Как подобрать полевой транзистор по параметрам
Как подобрать аналог транзистора

Для чего это нужно? Бывает так, что ремонтируя какой-нибудь прибор, скажем, импульсный блок питания, пользователь оказывается вынужден обратиться в ближайший магазин электронных компонентов, но в ассортименте не находится именно такого транзистора, который вышел из строя в схеме прибора. Тогда и приходится выбирать из того, что есть в наличии, то есть подбирать аналог.
А бывает еще и так, что сгоревший транзистор на плате был из тех, которые уже сняты с производства, и тогда как нельзя кстати приходится доступный в сети даташит, где параметры можно посмотреть, и по ним подобрать подходящий аналог из ныне доступных. Так или иначе, нужно знать, по каким параметрам выбирать, об этом и пойдет речь далее.
Биполярные транзисторы
Для начала поговорим о биполярных транзисторах. Главными характеристиками здесь выступают:
максимальное напряжение коллектор-эмиттер,
максимальный ток коллектора,
максимальная рассеиваемая корпусом транзистора мощность,
коэффициент передачи по току.
Первым делом оценивают схему в целом. На какой частоте работает прибор? Насколько быстрым должен быть транзистор? Лучше всего, если рабочая частота прибора будет в 10 и много более раз ниже граничной частоты транзистора. Например fгр равна 30 МГц, а рабочая частота прибора, где транзистор будет работать, составляет 50 кГц.
Если же заставить транзистор работать на частоте близкой к граничной, то коэффициент передачи по току станет стремиться к единице, и для управления потребуется много энергии. Поэтому пусть граничная частота подбираемого аналога будет больше или равна граничной частоте транзистора, который нужно заменить.
Следующим шагам обращают внимание на мощность, которую сможет транзистор рассеять. Здесь же смотрят на максимальный ток коллектора и на предельное значение напряжения коллектор-эмиттер. Максимальный ток коллектора должен быть выше максимального тока в управляемой транзистором цепи. Максимальное напряжение коллектор-эмиттер у выбираемого транзистора должно быть выше предельного напряжения в управляемой цепи.
Если параметры подбираются исходя из даташита на заменяемый компонент, то подбираемый аналог по предельному напряжению и предельному току должен соответствовать или превосходить заменяемый транзистор. Например, если сгорел транзистор, предельное напряжение коллектор-эмиттер которого было 80 вольт, а максимальный ток составлял 10 ампер, то в этом случае аналог с максимальными параметрами по току и напряжению 15 ампер и 230 вольт — подойдет в качестве замены.
Далее оценивают коэффициент передачи по току h21. Данный параметр указывает на то, во сколько раз ток коллектора превосходит ток базы в процессе управления транзистором. Приоритет лучше отдавать транзисторам со значением этого параметра большим или равным h21 исходного компонента, хотя бы приблизительно.
Нельзя ставить вместо транзистора с h21 = 30, транзистор с h21 = 3, управляющая цепь просто не справится или сгорит, а прибор не сможет нормально работать, лучше, если аналог будет иметь h21 на уровне 30 или больше, например 50. Чем выше коэффициент усиления по току, тем проще транзистором управлять, тем выше КПД управления, ток базы меньше, ток коллектора — больше.
Транзистор без лишних затрат входит в насыщение. Если же прибор, куда подбирается транзистор, отличается повышенным требованием к коэффициенту передачи по току, то пользователю следует подобрать аналог с более близким к оригиналу h21, либо придется внести изменения в цепь управления базой.
Наконец, смотрят на напряжение насыщения, напряжение коллектор-эмиттер открытого транзистора. Чем оно меньше, тем меньше мощности будет рассеиваться на корпусе компонента в виде тепла. И важно отметить, сколько реально в схеме придется транзистору рассеивать тепла, максимальное значение рассеиваемой корпусом мощности приводится в документации (в даташите).
Умножьте ток коллекторной цепи на напряжение, которое будет падать на переходе коллектор-эмиттер в процессе работы схемы, и сравните с максимально допустимой для корпуса транзистора тепловой мощностью. Если реально выделяемая мощность окажется больше предела, транзистор быстро сгорит.
Так, биполярный транзистор 2N3055 можно смело заменить на КТ819ГМ и наоборот. Сравнив их документацию, можно прийти к выводу, что это почти полные аналоги, как по структуре (оба NPN), так и по типу корпуса и по основным параметрам, важным для равно эффективной работы в аналогичных режимах.
Полевые транзисторы
Теперь поговорим о полевых транзисторах. Полевые транзисторы широко применяются сегодня, в некоторых устройствах, например в инверторах они почти полностью вытеснили собой биполярные транзисторы. Полевые транзисторы управляются напряжением, электрическим полем заряда затвора, и поэтому управление получается менее затратным, нежели в биполярных транзисторах, где управление осуществляется током базы.
Полевые транзисторы намного быстрее переключаются в сравнении с биполярными, обладают повышенной термоустойчивочтью, и не имеют неосновных носителей заряда. Чтобы обеспечить коммутацию значительных токов, полевые транзисторы можно соединять параллельно в большом количестве без выравнивающих резисторов, достаточно подобрать подходящий драйвер.
Итак, что касается подбора аналогов полевых транзисторов, то здесь алгоритм тот же, что и при подборе биполярных аналогов, с той лишь разницей, что отпадает проблема с коэффициентом передачи по току и дополнительно появляется такой параметр как емкость затвора. Максимальное напряжение сток-исток, максимальный ток стока. Лучше выбрать с запасом, чтобы наверняка не сгорел.
У полевых транзисторов нет такого параметра как напряжение насыщения, зато есть параметр «сопротивление канала в открытом состоянии». Исходя из этого параметра можно определить, какая мощность будет рассеиваться на корпусе компонента. Сопротивление открытого канала может составлять от долей ома до единиц ом.
У высоковольтных полевых транзисторов сопротивление открытого канала, как правило, больше одного ома, и это нужно обязательно брать в расчет. Если удастся выбрать аналог с меньшим сопротивлением открытого канала, то и тепловых потерь будет меньше, и падение напряжения на переходе не будет в открытом состоянии критически высоким.
Крутизна характеристики S у полевых транзисторов – аналог коэффициента передачи по току биполярных транзисторов. Этот параметр показывает зависимость тока стока от напряжения затвора. Чем выше крутизна характеристики S, тем меньшее напряжение нужно подать на затвор для коммутации значительного тока стока.
Не нужно забывать при выборе аналога и про пороговое напряжение затвора, ведь если напряжение на затворе будет ниже порогового, то транзистор полностью не откроется, и коммутируемая цепь не получит достаточного питания, всю мощность придется рассеивать транзистору, и он просто перегреется. Напряжение управления затвором должно быть выше порогового. Аналог должен иметь пороговое напряжение затвора не выше чем оригинал.
Мощность рассеяния полевого транзистора аналогична мощности рассеяния биполярного транзистора, этот параметр указан в даташите, и зависит, как и в случае с биполярными транзисторами, от типа корпуса. Чем больше корпус компонента, тем большую тепловую мощность сможет он безопасно для себя рассеять.
Емкость затвора. Поскольку полевые транзисторы управляются напряжением затвора, а не током базы, как биполярные транзисторы, то здесь вводится такой параметр как емкость затвора и полный заряд затвора. При выборе аналога на замену оригиналу, обратите внимание на то, чтобы затвор у аналога не был тяжелее.
Емкость затвора лучше всего, если окажется чуть меньше, таким полевым транзистором проще управлять, фронты получатся круче. Однако если затворные резисторы в схеме управления вы перепаивать не намерены, то пусть емкость затвора будет максимально близкой к оригиналу.
Так, очень распространенные несколько лет назад, IRFP460 заменяют на 20N50, у которого затвор немного легче. Если обратиться к даташитам, то легко заметить почти полное сходство параметров этих полевых транзисторов.
Надеемся, что эта статья помогла вам разобраться в том, на какие характеристики нужно ориентироваться, чтобы подобрать подходящий аналог транзистора.
Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!
Записывайтесь в онлайн-университет от GeekBrains:
Изучить C, механизмы отладки и программирования микроконтроллеров;
Получить опыт работы с реальными проектами, в команде и самостоятельно;
Получить удостоверение и сертификат, подтверждающие полученные знания.
Starter box для первых экспериментов в подарок!
После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.
Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.
Как выбрать mosfet.
1. Для начала надо узнать напряжение цепи в которой будет работать транзистор, это напряжение будет приложено к выводам Drain и Source.
Далее, необходимо отобрать транзисторы параметр Vds(Drain to Source Voltage ) которых минимум в 1.5 — 2 раза выше.
2. Другой не менее важный параметр — это ток, который мы хотим пропустить через транзистор. Максимальное значение тока, который можно пропустить через mosfet определяет параметр Id(Drain Current). Его значение также должно превышать реальный ток в 1.5 — 2 раза. Но это ещё не все, Id, в свою очередь, зависит от температуры.
На графике видно, что с увеличением температуры корпуса ток, который может пропустить через себя транзистор уменьшается. Поэтому реальное значение Id надо выбирать исходя из того, при какой температуре mosfet будет работать.
3.Так как мы собираемся управлять нагрузкой, у нас наверняка должна быть управляющая схема и нам необходимо узнать какое напряжение у неё на выходе. Это напряжение подаётся на вывод, именуемый затвором или gate.
Напряжение на затворе транзистора ограничивают два параметра:
Зная Rds можно найти ток, который потечёт через транзистор, для этого надо к сопротивлению нагрузки прибавить значение Rds и напряжение цепи поделить на получившееся сопротивление.
5.Осталось только разобраться какая мощность будет выделяться на кристалле и способен ли эту мощность рассеять транзистор. И здесь есть один нюанс, обычно в даташите указывают максимальную мощность кристалла при температуре корпуса 25°
Как подобрать замену для MOSFET-транзистора
На что нужно обратить внимание
Открыв PDF-даташит, в первую очередь надо выяснить: тип транзистора (MOSFET или JFET), полярность, тип корпуса, расположение выводов (цоколевку).
Для MOSFET-транзистора важным параметром является сопротивление сток-исток открытого транзистора (Rds). От значения Rds зависит мощность, выделяемая на транзисторе. Чем меньше значение Rds, тем меньше транзистор будет нагреваться.
Однако необходимо помнить, что чем больше Id и меньше Rds, тем больше ёмкость затвора у MOSFET-транзистора. Это приводит к тому, что требуется большая мощность для управления этим затвором. А если схема не обеспечит нужную мощность, то возрастут динамические потери из-за замедленной скорости переключения транзистора и, как итог, MOSFET будет больше нагреваться. Поэтому необходимо проверить температурный режим (нагрев) транзистора после включения устройства. Если транзистор сильно нагревается, то дело может быть как в самом транзисторе, так и в элементах его обвязки.
Расшифровка основных параметров MOSFET-транзисторов
Тип транзистора – в реальных устройствах могут использоваться полевые транзисторы разных типов: транзистор с управляющим p-n – переходом (J-FET) или униполярные транзисторы МДП-типа (MOSFET).
Предельно допустимое напряжение затвор-исток (Vgs) – при подаче на затвор напряжения более допустимого, возможно повреждение изолирующего оксидного слоя затвора (это может быть и статическое электричество). Не стоит использовать транзисторы с большим запасом по напряжениям Vds и Vgs, т.к. обычно они имеют худшие скоростные характеристики.
Максимально допустимый постоянный ток стока (Id) – следует иметь ввиду, что иногда выводы из корпуса транзистора ограничивают максимально допустимый постоянный ток стока (переключаемый ток может быть больше). С ростом температуры максимально допустимый ток уменьшается.
Общий заряд затвора (Qg) — заряд, который нужно сообщить затвору для открытия транзистора. Чем меньше этот параметр, тем меньшая мощность требуется для управления транзистором.
Выше описаны наиболее важные параметры MOSFET-транзисторов. В даташитах производитель указывает много дополнительных параметров: заряд затвора, ток утечки затвора, импульсный ток стока, входная емкость и др.
Что важно учесть при монтаже MOSFET-транзистора
При работе с MOSFET транзисторами нужно учесть, что они могут быть повреждены статическим электричеством на ваших руках или одежде. Перед монтажом на печатную плату необходимо соединить выводы транзистора между собой тонкой проволокой. Для пайки лучше используйте паяльную станцию, а не обычный электрический паяльник. Вместо отсоса для удаления припоя используйте медную ленту для удаления припоя. Это уменьшит вероятность пробоя затвора статическим электричеством. Или используйте антистатический браслет.
Как подобрать аналог полевого транзистора?
Сразу оговоримся, что речь пойдет о подборе аналогов N-канальных, «logic-level», полевых транзисторов которые можно встретить в цепях питания на материнских платах и видеокартах. Logic-level, в данном случае, означает, что речь идет о приборах которые управляются, т.е. способны полностью открывать переход Drain to Source, при приложении с затвору относительно небольшого, до 5 вольт, напряжения.
Содержание
Как может выглядеть полевый транзистор
Как правило на место прибора в корпусе D²PAK без проблем ставиться аналогичный но в корпусе DPAK.
При определенной сноровке можно на посадочное место под DPAK «раскорячить» D²PAK, хотя выглядеть будет не эстетично.
LFPAK естественно без проблем меняется на SO-8 с одним N-канальным транзистором, и наоборот.
В остальных случаях необходимо подбирать прибор в полностью аналогичном корпусе.
Где может использоваться полевый транзистор
Выше мы договорись что рассматриваем только подсистему питания, посему вариантов немного:
Система маркировки полевых транзисторов
Рассмотрим оную на примере. Пускай, у нас есть 20N03. Это означает, что он рассчитан на напряжение (Vds)
20A. Буковка N означает, что это N-канальный транзистор. Но из любого правила есть исключения, так, например, фирма Infineon указывает в маркировке полевика Rds, а не максимальный ток.
Основные характеристики N-канального полевого транзистора
В общем различных параметров важных, и не очень, у полевых транзисторов много. Мы подойдем к вопросу с прикладной точки зрения и ограничимся рассмотрением необходимых нам практически параметров.
Хочу обратить внимание что параметр Rds(on) может указываться при разных напряжениях затвор-исток, как правило это 10 и 4.5 вольта, это важная особенность которую нужно обязательно учитывать.
Степень критичности параметров в разных применениях
Параметры MOSFET транзисторов
Основные параметры мощных транзисторов
Технологические возможности и успехи в разработке мощных полевых транзисторов привели к тому, что в настоящее время не составляет особого труда приобрести их за приемлемую цену.
В связи с этим возрос интерес радиолюбителей к применению таких MOSFET транзисторов в своих электронных самоделках и проектах.
Стоит отметить тот факт, что MOSFET’ы существенно отличаются от своих биполярных собратьев, как по параметрам, так и своему устройству.
Пришло время ближе познакомиться с устройством и параметрами мощных MOSFET транзисторов, чтобы в случае необходимости более осознанно подобрать аналог для конкретного экземпляра, а также иметь возможность понимать суть тех или иных величин, указанных в даташите.
Что такое HEXFET транзистор?
В семействе полевых транзисторов есть отдельная группа мощных полупроводниковых приборов называемых HEXFET. Их принцип работы основан на весьма оригинальном техническом решении. Их структура представляет собой несколько тысяч МОП ячеек включенных параллельно.
Ячеистые структуры образуют шестиугольник. Из-за шестиугольной или по-другому гексагональной структуры данный тип мощных МОП-транзисторов и называют HEXFET. Первые три буквы этой аббревиатуры взяты от английского слова hexagonal – «гексагональный».
Под многократным увеличением кристалл мощного HEXFET транзистора выглядит вот так.
Как видим, он имеет шестиугольную структуру.
Получается, что мощный MOSFET, по сути представляет собой эдакую супер-микросхему, в которой объединены тысячи отдельных простейших полевых транзисторов. В совокупности они создают один мощный транзистор, который может пропускать через себя большой ток и при этом практически не оказывать значительного сопротивления.
Благодаря особой структуре и технологии изготовления HEXFET, сопротивление их канала RDS(on) удалось заметно снизить. Это позволило решить проблему коммутации токов в несколько десятков ампер при напряжении до 1000 вольт.
Вот только небольшая область применения мощных HEXFET транзисторов:
Схемы коммутации электропитания.
Системы управления электродвигателями.
Усилители низкой частоты.
Ключи для управления мощными нагрузками.
Несмотря на то, что мосфеты, изготовленные по технологии HEXFET (параллельных каналов) обладают сравнительно небольшим сопротивлением открытого канала, сфера применения их ограничена, и они применяются в основном в высокочастотных сильноточных схемах. В высоковольтной силовой электронике предпочтение порой отдают схемам на основе IGBT.

Транзисторы HEXFET марки IRLZ44ZS
Изображение MOSFET транзистора на принципиальной электрической схеме (N-канальный МОП).
Как и биполярные транзисторы, полевые структуры могут быть прямой проводимости или обратной. То есть с P-каналом или N-каналом. Выводы обозначаются следующим образом:
О том, как обозначаются полевые транзисторы разных типов на принципиальных схемах можно узнать на этой странице.
Основные параметры полевых транзисторов.
Вся совокупность параметров MOSFET может потребоваться только разработчикам сложной электронной аппаратуры и в даташите (справочном листе), как правило, не указывается. Достаточно знать основные параметры:
VDSS (Drain-to-Source Voltage) – напряжение между стоком и истоком. Это, как правило, напряжение питания вашей схемы. При подборе транзистора всегда необходимо помнить о 20% запасе.
ID (Continuous Drain Current) – ток стока или непрерывный ток стока. Всегда указывается при постоянной величине напряжения затвор-исток (например, VGS=10V). В даташите, как правило, указывается максимально возможный ток.
RDS(on) (Static Drain-to-Source On-Resistance) – сопротивление сток-исток открытого канала. При увеличении температуры кристалла сопротивление открытого канала увеличивается. Это легко увидеть на графике, взятом из даташита одного из мощных HEXFET транзисторов. Чем меньше сопротивление открытого канала (RDS(on)), тем лучше мосфет. Он меньше греется.
PD (Power Dissipation) – мощность транзистора в ваттах. По-иному этот параметр ещё называют мощностью рассеяния. В даташите на конкретное изделие величина данного параметра указывается для определённой температуры кристалла.
VGS (Gate-to-Source Voltage) – напряжение насыщения затвор-исток. Это напряжение, при превышении которого увеличения тока через канал не происходит. По сути, это максимальное напряжение между затвором и истоком.
VGS(th) (Gate Threshold Voltage) – пороговое напряжение включения транзистора. Это напряжение, при котором происходит открытие проводящего канала и он начинает пропускать ток между выводами истока и стока. Если между выводами затвора и истока приложить напряжение меньше VGS(th), то транзистор будет закрыт.
На графике видно, как уменьшается пороговое напряжение VGS(th) при увеличении температуры кристалла транзистора. При температуре 175 0 C оно составляет около 1 вольта, а при температуре 0 0 C около 2,4 вольт. Поэтому в даташите, как правило, указывается минимальное (min.) и максимальное (max.) пороговое напряжение.

Предельное напряжение сток-исток (VDSS): 55 Вольт.
Максимальный ток стока (ID): 51 Ампер.
Предельное напряжение затвор-исток (VGS): 16 Вольт.
Сопротивление сток-исток открытого канала (RDS(on)): 13,5 мОм.
Максимальная мощность (PD): 80 Ватт.
Сопротивление открытого канала IRLZ44ZS составляет всего лишь 13,5 миллиОм (0,0135 Ом)!
Взглянем на «кусочек» из таблицы, где указаны максимальные параметры.
Хорошо видно, как при неизменном напряжении на затворе, но при повышении температуры уменьшается ток (с 51A (при t=25 0 C) до 36А (при t=100 0 С)). Мощность при температуре корпуса 25 0 С равна 80 Ваттам. Так же указаны некоторые параметры в импульсном режиме.
Транзисторы MOSFET обладают большим быстродействием, но у них есть один существенный недостаток – большая ёмкость затвора. В документах входная ёмкость затвора обозначается как Ciss (Input Capacitance).
На что влияет ёмкость затвора? Она в большой степени влияет на определённые свойства полевых транзисторов. Поскольку входная ёмкость достаточно велика, и может достигать десятков пикофарад, применение полевых транзисторов в цепях высокой частоты ограничивается.
В схемах переключения время заряда паразитной входной ёмкости транзистора влияет на скорость его срабатывания.
Важные особенности MOSFET транзисторов.

При хранении все выводы МОП-транзистора лучше закоротить с помощью обычной алюминиевой фольги. Это уменьшит риск пробоя затвора статическим электричеством. При монтаже его на печатную плату лучше использовать паяльную станцию, а не обычный электрический паяльник.
Дело в том, что обычный электрический паяльник не имеет защиты от статического электричества и не «развязан» от электросети через трансформатор. На его медном жале всегда присутствуют электромагнитные «наводки» из электросети.
Любой всплеск напряжения в электросети может повредить паяемый элемент. Поэтому, впаивая полевой транзистор в схему электрическим паяльником, мы рискуем повредить MOSFET-транзистор.





















