Какие параметры измеряет осциллограф
Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз
Осциллограф — устройство, демонстрирующие силу тока, напряжение, частоты и сдвиг фаз электрической цепи. Прибор отображает соотношение времени и интенсивности электрического сигнала. Все значения изображены при помощи простого двумерного графика.
Для чего предназначен осциллограф
Осциллограф используется электронщиками и радиолюбителями для того, чтобы измерить:
Несмотря на то, что осциллограф демонстрирует характеристики анализируемого сигнала, чаще его используют для выявления процессов происходящих в электрической цепи. Благодаря осциллограмме специалисты получают следующую информацию:
Большинство из этих данных можно получить при помощи вольтметра. Однако тогда придётся производить замеры с частотностью в несколько секунд. При этом велик процент погрешности вычислений. Работа с осциллографом значительно экономит время получения необходимых данных.
Принцип действия осциллографа
Осциллограф выполняет замеры при помощи электронно-лучевой трубки. Это лампа, которая фокусирует анализируемый ток в луч. Он попадает на экран прибора, отклоняясь в двух перпендикулярных направлениях:
За отклонение луча отвечают две пары пластин электронно-лучевой трубки. Те, что расположены вертикально, всегда находятся под напряжением. Это помогает распределять разнополюсные значения. Положительное притяжение отклоняется вправо, отрицательное — влево. Таким образом, линия на экране прибора движется слева направо с постоянной скоростью.
На горизонтальные пластины также действует электрический ток, что отклоняет демонстрирующий показатель напряжения луча. Положительный заряд — вверх, отрицательный — вниз. Так на дисплее устройства появляется линейный двухмерный график, который называется осциллограммой.
Расстояние, которое проходит луч от левого до правого края экрана называется развёрткой. Линия по горизонтали отвечает за время измерения. Помимо стандартного линейного двухмерного графика существует также круглые и спиральные развёртки. Однако пользоваться ими не так удобно как классическими осциллограммами.
Классификация и виды
Различают два основных вида осциллографов:
По принципу действия существуют следующая классификация:
Универсальные приборы предназначены для разнообразных электрических устройств. Они позволяют измерять сигналы в диапазоне от нескольких наносекунд. Погрешность измерений составляет 6-8%.
Универсальные осциллографы делятся на два основных вида:
Специальные устройства разрабатываются под определённый вид электрической техники. Так существуют осциллографы для радиосигнала, телевизионного вещания или цифровой техники.
Универсальные и специальные устройства делятся на:
При выборе устройства следует внимательно изучить классификации и виды, чтобы приобрести прибор под конкретную ситуацию.
Устройство и основные технические параметры
Каждый прибор имеет ряд следующих технических характеристик:
Помимо перечисленных выше основных значений, у осциллографов присутствуют дополнительные параметры, в виде амплитудно-частотная характеристики, демонстрирующей зависимость амплитуды от частоты сигнала.
Цифровые осциллографы также обладают величиной внутренней памяти. Этот параметр отвечает за количество информации, которую аппарат может записать.
Как выполняются измерения
Экран осциллографа поделён на небольшие клетки, которые называются делениями. В зависимости от прибора каждый квадрат будет равен определённому значению. Наиболее популярное обозначение: одно деление – 5 единиц. Также на некоторых приборах присутствует ручка для управления масштабом графика, чтобы пользователям было удобнее и точнее производить измерения.
Прежде чем начать измерение любого рода следует присоединить осциллограф к электрической цепи. Щуп подключается на любой из свободных каналов (если в приборе, больше чем 1 канал) или на генератор импульсов, при его наличии в устройстве. После подключения на дисплее аппарата появятся различные изображения сигналов.
Если сигнал получаемый прибором обрывистый, то проблема заключается в присоединении щупа. Некоторые из них оборудованы миниатюрными винтами, которые необходимо закрутить. Также в цифровых осциллографах решает проблему обрывистого сигнала фикция автоматического позиционирования.
Что такое осцилограф и для чего он нужен
Чтобы отремонтировать современную электронную технику одного мультиметра порой недостаточно. Им можно определить целостность радиодеталей. Но определить работает или нет микросхема мультиметром не получится. Для этого нужен осциллограф. Что это за прибор, что он делает? Об этом и будет статья.
Что такое осциллограф
Осциллограф — это прибор для визуального отображения и измерений параметров сигналов различной формы (процесс называется «осциллографирование»). Сигналы подаются на вход и отображаются на экране. Экран разбит на квадраты, по центру проходят две оси координат. По горизонтали измеряется время. По вертикали — амплитуда и/или напряжение. Цена деления задается при помощи ручек калибровки. Режим отображения подстраивается под каждый сигнал. Выбирается такой режим, который наиболее удобен в данном случае (в пределах возможностей прибора).
Осциллограф — это не обязательно большая, громоздкая вещь. Есть портативные цифровые модели, есть приставки. Есть даже программы, которые можно с адаптером установить на стационарный компьютер или ноутбук.
Так выглядит цифровой осциллограф Tektronix DPO 3054. На дисплее отображает сигнал, регуляторами выбираются параметры
По количеству одновременно отслеживаемых сигналов осциллографы есть однолучевые (одноканальные/моноканальные) и многолучевые (многоканальные). Однолучевые могут одновременно принимать только один сигнал, многолучевые — два, три, четыре и больше — до 16. Зависит от прибора.
Какой тип лучше? Многолучевой. Вы одновременно можете отслеживать сигнал в нескольких точках схемы. Изменяя параметры будете видеть реакцию устройства не только на выходе, но и в разных точках схемы.
Для чего он нужен
Для чего нужен осциллограф? Это просто необходимая вещь при ремонте электронной аппаратуры, при самостоятельной сборке или усовершенствовании каких-либо устройств. Многим хватает тестера или мультиметра. Да. Но для ремонта простых устройств без микросхем и микропроцессоров. Мультиметром вы можете проверить наличие обрыва, короткого замыкания, измерить напряжение и ток. Ни форму сигнала, ни конкретные параметры синусоиды или импульсов не измерить и не увидеть.
Осциллограф нужен для измерения напряжения и визуального отображения сигналов. На фото цифровой двухканальный осциллограф Hantek DSO5102B в рабочем режиме
А ведь бывает так, что все детали, вроде исправны, но устройство не работает. А все потому что некоторые детали требовательны не только к физическим параметрам питания (напряжение, сила тока), но и к форме сигнала. Этим «страдают» некоторые полупроводниковые детали, практически все микросхемы и процессоры. А без них сейчас обходятся только самые элементарные приборы типа кипятильника. Вот и получается, что найти сгоревший резистор, пробитый транзистор можно и мультиметром. Но для чуть более сложную поломку уже не устранить. Вот для этих случаев и нужен осциллограф. Он позволяет видеть форму сигнала, определять есть ли отклонения и находить источник проблемы.
Виды осциллографов
По принципу преобразования сигнала осциллографы бывают аналоговыми и цифровыми. Есть еще смешанный тип — аналогово-цифровой. Принципиальная разница между ними — в методах обработки сигналов и в возможности запоминания. Аналоговые модели транслируют «живой» сигнал в режиме реального времени. Записывать его на таком приборе нет возможности.
Аналогово-цифровые и цифровые уже имеют возможность записи. На них можно «открутить» время назад и просмотреть информацию, увидеть динамику изменения амплитуды или времени.
Еще одно отличие цифровых осциллографов от аналоговых — размеры. Цифровые приборы имеют значительно меньшие габариты
Цифровые осциллографы сначала оцифровывают синусоиду, записывают эту информацию в запоминающее устройство (ЗУ), а затем передают на экран монитора. Но не все цифровые модели имеют долговременную память — в таком случае запись ведется циклически. Это когда вновь пришедший сигнал записывается поверх предыдущего. В памяти хранится то, что появлялось на экране, но промежуток времени не такой большой. Если вам необходима запись длиной пять-десять минут, нужен запоминающий осциллограф.
Что измеряет осциллограф
На экране осциллографа отображается двухмерная картинка сигнала, который подали на измерительный вход. На экране есть две оси координат. Горизонтальная — ось времени, вертикальная — напряжение. Эти параметры и измеряют. А уже из них высчитывают остальные.
На экране осциллографа отображаются сигналы, которые подаются на его входы. Это например, двухлучевой аналоговый осциллограф, который показывает форму сигнала на входе (синусоида) и выходе (прямоугольный) импульсного преобразователя напряжения
Вот что можно измерить и отследить при помощи осциллографа:
Сигнал, который показывает осциллограф, довольно информативен. Видны искажения, которые вносит та или иная деталь, можно отследить, как меняется форма/амплитуда/частота в каждой точке схемы, после каждой детали.
Кроме наблюдения за формой сигнала, осциллограф можно использовать для определения целостности сопротивлений, конденсаторов, катушек индуктивности (см. видео ниже).
Устройство и принцип работы
Рассмотрим блок-схему и алгоритм работы аналогового осциллографа. Как уже говорили, изменять изображения можно по горизонтали и по вертикали. Приборы на основе электронно-лучевой трубки (ЭЛТ) для этого имеют две пары пластин. Одна пара для изменения масштаба по вертикали (амплитуда или напряжение). Вторая — для растягивания или сжатия по горизонтали (временные параметры).
Устройство аналогового осциллографа: блок-схема
Отслеживаемый сигнал подается на входной усилитель, где усиливается или уменьшается до заданных значений. Значение задается переключателями. Коэффициент усиления обычно от 100 до 1000. Усиленный сигнал идет на пластины вертикальной развертки электронно-лучевой трубки.
Горизонтальная развертка формируется на основе пилообразного сигнала, который генерируется в соответствующем блоке (генератор развертки). Его параметры также задаются соответствующим переключателем. Отображение на экране ЭЛТ идет в режиме реального времени, с некоторой задержкой. Величина задержки прописывается в технических характеристиках прибора.
Основные блоки аналогового осциллографа
Для работы осциллографа важен блок синхронизации. Он обеспечивает появление картинки в момент поступления потенциала на вход. За счет этого на экране мы видим сигнал за некоторый промежуток времени. Есть разные типы синхронизации. Они выбираются переключателем. Чаще всего выбирают синхронизацию от самого исследуемого сигнала. Есть еще от сети и внешнего источника.
Режимы работы осциллографа
Осциллографом исследуют различные типы сигналов. Они могут быть постоянными (напряжение в сети), периодическими (шумы, помехи, звуки и т.д.). Периодические могут возникать случайно или с определенным интервалом. В зависимости от того, как часто или редко возникает сигнал, выбирают тот или иной режим работы. Чаще всего в осциллографе есть два режима: автоматический (автоколебательный) и ждущий. Еще может быть однократный.
Выбор режима работы осциллографа
Если мы не знаем, как часто возникают импульсы, выбирают обычно автоматический режим. В нем даже при отсутствии потенциала на входе или при его недостаточном уровне экран светится. Отображается «нулевой» сигнал — прямая линия, которая должна идти по горизонтальной оси на экране (выставляется по линии регуляторами со стрелочками). При появлении потенциала на входе, он отображается на экране. Картинка при этом периодически обновляется и мы видим развертку сигнала по времени.
Так выглядит экран осциллографа в автоколебательном (авторежиме) при отсутствии сигнала
Ждущий режим хорош для редко появляющихся сигналах. Пока на входе ничего нет, экран не светится. При появлении каких-либо изменений он загорается, запускается генератор развертки и сигнал отображается на экране. Запуск можно настроить как по восходящему фронту импульса/синусоиды, так и по нисходящему. Можно настроить запуск не на исследуемый сигнал, а на то событие, которое ему предшествует (если такое есть).
Одиночный режим настраивает осциллограф на принятие одного сигнала. Когда на вход приходит потенциал нужного уровня, сигнал отображается на экране. После этого прибор переходит в неактивное состояние. И, даже если на входе будет следующий потенциал (или пять, или сто пять) он его не зарегистрирует. Для приема другого импульса нужно заново «взвести» прибор.
Делитель (аттенюатор)
Исследуемый сигнал может иметь напряжение от десятых долей до сотен вольт. Есть осциллографы со встроенным регулятором чувствительности — аттенюатором. Выглядит он как переключатель с градуировкой. Она задает «вес» одного деления на экране и определяет, во сколько раз понижается входной сигнал. Если ожидается малый уровень, мы просто выставляем на 1 или на 0,1. В таком случае одно деление на экране по вертикали будет 1 В и 0,1 В соответственно. И «понижать» сигнал будут в 1 раз (то есть, передадут как есть) или усилят в 10 раз перед подачей на вход (это если стоит 0,1).
Не все осциллографы имеют встроенный делитель (аттенюатор). В комплекте с таким прибором идут внешние делители на 1:10 или 1:100. Это прямоугольные или цилиндрические насадки с разъемами с обоих сторон. Они устанавливаются во входной разъем и через них подается напряжение на вход, но уже пониженное в соответствующее количество раз.
Примерно так выглядит делитель. Он устанавливается во входное гнездо, а к нему уже подключается измерительный шнур
Ставить делитель необязательно. Необходимость определяется по ожидаемому уровню сигнала. В характеристиках указывается максимальное входное напряжение, которое может подаваться на прибор без делителя и с делителем. По уровню ожидаемого сигнала и ставим насадку.
Если уровень неизвестен, сначала выставляют самый большой делитель (или самое большое деление на аттенюаторе). Это предохранит прибор от перегорания если потенциал будет высоким. По результатам первого замера выбирается оптимальный режим.
Особенности цифровых моделей
Цифровой осциллограф работает иначе — аналоговый сигнал преобразуется в цифровую форму. В таком виде он записывается в ЗУ и передается на монитор, где из цифрового формата переводится снова в аналоговую форму. Отображение на экране начинается только в тот момент, когда уровень на входе превысит определенное значение (задается настройками).
Периодичность смены картинки зависит от выбранного режима работы: автоматический, одиночный и обычный. Обычный — это аналог ждущего.
Упрощенная блок-схема цифрового осциллографа
Чем лучше цифровые модели? Во-первых, такое преобразование делает изображение более стабильным. Во-вторых, проще увеличивать и уменьшать масштаб. В-третьих, есть возможность записи. Ну, и габариты. Самый небольшой аналоговый осциллограф — С1-94 — имеет размеры 100*190*300 мм и вес 3,5 кг. А цифровые при размерах 100*50-60*13-20 мм имеют вес порядка 150-300 граммов. И это вместе с аккумуляторами.
Как работать с осциллографом
Первоначально выставляются режим работы осциллографа (автоколебательный, ждущий или одиночный). Затем выбирается режим аттенюатора или устанавливается соответствующий делитель напряжения.
Это касается аналоговых приборов. Цифровые на входе анализируют сигнал и понижает/повышает его до необходимого уровня. В них на входе стоит аналитический блок, который сам понижает или повышает входной сигнал до требуемого уровня.
Подключение осциллографа
В комплекте с осциллографом идет измерительный шнур или шнуры. Их количество зависит от числа входных каналов конкретной модели. Если канал один, то и шнур один. Может быть два, три и до шестнадцати. Подключать надо столько, сколько собираетесь использовать.
Шнуры для осциллографа трудно спутать с другими. Один конец — со щупом и ответвлением. Это «измерительная» сторона. С другой находится характерный круглый разъем. Эта часть подключается к измерительному входу.
Провод, который идет в сторону от щупа — для подключения к «земле». Он часто бывает снабжен прищепкой или «крокодилом». Его подключать обязательно, вольтаж может быть разный и заземление необходимо.
Измерительные шнуры для осциллографа
Некоторые шнуры для осциллографа имеют на рукоятке переключатель, который работает как небольшой усилитель (на фото справа).
После подключения измерительных шнуров включаем прибор в сеть. Затем, перед работой, переводим в рабочее положение тумблер/кнопку включения прибора. Можно считать что осциллограф готов к работе.
Проверка осциллографа перед работой
Перед началом работы надо проверить осциллограф. Включаем его в сеть, устанавливаем измерительный шнур. К щупу прикасаемся пальцем, на экране появляется синусоида частотой 50 Гц — наводки от бытовой электросети.
Если пальцем прикоснуться к измерительному щупу, на экране появится синусоидальной формы сигнал. Синусоида неидеальна, но если она есть и ее частота 50 Гц, это значит, что осциллограф исправен
Затем берем земляной щуп и прикасаемся им к измерительному (палец продолжаем держать на острие щупа). Сигнал пропадает (отображается прямая). Это значит, что прибор исправен.
Как измерить осциллографом напряжение: переменное, меандра, постоянное
Как уже говорили, напряжение на экране осциллографа отображается по вертикали. Весь экран разбит на квадраты. Цена деления по вертикали выставляется переключателем, который подписан «V/дел». Что и обозначает, Вольт на одно деление. Перед подачей сигнала выставляем луч точно по горизонтальной оси — это важно.
Подаем сигнал и считаем, на сколько клеточек от нулевого уровня поднимается или опускается сигнал. Затем умножаем количество клеток на «цену деления», взятую с регулятора. В результате получаем напряжение сигнала. В случае с синусоидой или меандром (положительные и отрицательные прямоугольные импульсы) считается напряжение полуволны — верхней или нижней.
Измерение напряжения осциллографом
Чтобы было понятнее, разберем пример. На фото есть сигнал, полуволна которого понимается и опускается на три клеточки. Цена деления на регуляторе — 5 В. Имеем: 3 дел * 5 V/дел = 15 V. Получается, данный сигнал имеет напряжение 15 вольт.
Если надо измерить постоянное напряжение, снова выставляем луч по горизонтали. Подаем напряжение и смотрим, на сколько клеток «подпрыгнул» или опустился луч. Дальше все точно так же: умножаем на цену деления и получаем значение постоянного напряжения.
Как осциллографом определить частоту
Частота определяется как 1/T, где Т — период сигнала. А период — это время, за которое сигнал проходит полный цикл. Для сигнала на экране это 5,7 клетки. Считаем от места пересечения с горизонтальной осью и до второй аналогичной точки.
Как определить частоту сигнала по осциллографу
Далее определяем частоту деления по переключателю развертки. Положение переключателя стоит на 50 миллисекунд. Берем количество делений и умножаем на количество клеток. Получаем 50 мс * 5,7 = 285 мс. Переводим в секунды. Для этого надо разделить на 1000. Получаем 0,285 сек. Считаем частоту: 1/0,285 = 3,5 Гц
Полоса пропускания осциллографа: что это и на что влияет
При выборе осциллографа смотрят на следующие параметры:
Обо всех параметрах, кроме полосы пропускания, уже рассказали. Полоса пропускания — это чуть ли не важнейший показатель. Она определяет максимальную частоту сигнала, который будет отображаться без искажений. Например, при полосе пропускания 20 Гц — 20 МГц, все что имеет более высокую частоту будет подавляться.
Там, где полоса пропускания заканчивается, частоты жестко подавляются
Как же выбирать частоту пропускания? Зависит от того, какие сигналы вы собираетесь изучать и насколько «глубоко» вам надо их исследовать. Для аналоговых сигналов все просто — верхний предел должен быть больше чем максимальная частота. С меандрами все сложнее. На самом деле они состоят их суммы нечетных гармоник сигнала. Чем больше гармоник, тем больше форма похожа на квадрат, а не на сглаженное что-то. Но гармоники высокого порядка имеют очень высокую частоту. Если надо исследовать фронты, их отклонение, то верхний предел полосы пропускания — это десятки гигагерц. А такие приборы очень дорогие. Для обычной синусоиды достаточно 10-20 МГц, что значительно дешевле.
Базовые измерительные приборы. Осциллограф: «рисующий сигнал»
«ГРАФО» ЗНАЧИТ «РИСУЮ»
ПРИБОРЫ ДЛЯ ИССЛЕДОВАНИЯ ФОРМЫ 3 РАДИОТЕХНИЧЕСКИХ СИГНАЛОВ
Мы живем в технологической цивилизации. Люди создали вторую природу – мир механизмов, сложнейших машин, радиоэлектронных устройств, которые используют практически весь известный диапазон электромагнитных излучений. Но человеческие органы зрения способны воспринимать только видимый свет. Мы не можем увидеть электрический ток, радиоволны, не можем без помощи приборов измерить даже простейшие параметры электрического сигнала. При работе со сложной радиоэлектронной аппаратурой часто возникает задача воспроизведения формы сигналов, т.е. зависимости мгновенного значения напряжения от времени. Её решение позволяет сразу оценить многие параметры колебаний, например, искажение их формы, наличие помех и многое другое. Воспроизведение формы сигналов играет важную роль при проверке и настройке аудио- и видеотрактов аппаратуры.
Для визуализации сигналов используются приборы, которые называются осциллографами, однако определение формы сигналов возможно не только во временной области, но и в частотной. Задачу воспроизведения сигнала в частотной области решают анализаторы спектра и измерители амплитудно-частотных характеристик, о которых будет рассказано в заключительной части этой брошюры.
ЭЛЕКТРОННЫЕ ОСЦИЛЛОГРАФЫ
В настоящее время одним из наиболее распространенных радиоизмерительных приборов является электронный осциллограф, и это не удивительно, ведь он обладает исключительной наглядностью представления исследуемых сигналов, удобством и универсальностью. Осциллограф позволяет рассмотреть любые электрические процессы, даже если сигнал появляется в случайный момент времени и длится миллиардные доли секунды. По изображению на экране осциллографа можно определить амплитуду рассматриваемого сигнала и длительность любого его участка. С помощью осциллографа можно измерять частоту, фазу и коэффициент модуляции сигнала, а также производить другие комплексные измерения.
Осциллографические измерения отличаются широким диапазоном исследуемых частот (от постоянного тока до СВЧ), возможностью запоминания и последующего воспроизведения сигналов, высокой чувствительностью и возможностью отделения сигналов от помех.
КЛАССИФИКАЦИЯ ОСЦИЛЛОГРАФОВ
По назначению и принципу действия осциллографы разделяются на:
Универсальные, скоростные, стробоскопические, запоминающие и специальные.
По числу одновременно наблюдаемых сигналов их делят на одно-, двух- и многоканальные осциллографы.
По отображающему устройству осциллографы делят на электронно-лучевые и матричные (газоразрядные, плазменные, жидкокристаллические и т.п.).
По принципу обработки информации осциллографы делят на аналоговые и цифровые.
Универсальные осциллографы – приборы общего назначения, предназначенные для наблюдения гармонических и импульсных сигналов. С их помощью можно исследовать одиночные импульсы и пачки импульсов, получать одновременно изображение двух сигналов на одной развертке, детально исследовать любую часть сложного сигнала и многое другое. Они позволяют исследовать сигналы с длительностью от единиц наносекунд до нескольких секунд в диапазоне амплитуд от долей милливольт до сотен вольт, а также измерять параметры таких сигналов с приемлемой для практики погрешностью 5-7%. Полоса пропускания универсальных осциллографов составляет 300… 500 МГц и более.
Универсальные осциллографы разделяют на две группы: приборы моноблочной конструкции и приборы со сменными блоками.
Моноблочные осциллографы общего назначения – наиболее распространенный тип осциллографов.
Осциллографы со сменными блоками отличаются многофункциональностью, достигаемой за счет применения сменных блоков различного назначения.
Скоростные и стробоскопические осциллографы применяются для исследования переходных процессов в быстродействующих полупроводниковых приборах, интегральных микросхемах и переключающих элементах.
Запоминающие осциллографы могут сохранять и воспроизводить изображение сигнала в течение длительного времени после исчезновения его на входе. Основное назначение этих приборов – исследование однократных и редко повторяющихся процессов.
Осциллографы специального назначения предназначены для исследования телевизионных сигналов, они позволяют не только исследовать любую часть телевизионного сигнала с высокой временной стабильностью, но и передавать его в цифровом виде на компьютер для дальнейшей обработки.
ОСНОВНЫЕ БЛОКИ УНИВЕРСАЛЬНОГО ОСЦИЛЛОГРАФА
Рис. 1. Осциллограф С1-107 Общий вид
На рис. 1 показан внешний вид универсального аналогового осциллографа С1-107, а на рис. 2 показана его функциональная схема. Несмотря на разнообразие универсальных осциллографов, их функциональные схемы в целом одинаковы.
Осциллограф состоит из:
Канал вертикального отклонения усиливает или ослабляет исследуемый сигнал до значения, удобного для изучения на индикаторе. Положение ручки управления V/дел устанавливает усиление канала Y. Канал состоит из входного делителя, в который входят разъемы, аттенюаторы и переключатели; усилителя, усиливающего сигнал и расщепляющего полярность сигнала для симметричной подачи на пластины ЭЛТ, линии задержки и выходного усилителя. Линия задержки задерживает сигнал на время, необходимое для срабатывания канала горизонтального отклонения, т. е. генератора развертки и усилителя по оси X, чтобы движение луча по горизонтали началось раньше, чем усиленный сигнал поступит на пластины ЭЛТ. Это позволяет наблюдать передний фронт сигнала.
Рис. 2. Функциональная схема осциллографа С1-107
Канал горизонтального отклонения формирует синхронное с исследуемым сигналом пилообразное напряжение для создания оси времени на экране ЭЛТ. Формирователь импульсов запуска вырабатывает короткие запускающие импульсы. Генератор развертки создает линейно-нарастающее напряжение. Скорость нарастания регулируется ручкой Время/дел. Это напряжение поступает на выходной усилитель X) который расщепляет полярность сигнала и усиливает напряжение развертки до значения, необходимого для требуемого масштаба изображения. Положительно нарастающее пилообразное напряжение подается на правую отклоняющую пластину ЭЛТ, а отрицательное – на левую. В результате луч по экрану трубки проходит слева направо установленное количество делений шкалы за единицу времени. При переключении синхронизатора в режим непрерывных колебаний обеспечивается автоколебательный режим работы развертки.
Усилитель внутренней синхронизации усиливает часть исследуемого сигнала и передает его для запуска развертки.
Осциллографы имеют калиброванные развертки и снабжаются для удобства отсчета сетчатыми шкалами, которые наносятся с внутренней стороны экрана трубки. Это избавляет оператора от ошибки из-за явлений параллакса.
В состав осциллографа входят также калибраторы амплитуды и времени, предназначенные для калибровки масштабов каналов вертикального и горизонтального отклонения, и источники питания со стабилизацией.
Многие современные осциллографы имеют встроенные мультиметры, которые позволяют с высокой точностью измерять значения постоянных и переменных напряжений, токов и сопротивлений. Мультиметр осциллографа С1-107 работает следующим образом. Измеряемые переменные токи и сопротивления преобразуются в переменное напряжение. Затем переменные напряжения преобразуются в постоянное напряжение, пропорциональное величине измеряемых параметров. Затем аналоговый сигнал преобразуется в цифровой с помощью АЦП и поступает в знакогенератор, предназначенный для формирования и написания знаков на экране ЭЛТ.
Осциллограф может работать либо в режиме осциллографирования, либо в режиме мультиметра. Совмещение этих режимов в данной модели невозможно.
ЦИФРОВЫЕ ОСЦИЛЛОГРАФЫ
Рис. 3. Цифровой осциллограф
Цифровой осциллограф позволяет одновременно наблюдать на экране сигнал и получать численные значения ряда его параметров с большей точностью, чем это возможно путем считывания количественных величин непосредственно с экрана обычного осциллографа. Это возможно потому, что параметры сигнала измеряются непосредственно на входе цифрового осциллографа, тогда как сигнал, прошедший через канал вертикального отклонения, может быть измерен с существенными ошибками. Эти ошибки могут достигать 10%.
Параметрами, измеряемыми современными цифровыми осциллографами, являются: амплитуда сигнала, его частота или длительность. На экране осциллографа, помимо собственно осциллограмм, отображается состояние органов управления (чувствительность, длительность развертки и т. п.). Предусмотрен вывод информации с осциллографа на печать и другие функциональные возможности. Однако этим не ограничиваются возможности цифровых осциллографов. Сопряжение цифровых осциллографов с микропроцессорами позволяет определять действующее значение напряжения сигнала и даже вычислять и отображать на экране преобразования Фурье для любого вида сигнала.
В устройствах цифровых осциллографов осуществляется полная цифровая обработка сигнала, поэтому в них, как правило, используется отображение на новейших индикаторных панелях.
В современных цифровых осциллографах автоматически устанавливаются оптимальные размеры изображения на экране трубки.
Функциональная схема цифрового осциллографа (рис. 4) содержит аттенюатор входного сигнала; усилители вертикального и горизонтального отклонения; измерители амплитуды и временных интервалов; интерфейсы сигнала и измерителей; микропроцессорный контроллер; генератор развертки; схему синхронизации и электронно-лучевую трубку.
Цифровые осциллографы обеспечивают автоматическую установку размеров изображения, автоматическую синхронизацию, разностные измерения между двумя метками, автоматическое измерение размаха, максимума и минимума амплитуды сигналов, периода, длительности, паузы, фронта и спада импульсов и пр.
Амплитудные и временные параметры исследуемого сигнала определяются с помощью встроенных в прибор измерителей. На основании данных измерений микропроцессорный контроллер производит вычисление требуемых коэффициентов отклонения и развертки и через интерфейс устанавливает эти коэффициенты в аппаратной части каналов вертикального и горизонтального отклонения. Это обеспечивает неизменные размеры изображения по вертикали и горизонтали, а также автоматическую синхронизацию сигнала.
Микропроцессорный контроллер также опрашивает положение органов управления на передней панели, и данные опроса после кодирования снова поступают в контроллер, который через интерфейс включает соответствующий режим автоматического измерения. Результаты измерений индицируются на экране трубки, причем амплитудные и временные параметры сигнала отображаются одновременно.
Рис. 4. Функциональная схема цифрового осциллографа
ПОРТАТИВНЫЕ МУЛЬТИМЕТРЫ-ОСЦИЛЛОГРАФЫ
В последнее время на рынке контрольно-измерительных приборов появилась новая и довольно оригинальная их разновидность: портативные цифровые мультиметры-осциллографы.
Эти малогабаритные и сравнительно недорогие приборы сочетают в себе функцию мультиметра, позволяющего измерять параметры напряжений, токов и сопротивлений, измерять емкости, индуктивности, параметры транзисторов и диодов, и простого осциллографа.
Наиболее распространены на российском рынке мультиметры-осциллографы фирм BEETECH (рис. 5), Velleman, METEX и Tektronix.
Рис. 5. Мультиметр-осциллограф BEETECH 70
Рис. 6. Портативный персональный осциллограф Velleman HPS10
Осциллограф Velleman HPS10 (рис. 6) не обладает функциями мультиметра, но зато это полноценный осциллограф с полосой пропускания 2 МГц и частотой квантования АЦП 10 МГЦ. Прибор имеет высокую чувствительность – от 5 мВ на 12 делений, а диапазон разверток находится в пределах от 200 нс до 1 часа (!) на 32 деления. Прибор может работать от сети через адаптер или от встроенных аккумуляторов, которых хватает на 20 часов работы. Прибор имеет ЖК-дисплей с разрешением 128 х 64 точки. Такой осциллограф позволяет просматривать даже телевизионный сигнал (правда, довольно грубо).
Портативные осциллографы часто поставляются в пластиковых чемоданчиках, в которых кроме самого прибора находятся переходники, щупы, адаптер питания и руководство по эксплуатации.
В большинстве случаев такого прибора вполне достаточно для проведения измерений сигналов при выполнении инсталляций.
РАБОТА С ОСЦИЛЛОГРАФОМ
Современные осциллографы предоставляют богатый набор инструментов для исследования формы сигналов и измерения их параметров.
Проще всего работать с низкочастотными сигналами, например, с сигналами звукового диапазона частот (рис. 7), исследование высокочастотных сигналов и сигналов сложной формы (рис. 8) требует дополнительных навыков.
Рис. 7. Сигнал звуковой частоты на экране цифрового осциллографа
Специализированные телевизионные осциллографы имеют схемы развертки, позволяющие выделить из телевизионного сигнала любой кадр и любую строку, а вот при работе с осциллографами общего назначения нужно выбирать, какими импульсами синхронизации запускать развертку – кадровыми или строчными. Некоторые осциллографы имеют на переключателе режима развертки позиции TV-V и TV-H (запуск кадровыми и строчными синхроимпульсами соответственно). Если таких режимов нет, то для просмотра одного кадра нужно установить скорость развертки в положение 2 мс/дел, а для просмотра одной строки – 10 мкс/дел. Обычно запуск развертки телевизионным сигналом осуществляется при отрицательной полярности импульсов запуска.
При работе с осциллографом важно правильно выбрать режим запуска синхронизации развертки. Чаще всего выбирают режим запуска исследуемым сигналом, т.н. внутреннюю синхронизацию (в двухканальных осциллографах эти режимы называются CH1 и CH2). Если исследуемая аппаратура использует внешние сигналы синхронизации, то логично использовать их для запуска развертки осциллографа. Этот вид синхронизации называется внешней и обычно обозначается EXT. Если исследуются электротехнические устройства, то полезной может оказаться синхронизация от сети – LINE.
Удобный масштаб изображения устанавливается переключателем V/дел.
Рис. 8. Телевизионные сигналы на экране цифрового осциллографа
Двухканальный осциллограф позволяет, как показано на рис. 8, одновременно просматривать различные компоненты телевизионного сигнала.
Рис. 9. Гасящий импульс
Рис. 10. Сигнал цветовой синхронизации
Меняя скорость развертки и значение V/дел можно исследовать общий вид сложного сигнала или «растянуть» отдельный его фрагмент. На рис. 9 показана одна строка телевизионного сигнала, а на рис. 10 – «растянутый» сигнал цветовой синхронизации.
Рис. 11. Измерение длительности
Очень часто при работе с осциллографами возникает необходимость в измерении параметров исследуемых сигналов. Аналоговые осциллографы менее удобны. Для того чтобы определить амплитуду или длительность сигнала, нужно подсчитать, сколько клеток по вертикали или по горизонтали занимает исследуемый сигнал, а затем умножить количество клеток на цену деления переключателя В/дел или Время/дел. Например, если сигнал по вертикали занимает 3,5 клетки, а переключатель В/дел установлен в положение 100 мВ, то амплитуда сигнала составит 350 мВ. Точность такого метода невелика.
Цифровые осциллографы гораздо удобнее. Например, для того чтобы измерить амплитуду импульса на осциллограмме рис. 9, нужно включить режим измерения напряжений, затем подвести курсор 1 к вершине импульса, а курсор 2 – к его основанию. Осциллограф автоматически измерит напряжение, и в правой части экрана появится надпись: Delta – 296 mV.
Аналогично производится измерение длительностей, только в этом режиме курсоры имеют вид вертикальных линий (рис. 11).
На периферии экранов цифровых осциллографов (рис. 7-11) выводится разнообразная служебная информация, позволяющая, не глядя на органы управления прибором, определить, в каком положении находится переключатели В/дел, Время/дел, режимы синхронизации, ознакомиться с отсчетами напряжений, длительностей и пр.
Интерфейсы современных цифровых осциллографов у разных производителей различаются, поэтому перед началом работы следует внимательно изучить Руководство пользователя.
СОВЕТЫ ПО РАБОТЕ С ОСЦИЛЛОГРАФОМ
КАК ВЫБРАТЬ ОСЦИЛЛОГРАФ?
Осциллограф – это сложный и дорогостоящий прибор, на рынке присутствуют сотни моделей – от самых простых и бюджетных до чрезвычайно дорогих, специализированных и прецизионных приборов. Как сделать правильный выбор и приобрести именно тот осциллограф, который окажется вам полезным при настройке аудио- видеооборудования? В этой главе мы дадим вам несколько советов.
Прежде чем приступить к выбору осциллографа, нужно четко понять, какие задачи предстоит решать с его помощью. При этом необходимо помнить и о перспективах, поскольку осциллограф приобретается не на один год и не для выполнения одной-единственной работы.
1. Какой осциллограф выбрать: аналоговый или цифровой?
Аналоговые осциллографы дают возможность непрерывно наблюдать аналоговый сигнал в реальном масштабе времени, имеют простые, понятные органы управления и невысокую стоимость. Вместе с тем аналоговые осциллографы имеют низкую точность по сравнению с цифровыми, на малых скоростях развертки для них характерно мерцание.
Цифровые осциллографы позволяют «замораживать» картинку на экране, имеют высокую точность измерений, яркое, хорошо сфокусированное изображение сигнала на любой скорости развертки, однако они стоят значительно дороже, сложны в управлении и в отдельных случаях неправильно отображают сигнал.
Неоспоримыми преимуществами цифровых осциллографов также являются возможности измерения напряжений и длительностей сигнала «на лету», а также возможность подключения к внешним регистрирующим устройствам, наличие средств автодиагностики и автокалибровки.
2. Определите необходимую полосу пропускания
Одной из основных характеристик осциллографа, влияющих на выбор прибора, является полоса пропускания, которая зависит от того, какие сигналы и с какой точностью необходимо измерять.
Имейте в виду, что цифровые осциллографы имеют два принципиально разных значения полосы пропускания: полоса для повторяющихся сигналов (или аналоговая) и полоса для однократных сигналов. Большинство реальных сигналов содержит множество высокочастотных гармоник, поэтому широкополосные осциллографы отображают такие сигналы более точно.
При проведении точных измерений временных характеристик величина полосы пропускания осциллографа должна как минимум в три раза превышать значение первой гармоники наиболее высокочастотного из измеряемых сигналов. А для точных измерений амплитуды желательно, чтобы полоса пропускания осциллографа была в десять раз больше, чем частота измеряемого сигнала.
Полоса пропускания аналоговых осциллографов редко превышает 400 МГц., в то время как цифровые осциллографы могут иметь полосу до 50 ГГц.
3. Определите необходимое количество каналов
Наибольшей популярностью пользуются двухканальные осциллографы, однако в последнее время все большее распространение получают четырехканальные модели, поскольку удельная стоимость канала у них меньше, чем у двухканальных моделей, а возможности существенно шире. Однако управлять таким прибором может быть непросто.
Некоторые осциллографы имеют 2 полных канала и 2 дополнительных канала с ограниченным диапазоном чувствительности. В этом случае в осциллографе имеются только 2 аналого-цифровых преобразователя (АЦП), входы которых коммутируются на 4 канала.
4. Определите необходимую частоту дискретизации (для цифровых осциллографов)
Для задач, связанных с изменением однократных или переходных процессов, частота дискретизации имеет первостепенное значение. Параметр «частота дискретизации» обозначает скорость, с которой осциллограф может оцифровывать входной сигнал. Более высокая частота дискретизации определяет более широкую полосу пропускания для однократных сигналов и дает большее временное разрешение.
Большинство производителей цифровых осциллографов используют отношение между частотой дискретизации и полосой для однократных сигналов на уровне 4:1 (если есть средства интерполяции) или 10:1 (без средств встроенной интерполяции) для предотвращения искажения сигнала.
5. Определите необходимый объем памяти (для цифровых осциллографов)
Требуемый объем памяти зависит от общей длительности сигнала, параметры которого необходимо исследовать, и желаемого разрешения по времени. Если исследуются сигналы в большом промежутке времени с большим разрешением, то потребуется большая память. Большой объем памяти позволит использовать более высокую частоту дискретизации на медленных скоростях развертки, уменьшая вероятность получения искаженного сигнала и обеспечивая получение большего объема информации о сигнале.
Следует иметь в виду, что увеличение объема памяти может привести к сильному замедлению работы осциллографа, поскольку ему потребуется обрабатывать больший массив данных.
6. Определите требуемые возможности по запуску прибора
Для большинства пользователей осциллографов общего назначения просто запуска по фронту (перепаду) сигнала часто бывает недостаточно. Для решения многих задач бывает также полезно иметь дополнительные возможности по запуску, позволяющие обнаружить события, которые иначе очень трудно отследить. Возможность запуска по телевизионному сигналу позволяет настроить прибор на определенное поле или строку.
7. Определите требуемые возможности по обнаружению импульсных помех
В принципе, любой аналоговый осциллограф всегда способен отобразить импульсные помехи и джиттер. Вопрос состоит лишь в том, достаточно ли скорости нарастания в канале вертикального отклонения (в конечном счете – полосы пропускания) и яркости осциллограммы для исследования этих процессов. Осциллографы с возможностями запуска по импульсной помехе позволяют выделять трудно обнаруживаемые импульсные помехи и производить по ним запуск осциллографа. Эта дополнительная возможность очень полезна при поиске причины ненормальной работы исследуемой схемы.
8. Дополнительные возможности
Многие современные цифровые осциллографы могут выполнять функцию анализатора спектра, однако в области звуковых частот она реализована, как правило, плохо.
Большинство цифровых и аналого-цифровых осциллографов могут взаимодействовать с персональным компьютером, принтером или плоттером через интерфейсы GPIB, RS-232 или Centronics. В последние годы все чаще используется интерфейс USB.
Многие современные цифровые осциллографы оснащены дисководами или разъемами для флэш-памяти, которые позволяют сохранять изображения экрана с осциллограммами (в различных форматах) и результаты измерений в числовом виде, а затем быстро перенести их в компьютер для дальнейшей обработки. Эти возможности позволяют сэкономить время, когда, например, требуется вставить изображение с экрана осциллографа в отчет или скопировать данные сигналов электронную таблицу.
9. Оцените удобство работы с прибором
Попробуйте поработать с прибором, оцените, насколько он прост в работе, возможно ли интуитивное управление прибором в то время, когда основное внимание уделяется исследуемой схеме? Оцените скорость реакции экрана, а также время, которое затрачивает осциллограф на выполнение команд. Есть ли у прибора память команд?
ИЗМЕРЕНИЕ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК
При контроле технического состояния радиоэлектронной аппаратуры важное место занимает измерение амплитудно-частотных характеристик различных ее узлов.
При снятии амплитудно-частотных характеристик (АЧХ) приборов или их узлов удобно представлять их в виде четырехполюсника. Тогда АЧХ – это зависимость модуля (абсолютного значения) коэффициента передачи четырехполюсника от частоты сигнала.
Коэффициент передачи – это отношение мощности или напряжения на выходе четырехполюсника к мощности или напряжению на его входе.
Если выходное напряжение меньше входного, при прохождении сигнала через четырехполюсник происходит ослабление сигнала. Такой четырехполюсник называется пассивным (пример – пассивный электрический фильтр), а коэффициент передачи является коэффициентом ослабления.
При выходном напряжении больше входного происходит усиление сигнала, и коэффициент передачи является коэффициентом усиления. Четырехполюсник в этом случае называется активным (пример – усилитель сигналов звуковых частот).
Значение коэффициента передачи четырехполюсника и значение частоты сигнала, на которой проводилось его определение, образуют точку в системе координат, а совокупность таких точек образуют кривую АЧХ в требуемом диапазоне частот. На рис. 12 в качестве примера приведена АЧХ антенного усилителя, работающего в диапазоне телевизионного вещания.
Рис. 12. АЧХ антенного усилителя
МЕТОДЫ ИЗМЕРЕНИЯ ПАРАМЕТРОВ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК
Измерение параметров амплитудно-частотных характеристик четырехполюсников проводится с помощью генератора качающейся частоты (ГКЧ) и индикаторного устройства.
Частота генератора плавно изменяется по определенному закону в требуемой полосе частот, а на индикаторе осциллографического типа воспроизводится кривая АЧХ.
Структурная схема простейшего автоматического измерителя АЧХ приведена на рис. 13.
Рис. 13. Структурная схема автоматического измерителя АЧХ
Сигнал с ГКЧ подается на вход исследуемого четырехполюсника. Из-за наличия у этого четырехполюсника зависимости модуля коэффициента передачи от частоты сигнала на его выходе сигнал модулирован по амплитуде. Огибающая этого сигнала, выделенная на детекторной головке, входящей в состав индикаторного устройства, управляет отклонением луча индикатора по вертикали, рисуя кривую АЧХ.
Управление частотой ГКЧ и отклонением луча индикатора по горизонтали осуществляется блоком модулирующего напряжения, одновременно синхронизирующим работу этих двух узлов.
В измерителе АЧХ, построенном по такой структурной схеме, горизонтальное положение луча на экране индикатора соответствует частоте на входе исследуемого четырехполюсника, а вертикальное – значению модуля коэффициента передачи на этой частоте. Таким образом, на экране автоматически вычерчивается кривая АЧХ исследуемого четырехполюсника.
Блок автоматической регулировки амплитуды служит для обеспечения постоянства уровня выходного сигнала во всем диапазоне качания частоты.
Часть сигнала с ГКЧ подается на блок частотных меток, в котором вырабатывается целый спектр калибровочных частот в пределах рабочего диапазона ГКЧ. В момент совпадения частоты ГКЧ с любой из этих частот образуются сигналы, которые подаются в индикаторный блок и наблюдаются на экране в виде амплитудных меток.
Для калиброванного изменения выходного напряжения ГКЧ служит аттенюатор.
В зависимости от ширины полосы качания приборы подразделяются на узкополосные, среднеполосные, широкополосные и комбинированные. Узкополосные измерители АЧХ обеспечивают полосу качания, составляющую доли и единицы процента центральной частоты, а широкополосные – полосу качания, составляющую полный диапазон частот прибора. Комбинированные совмещают в себе функции как узкополосных, так и широкополосных приборов.
Измерители АЧХ могут иметь линейный и логарифмический масштаб по амплитуде.
Наиболее широкое применение находят универсальные измерители АЧХ, позволяющие решать широкий круг измерительных задач. На рис. 14 показан измеритель АЧХ Х1-50 отечественного производства, который применяется при настройке и испытании телевизионной техники. Наличие в его составе встроенного генератора сетчатого поля позволяет осуществлять проверку линейности телевизионного изображения, а с помощью внешнего измерительного моста – проверку согласования антенных выводов.
Рис. 14. Измеритель АЧХ Х1-50
СОВЕТЫ ПО РАБОТЕ С ИЗМЕРИТЕЛЯМИ АЧХ
ИЗМЕРЕНИЕ ПАРАМЕТРОВ СПЕКТРА РАДИОСИГНАЛОВ
В практике работы со сложной современной радиоэлектронной аппаратурой визуальное наблюдение формы сигнала с помощью осциллографа иногда оказывается недостаточным. Более чувствительным и информативным является анализ спектральных характеристик сигналов. Особенно важным является знание спектрального состава сигналов в настоящее время, когда остро встает проблема электромагнитной совместимости радиоэлектронной аппаратуры, когда требуется определить параметры сигнала на входе и выходе линии его передачи.
В настоящее время известны два основных метода измерения характеристик спектра сигналов: вычисление преобразований Фурье и с помощью цифровых фильтров.
Преобразование Фурье позволяет представить сложный сигнал как совокупность гармонических синусоидальных колебаний с различными частотами и амплитудами.
На практике это означает, что практически любой сигнал можно разложить на конечное число гармоник с частотами , амплитудой
и фазой –
, где:
График зависимости величин в зависимости от k называют линейчатым спектром Фурье. Пример такого спектра, полученного аналитически, показан на рис. 15, а фото экрана анализатора спектра – на рис. 16.
Рис. 15. Линейчатый спектр Фурье
Рис. 16. Спектр сигнала, излучаемого АС
Таким образом, спектр сигнала характеризуется частотой, амплитудой и фазой его составляющих, которые и измеряются при создании и эксплуатации радиоэлектронной аппаратуры и электронных компонентов.
Кроме этих основных характеристик спектр сигналов характеризуется формой и шириной.
Бурное развитие вычислительной техники уже сейчас позволяет создавать анализаторы спектра на цифровом фильтре, эффективно работающие в низкочастотном (звуковом) диапазоне, что для анализаторов старых типов было почти неразрешимой задачей. Цифровые фильтры универсальны, стабильны, не нуждаются в подстройке, имеют широкий рабочий диапазон. Можно с уверенностью предположить, что анализаторы спектра этого типа в ближайшем будущем будут доминировать в этом сегменте рынка контрольно-измерительных приборов.