какие виды электричества бывают
Что такое электрический ток?
Открытия, связанные с электричеством, кардинально изменили нашу жизнь. Используя электрический ток как источник энергии, человечество сделало прорыв в технологиях, которые облегчили наше существование. Сегодня электричество приводит в движение токарные станки, автомобили, управляет роботизированной техникой, обеспечивает связь. Этот список можно продолжать очень долго. Даже трудно назвать отрасль, где можно обойтись без электроэнергии.
В чём секрет такого массового использования электричества? Ведь в природе существуют и другие источники энергии, более дешевые, чем электричество. Оказывается всё дело в транспортировке.
Электрическую энергию можно доставить практически везде:
Электроэнергию, накопленную аккумулятором, можно носить с собой. Мы пользуемся этим ежедневно, беря с собой сотовый телефон. Ни один другой вид энергии не обладает такими универсальными свойствами как электричество. Разве это не является достаточной причиной для того, чтобы глубже изучить природу и свойства электричества?
Что такое электрический ток?
Как всё начиналось
Ещё древним грекам было известно свойство янтаря, потёртого о шерсть, притягивать некоторые мелкие предметы. Кстати, от греческого названия янтаря –«электрон» пошло название «электричество».
Когда физики вплотную занялись исследованием электризации тел, они начали понимать природу подобных явлений. А первый кратковременный электрический ток, созданный человеком, появился при соединении проводником двух наэлектризованных предметов (см. рис. 1). В 1729 году англичане Грей и Уиллер открыли проводимость зарядов некоторыми материалами. Но определения электрического тока они не смогли дать, хотя и понимали, что заряды перемещаются от одного тела к другому по проводнику.

Об электрическом токе, как о физическом явлении заговорили лишь после того, как итальянец Вольта дал объяснение опытам Гальвани, а в 1794 году изобрёл первый в мире источник электричества – гальванический элемент (столб Вольта). Он обосновал упорядоченное перемещение заряженных частиц по замкнутой цепи.
Определение
В современной трактовке электрическим током называют направленное перемещение силами электрического поля заряженных частиц, Носителями зарядов металлических проводников являются электроны, а растворов кислот и солей — отрицательные и положительные ионы. Полупроводниковыми носителями зарядов являются электроны и «дырки».
Для того чтобы электрический ток существовал, необходимо всё время поддерживать электрическое поле. Должна существовать разница потенциалов, поддерживающая наличие первых двух условий. До тех пор, пока эти условия соблюдены, заряды будут упорядоченно перемещаться по участкам замкнутой электрической цепи. Эту задачу выполняют источники электричества.
Такие условия можно создать, например, с помощью электрофорной машины (рис. 2). Если два диска вращать в противоположных направлениях, то они будут заряжаться разноимёнными зарядами. На щётках, прилегающих к дискам, появится разница потенциалов. Соединив контакты проводником, мы заставим заряженные частицы двигаться упорядоченно. То есть электрофорная машина является источником электричества.

Источники тока
Первыми источниками электрической энергии, нашедшими практическое применение, были упомянутые выше гальванические элементы. Усовершенствованные гальванические элементы (народное название – батарейки) широко применяются по сей день. Они используются для питания пультов управления, электронных часов, детских игрушек и многих других гаджетов.
С изобретением генераторов переменных токов электричество приобрело второе дыхание. Началась эра электрификации городов, а позже и всех населённых пунктов. Электрическая энергия стала доступной для всех граждан развитых стран.
Сегодня человечество ищет возобновляемые источники электроэнергии. Солнечные панели, ветряные электростанции уже занимают свои ниши в энергосистемах многих стран, включая Россию.
Характеристики
Электрический ток характеризуется величинами, которые описывают его свойства.
Сила и плотность тока
Для описания характеристики электричества часто используют термин «сила тока». Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле. Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).
1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).
Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I×R, где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома для участка цепи.
Мощность
Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени. По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I× U. Единица измерения мощности – ватт (Вт).
Частота
Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.
Ток смещения
Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.
Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.
Виды тока
По способу генерации и свойствам электроток бывает постоянным и переменным. Постоянный – это такой, что не меняет своего направления. Он течёт всегда в одну сторону. Переменный ток периодически меняет направление. Под переменным понимают любой ток, кроме постоянного. Если мгновенные значения повторяются в неизменной последовательности через равные промежутки времени, то такой электроток называют периодическим.
Классификация переменного тока
Классифицировать изменяющиеся во времени токи можно следующим образом:
Различают также вихревые токи, которые возникают в проводнике при изменении магнитного потока. Блуждающие токи Фуко, как их ещё называют, не текут по проводам, а образуют вихревые контуры. Индукционный ток имеет ту же природу что и вихревой.
Дрейфовая скорость электронов
Электричество по металлическому проводнику распространяется со скоростью света. Но это не означает, что заряженные частицы несутся от полюса к полюсу с такой же скоростью. Электроны в металлических проводниках встречают на своём пути сопротивление атомов, поэтому их реальное перемещение составляет всего 0,1 мм за секунду. Реальная, упорядоченная скорость перемещения электронов в проводнике называется дрейфовой.
Если замкнуть проводником полюсы источника питания, то вокруг проводника молниеносно образуется электрическое поле. Чем больше ЭДС источников, тем сильнее проявляется напряжённость электрического поля. Реагируя на напряжённость, заряженные частицы вмиг принимают упорядоченное движение и начинают дрейфовать.
Направление электрического тока
Традиционно считают, что вектор электрического тока направлен к отрицательному полюсу источника. Но на самом деле электроны движутся к положительному полюсу. Традиция возникла из-за того, что за направление вектора было выбрано движение положительных ионов в электролитах, которые действительно стремятся к негативному полюсу.
Электроны проводимости с отрицательным зарядом в металлах были открыты позже, но физики не стали менять первоначальные убеждения. Так укрепилось утверждение, что ток направлен от плюса к минусу.
Электрический ток в различных средах
В металлах
Носителями тока в металлических проводниках являются свободные электроны, которые из-за слабых электрических связей хаотично блуждают внутри кристаллических решёток (рис. 3). Как только в проводнике появляется ЭДС, электроны начинают упорядочено дрейфовать в сторону позитивного полюса источника питания.

В результате прохождения тока возникает сопротивление проводников, которое препятствует потоку электронов и приводит нагреванию. При коротком замыкании выделение тепла настолько сильное, разрушает проводник.
В полупроводниках
В обычном состоянии у полупроводника нет свободных носителей зарядов. Но если соединить два разных типа полупроводников, то при прямом подключении они превращаются в проводник. Происходит это потому, что у одного типа есть положительно заряженные ионы (дырки), а у другого – отрицательные ионы (атомы с лишним электроном).
Под напряжением электроны из одного полупроводника устремляются для замещения (рекомбинации) дырок в другом. Возникает упорядоченное движение свободных зарядов. Такую проводимость называют электронно-дырочной.
В вакууме и газе
Электрический ток возможен и в ионизированном газе. Заряд переносится положительными и отрицательными ионами. Ионизация газов возможна под действием излучения или вследствие сильного нагревания. Под действием этих факторов возбуждаются атомы, которые превращаются в ионы (рис. 4).

В вакууме электрические заряды не встречают сопротивления, поэтому. заряженные частицы движутся с околосветовыми скоростями. Носителями зарядов являются электроны. Для возникновения тока в вакууме необходимо создать источник электронов и достаточно большой положительный потенциал на электроде.
Примером может служить работа вакуумной лампы или электронно-лучевая трубка.
В жидкостях
Оговоримся сразу – не все жидкости являются проводниками. Электрический ток возможен в кислотных, щёлочных и соляных растворах. Иначе говоря – в средах, где имеются заряженные ионы.
Если опустить в раствор два электрода и подключить их к полюсам источника, то между ними будет протекать электрический ток (рис. 5). Под действием ЭДС катионы устремятся к катоду (минусу), а анионы к аноду. При этом будет происходить химическое воздействие на электроды – на них будут оседать атомы растворённых веществ. Такое явление называют электролизом.
Для лучшего понимания свойств электротока в разных средах, предлагаю рассмотреть картинку на рисунке 6. Обратите внимание на вольтамперные характеристики (4 столбец).

Проводники электрического тока
Среди множества веществ, лишь некоторые являются проводниками. К хорошим проводникам относятся металлы. Важной характеристикой проводника является его удельное сопротивление.
Небольшое сопротивление имеют:
На практике наиболее часто применяют алюминиевые и медные проводники, так как они не слишком дорогие.
Электробезопасность
Несмотря на то что электричество прочно вошло в нашу жизнь, не следует забывать об электробезопасности. Высокие напряжения опасны для жизни, а короткие замыкания становятся причиной пожаров.
При выполнении ремонтных работ необходимо строго соблюдать правила безопасности: не работать под высоким напряжением, использовать защитную одежду и специальные инструменты, применять ножи заземления и т.п.
В быту используйте только такую электротехнику, которая рассчитана на работу в соответствующей сети. Никогда не ставьте «жучки» вместо предохранителей.
Помните, что мощные электролитические конденсаторы имеют большую электрическую емкость. Накопленная в них энергия может вызвать поражение даже спустя несколько минут после отключения от сети.
Все об электрических токах
Открытия, которые связаны с электричеством, существенно поменяли жизнь современного человека. Применяя электроток в качестве источника энергии, удалось сделать технологический прорыв, облегчивший существование человечества. На сегодняшний день электричество приводит в действие токарные станки, авто, роботизированную технику, предоставляет связь. В связи с этим важно понять, какие бывают виды тока и принцип их действия.
Что это такое
Электроток — направленное передвижение электрическим полем заряженных элементов. Носители зарядов металлопроводников — электроны, а кислотных и солевых растворов — ионы. Полупроводниковые носители зарядов именуются электронами и «дырками».
Чтобы ток существовал, требуется постоянно поддерживать электрополе. Должна быть разница потенциалов, которая поддерживает само поле. Пока такие условия не будут выполнены, заряды упорядоченно перемещаются по замкнутой электроцепи.
Подобные условия возможно создать, к примеру, посредством электрофорной машины. Когда 2 диска вращаются в обратных направлениях, они заряжаются разноименными зарядами. На щётках, которые прилегают к дискам, возникает разница потенциалов. Соединяя контакты, частицы начинают перемещаться упорядоченно. В такой ситуации машина становится электрическим источником.

Характеристики
Исследовав электрический ток и его ключевые характеристики, возможно понять принцип его функционирования. Главными величинами электрической энергии являются напряжение, сила и сопротивление.
Сила и плотность тока
Чтобы описать характеристики электричества, зачастую применяют термин «сила тока». Он определяет интенсивность перемещения зарядов, которые проходят сквозь поперечное сечение проводника.
Плотность тока является векторной величиной. Вектор направляется в сторону движения положительно заряженных зарядов. Его модуль равняется соотношению силы электротока на определенном перпендикулярном по направлению перемещения зарядов сечении проводника к его площади. Измерение происходит в амперах на метр.
Мощность
Электрические силы осуществляют работу против активного и реактивного сопротивления. На пассивных работах будет преобразовываться в теплоэнергию. Производительностью называется работа, которая выполнена за 1 врем. ед. Относительно электричества применяется понятие «мощность теплопотерь». Мощность теплопотерь проводника равняется силе тока, которая умножена на напряжение. Измеряется мощность в ваттах.
Частота
Ток характеризует частота. Такой параметр покажет, как за врем. ед. меняется число колебаний. Частота измеряется в герцах. Обычная промышленная частота составит 50 Гц.
Ток смещения
Такой термин был введен для комфорта, хотя в привычном понимании его не назовешь током, поскольку нет переноса заряда. Интенсивность электромагнитного поля находится в зависимости от токопроводимости и смещения.
Токи смещения возможно увидеть в конденсаторе. Невзирая на то, что во время зарядки и разрядки меж обкладок конденсатора не перемещается заряд, ток смещения будет протекать сквозь конденсатор и замыкать электроцепь.
Как работает
Условия существования электротока предполагают действие заряженных частиц, проводника и напряжения. Большинство специалистов исследовали электричество и установили, что есть 2 его разновидности: статическая и текущая.
Непосредственно текущая имеет важное значение в ежедневной жизни каждого человека, поскольку является электротоком, проходящим через электроцепь. Человек каждый день использует его, чтобы питать дома и др.
Типы проводников
Процессы образования электротока в разных средах отличаются определенными особенностями:
При невысокой температуре полупроводники приблизятся по качествам к изоляторам. В процессе повышения температурных показателей валентные электроны получат необходимую, чтобы разорвать связи, энергию и станут свободными. С увеличением температуры улучшается проводимость полупроводника.
Важно! Положительно заряженные ионы направляются к отрицательному электроду, отрицательные ионы — к плюсовому. Во время увеличения температурных показателей проводимость электролита возрастет, поскольку увеличивается количество разложившихся на ионы молекул.
По типу генерации и характеристикам электроток бывает постоянным и переменным. Постоянный является таковым, который не обладает своим направлением. Он будет течь в любом случае в одну сторону. Переменный время от времени изменяет направленность. Таковым считается любой ток, помимо постоянного. Когда мгновенные показатели повторятся в той же последовательности спустя одинаковые временные интервалы, то подобный электрический ток называется периодическим.
Постоянный
Рассматриваемый ток тот, который на протяжении определенного временного промежутка не изменит собственной величине и направлению. Довольно часто постоянным считают пульсирующий электроток. Он отливается тем, что одинаковое число зарядов регулярно сменяются между собой в одну сторону.
Важно! В процессе определения направления бывают разбежности. Когда электроток формируется передвижением положительных частиц, то направление будет соответствовать перемещению частиц. Когда он сформирован передвижением отрицательных частиц, то направление считается противоположным движению частиц.
Основным достоинством станет то, что его возможно накопить. Делается это собственноручно, с помощью аккумуляторов либо конденсаторов.
Переменный
Для понимания сущности переменного электротока требуется представить синусоиду. Непосредственно она наилучшим образом сможет охарактеризовать изменения в постоянном токе. Переменный электроток постоянно изменяет собственную полярность. Во время одного интервала он положительный, других отрицательный. Для него немаловажным фактором станет скорость смены полярности (частота).
Большинство техники функционирует на переменном токе отличных частот. Благодаря изменениям в частоте возможно менять скорость вращения мотора.
Важно! Увидеть наглядный пример возможно, осмотрев обыкновенную лампу. В частности это заметно на некачественной диодной лампочке. В процессе функционирования на постоянном электротоке они будут гореть равномерным светом, а на переменном еле уловимо мерцать.
Источники тока
Первоисточниками электроэнергии, которые нашли применение на практике, стали гальванические элементы. После усовершенствования они используются и сегодня. Их применяют для энергопитания дистанционных пультов, электронных часов, устройств для детей и различных приборов. С появлением генераторов переменного тока электроэнергия стала использоваться еще интенсивнее. В связи с этим, следует ознакомиться с основными типами источников тока.
Механические источники
В них преобразуется механическая энергия в электричество. Процесс происходит в спецустройствах — генераторах. Главными из них считаются турбогенераторы, где электромашина будет приведена в действие с помощью газового либо парового потока, и гидрогенераторы, которые преобразуют энергию воды в электричество. Основная часть электрической энергии на планете производят непосредственно механические преобразователи.

Тепловые источники
Тут происходит преобразование теплоэнергии в электрическую. Появление электротока обусловливается разницей температурных показателей 2 пар контактирующих металлов. В такой ситуации заряженные частицы перемещаются в сторону холодного участка. Величина электротока будет зависеть непосредственно от температурной разницы: чем она выше, тем сильнее ток. Термопары из полупроводников дают термоэдс выше, чем биметаллические, потому они используются для изготовления источников электротока. Термопары из металла применяют только, чтобы измерять температурные показатели.

Световые источники
Когда начала развиваться физика полупроводников, стали появляться новые токоисточники — солнечные аккумуляторы, где световая энергия будет преобразовываться в электрическую. Они используют качество полупроводников выдачи напряжения во время действии на них светопотока. В частности такой эффект заметен в полупроводниках из кремния. Однако коэффициент полезного действия подобных элементов не превысит 15%. Солнечные аккумуляторы нашли свое применение в космической сфере, в бытовой. Стоимость на данные источники энергопитания регулярно уменьшается, однако по-прежнему высока.
Химические источники
Их возможно разделить на несколько групп:
Гальванические функционируют благодаря взаимодействию 2 различных металлов, которые помещены в электролит. В виде пар металлов и электролита выступают различные химэлементы и соединения. Это определяет разновидность и параметры элемента.
Важно! Гальванические элементы применяются лишь 1 раз, когда разрядятся их не удастся восстановить.
Дешевизна материалов и простота производства аккумуляторов делает их наиболее дешевыми из доступных. Однако по параметрам они существенно уступят щелочным и литиевым.

Тепловые выступают в качестве источников резервного энергопитания. Они обладают отличными характеристиками по удельной плотности электротока, однако отличаются непродолжительным сроком эксплуатации (до 60 минут). Используются преимущественно в космической отрасли, где требуются точность и кратковременное функционирование.
Как правильно применяются
Вне зависимости от принципа функционирования какого-либо источника электротока, в каждом из разделяются электрозаряды физ.тел. Происходит преобразование какой-либо разновидности энергии в электричество.
Такая энергия в технике применяется повсюду. В любом жилище возможно отыскать быттехнику, существенно облегчающую ведение хозяйства. Помимо этого, предотвращается появление пыли, копоти и других неприятных эффектов использования плит и прочих приборов, актуальных до возникновения электричества.
В промышленной сфере электрическая энергия имеет важную роль. Использование тока дает возможность существенно уменьшить траты, так как такой тип энергии дешевле горючего.
Меры безопасности
Главным правилом безопасности во время работы с токами станет то, что перед любыми действиями требуется обесточить электросеть. В процессе работ также необходимо следовать таким рекомендациям:
Напряжение свыше 24 вольт будет опасно для жизни. Во время работы с напряжением больше данного параметра требуется спецдопуск. При работах необходимо пользоваться специнструментами с повышенным уровнем защиты.

Использование электротока разнообразно, так как без него нельзя представить сегодня жизнь. Необходимо понять принципы его функционирования для направления электроэнергии в правильное русло. Электроток течет по законам физики, используемым для создания разнообразных приспособлений. Чтобы грамотно использовать его, требуется ознакомиться с основными электровеличинами.