700 |
Медь | 400 | Лед | 2100 |
Цинк | 400 | Керосин | 2100 |
Латунь | 400 | Эфир | 2350 |
Железо | 460 | Дерево (дуб) | 2400 |
Сталь | 500 | Спирт | 2500 |
Чугун | 540 | Вода | 4200 |
Графит | 750 | Гелий | 5200 |
Таблица 1. Удельные теплоемкости некоторых веществ.
Удельная теплоемкость и агрегатные состояния вещества
Давайте взглянем в таблицу 1 и сравним значения удельной теплоемкости льда и воды.
Удельная теплоемкость вещества, находящегося в различных агрегатных состояниях, различна.