какие виды элементов бывают

Познание мира

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

10 типов химических элементов

Типы химических элементов

В природе можно найти самые разные вещества. Эти вещества обычно не встречаются в чистом виде, а являются результатом комбинации различных элементов или материалов, которые в результате различных реакций, процессов и периодов времени дали начало всем видам материи. Во Вселенной нет ничего, что не являлось бы результатом комбинации атомов, принадлежащих к разным типам химических элементов, которые мы собираемся изучить более подробно.

Однако, прежде чем рассматривать типы химических элементов, давайте сделаем небольшой обзор школьной науки и вспомним, что такое химические элементы.

Мы называем «химическим элементом» материю, которая состоит из одного и того же типа атома, то есть вещества, которое является атомарно чистым. Химические элементы не могут быть разложены на более простые и классифицируются в периодической таблице элементов как чистые материалы Вселенной.

Мы не должны путать элементы с простыми веществами, поскольку в некоторых случаях два или более атомов одного и того же элемента могут составлять молекулы, сгруппированные по-разному, что приводит к изменению некоторых физических свойств рассматриваемого элемента, в этих случаях изотопов. Например, алмаз и углерод — это вещества, состоящие из химического элемента углерода (C), но который организован по-разному и приводит к образованию двух совершенно разных материалов.

Насколько нам известно, химические элементы образуются внутри звезд в результате сложных процессов синтеза и деления атомов, в результате которых образуются все более тяжелые элементы, результат процесса, называемого нуклеосинтезом.

Большинство известных элементов могут быть получены из природы, спонтанно обнаружены или образуют соединения с другими элементами, такими как уран (U), углерод (C), кремний (Si), серебро (Ag) или золото (Au). Другие, однако, производятся в лабораториях, например, америций (Am), берклий (Bk) или кюрий (Cm). Каким бы ни был метод его получения или присутствует ли он в природе, в зависимости от его свойств, рассматриваемый химический элемент будет иметь то или иное применение.

В настоящее время известно около 118 химических элементов, хотя с учетом того, что люди смогли производить новые элементы, расширение таблицы Менделеева — это вопрос времени.

Основные типы химических элементов

Основные типы химических элементов представлены в периодической таблице, системе классификации, созданной русским химиком Дмитрием Менделеевым (1834–1907), заложившим ее основы в 1869 году. Химические элементы визуально упорядочены в зависимости от их свойств и характеристик.

С течением времени и по мере того, как химия сделала важные научные открытия, эта таблица будет последовательно расширяться, достигнув той формы, которую она имеет сегодня, с 118 известными до сих пор элементами.

В настоящее время в этой таблице мы можем найти следующие типы химических элементов:

Металлы

Металлы — это химические элементы, которые, как правило, содержат от одного до трех электронов на последней орбите своего атома, электроны, которые можно легко переносить, превращая их в проводники тепла и электричества.

Металлы обычно податливы и пластичны, с характерным блеском, интенсивность которого зависит от движения электронов, составляющих их атомы. В большинстве случаев металлы остаются твердыми при комнатной температуре, за исключением ртути.

Среди металлов мы находим золото (Au), серебро (Ag), медь (Cu) и алюминий (Al), физические характеристики которых делают их великолепными проводниками электричества, хотя их присутствие в природе очень разнообразно, что отражается в разнице между их массами.

Считается, что 75% химических элементов, существующих в природе — это металлы, а остальные 25% будут состоять из благородных газов, металлоидов и других типов.

В этой категории есть классификации, обнаруживающие актиниды, лантаноиды, переходные металлы, щелочные металлы, щелочноземельные металлы и другие металлы.

Лантаноиды

Элементы лантаноидов находятся в месторождениях, состоящих из многих минералов. Это металлы белого цвета, которые легко окисляются при контакте с воздухом. Среди них мы находим лантан (La), прометий (Pm), европий (Eu) и иттербий (Yb).

Актиниды

Все изотопы актинидов радиоактивны. Среди них мы находим актиний (Ac), уран (U), плутоний (Pu) и эйнштейний (Es).

Переходные металлы

В этой группе есть вещества всех видов, и, согласно ее самой широкой классификации, она будет соответствовать химическим элементам от 21 до 30, от 39 до 48, от 71 до 80 и от 103 до 112, всего сорок и среди них мы найдем ванадий (V), рутений (Ru), серебро (Ag), тантал (Ta) и лоуренсий (Lr).

Щелочные металлы

Щелочные металлы — это группа из шести элементов, состоящая из лития (Li), натрия (Na), калия (K), рубидия (Rb), цезия (Cs) и франция (Fr). Это блестящие мягкие металлы, обладающие высокой реакционной способностью при нормальной температуре и давлении и легко теряющие внешний электрон, расположенный на своей «s» орбитали.

Щелочные почвы

Щелочноземельные металлы — это группа элементов, в которых мы находим бериллий (Be), магний (Mg), кальций (Ca), стронций (Sr), барий (Ba) и радий (Ra).

Щелочные почвы тверже щелочей, они блестят и являются хорошими проводниками электричества. Они менее реактивны, чем щелочные, и действуют как хорошие восстановители. Они обладают способностью образовывать ионные соединения, и все они имеют два электрона на внешней оболочке.

Другие металлы

Это металлические элементы, расположенные в периодической таблице вместе с металлоидами внутри p-блока. Они имеют тенденцию быть мягкими с низкими температурами плавления. Среди них алюминий (Al), индий (In), олово (Sn) и висмут (Bi) среди других.

Не металлы

Неметаллы обычно имеют от пяти до семи электронов на последней орбите, свойство, которое заставляет их приобретать электроны, а не отдавать их, и, таким образом, им удается иметь восемь электронов, которые таким образом стабилизируют их как атомы.

Эти элементы очень плохо проводят тепло и электричество. К тому же они не имеют характерного блеска, не очень пластичны и очень хрупки в твердом состоянии. Их нельзя катать или растягивать, в отличие от металлов.

Большинство из них необходимы для биологических систем, поскольку они присутствуют в органических соединениях, таких как сера (S), углерод (C), кислород (O), водород (H) и йод (I).

Металлоиды

Металлоиды представляют собой промежуточную классификацию между металлами и неметаллами, обладающими свойствами обеих групп. Это связано с тем, что на последней орбите у них четыре атома, что является промежуточным количеством по сравнению с металлами и неметаллами.

Эти химические элементы проводят электричество только в одном направлении, но не в обратном, как в металлах. Примером этого является кремний (Si), металлоид, используемый в производстве полупроводниковых элементов для электронной промышленности благодаря этому свойству.

Другие металлоиды: бор (B), мышьяк (As), сурьма (Sb) и полоний (Po).

Галогены

Галогены — это группа из шести элементов, которые имеют тенденцию образовывать молекулы, состоящие из двух (двухатомных) атомов, которые очень химически активны из-за своей электроотрицательности.

Эти вещества обычно появляются в виде ионов, то есть электрически заряженных молекул, которые в данном случае являются однозначными, сильно окисляющими. Это означает, что галогены являются едкими веществами.

Галогены: фтор (F), хлор (Cl), бром (Br), йод (I), астат (At) и тенезе (Ts).

Благородные газы

Благородные газы — это группа из семи газов, естественное состояние которых — газообразное. Обычно они представляют собой двухатомные молекулы с очень низкой реакционной способностью, то есть они не вступают в реакцию с другими элементами, составляющими другие вещества, и по этой же причине они известны как инертные газы. Это потому, что на его последней орбите находится максимальное количество электронов, возможное для этого уровня, всего восемь.

Эта избранная группа элементов состоит из гелия (He), неона (Ne), аргона (Ar), криптона (Kr), ксенона (Xe), радона (Rn) и оганесона (Og), ранее известного как унунокций.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Типы химических элементов

Все элементы периодической системы подразделяются на четыре типа:

1. У атомов s–элементов заполняются s–оболочки внешнего слоя (n). К s–элементам относятся водород, гелий и первые два элемента каждого периода.

2. У атомов р–элементов электронами заполняются р–оболочки внешнего уровня (np). К р-элементам относятся последние 6 элементов каждого периода (кроме первого).

3. У d–элементов заполняется электронами d–оболочка второго снаружи уровня (n–1)d. Это элементы вставных декад больших периодов, расположенных между s– и p–элементами.

4. У f–элементов заполняется электронами f–подуровень третьего снаружи уровня (n–2)f. К семейству f–элементов относятся лантаноиды и актиноиды.

Из рассмотрения электронной структуры невозбужденных атомов в зависимости от порядкового номера элемента следует:

1. Число энергетических уровней (электронных слоев) атома любого элемента равно номеру периода, в котором находится элемент. Значит, s–элементы находятся во всех периодах, р–элементы – во втором и последующих, d–элементы – в четвертом и последующих и f–элементы – в шестом и седьмом периодах.

2. Номер периода совпадает с главным квантовым числом внешних электронов атома.

3. s– и p–элементы образуют главные подгруппы, d–элементы – побочные подгруппы, f–элементы образуют семейства лантаноидов и актиноидов. Таким образом, подгруппа включает элементы, атомы которых обычно имеют сходное строение не только внешнего, но и предвнешнего слоя (за исключением элементов, в которых имеет место «провал» электрона).

4. Номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей. В этом состоит физический смысл номера группы. У элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних оболочек. Это является основным различием в свойствах элементов главных и побочных подгрупп.

5. Элементы с валентными d– или f–электронами называются переходными.

6. Номер группы, как правило, равен высшей положительной степени окисления элементов, проявляемой ими в соединениях. Исключением является фтор – его степень окисления равна –1; из элементов VIII группы только для Os, Ru и Xe известна степень окисления +8.

Химическая связь и типы взаимодействия молекул

Химическая связь – это взаимодействие атомов, обусловленное перекрыванием их электронных облаков и сопровождающееся уменьшением полной энергии системы.

В зависимости от характера распределения электронной плотности между взаимодействующими атомами различают три основных типа химической связи: ковалентную, ионную и металлическую.

Основные характеристики связи:

Энергия связи (Е, кДж/моль) – количество энергии, выделяющееся при образовании химической связи. Чем больше энергия связи, тем устойчивее молекулы.

Длина связи – расстояние между ядрами химически связанных атомов.

Кратность связи – определяется количеством электронных пар, связывающих два атома. С увеличением кратности связи длина связи уменьшается, а прочность ее возрастает.

Валентный угол – угол между воображаемыми линиями, которые можно провести через ядра связанных атомов. Валентный угол определяет геометрию молекул.

Дипольный момент возникает, если связь образована между атомами элементов с разной электроотрицательностью и служит мерой полярности молекулы.

Ковалентная связь

Ковалентная связь образуется путем обобществления пары электронов двумя атомами. Особенностями ковалентной химической связи являются ее направленность и насыщаемость. Направленность обусловлена тем, что атомные орбитали имеют определенную конфигурацию и расположение в пространстве. Перекрывание орбиталей при образовании связи осуществляется по соответствующим направлениям. Насыщаемость обусловлена ограниченными валентными возможностями атомов.

Различают ковалентную полярную и неполярную связь. Ковалентная неполярная связь образуется между атомами с одинаковой электроотрицательностью; обобществленные электроны равномерно распределены между ядрами взаимодействующих атомов. Ковалентная полярная связь образуется между атомами с различной электроотрицательностью; общие электронные пары смещены в сторону более электроотрицательного элемента.

Возможны два механизма образования ковалентной связи: 1) спаривание электронов двух атомов при условии противоположной ориентации их спинов (обменный механизм); 2) донорно-акцепторное взаимодействие, при котором общей становится электронная пара одного из атомов (донора) при наличии энергетически выгодной свободной орбитали другого атома (акцептора).

Часто в образовании связи участвуют электроны разных подуровней, а, следовательно, орбитали разных конфигураций. В этом случае может происходить гибридизация (смешение) электронных облаков (орбиталей). Образуются новые, гибридные облака с одинаковой формой и энергией. Число гибридных орбиталей равно числу исходных. В гибридной атомной орбитали (АО) электронная плотность смещается в одну сторону от ядра, поэтому при взаимодействии ее с АО другого атома происходит максимальное перекрывание, приводящее к повышению энергии связи. Гибридизация АО определяет пространственную конфигурацию молекул.

Возможны также более сложные виды гибридизации с участием d и f-орбиталей атомов.

Ионная связь

Ионная связь представляет собой электростатическое взаимодействие отрицательно и положительно заряженных ионов в химическом соединении. Ее можно рассматривать как предельный случай ковалентной полярной связи. Такая связь возникает лишь в случае большой разности электроотрицательностей взаимодействующих атомов, например между катионами s-металлов I и II групп периодической системы и анионами неметаллов VI и VII групп (LiF, CsCl, KBr и др.).

Так как электростатическое поле иона имеет сферическую симметрию, то ионная связь не обладает направленностью. Ей также не свойственна насыщаемость. Все ионные соединения в твердом состоянии образуют ионные кристаллические решетки, в узлах которых каждый ион окружен несколькими ионами противоположного знака. Чисто ионной связи не существует. Можно говорить лишь о доле ионности связи.

Металлическая связь

В отличие от ковалентных и ионных соединений, в металлах небольшое число электронов одновременно связывает большое число ядерных центров, а сами электроны могут перемещаться в металле. Таким образом, в металлах имеет место сильно нелокализованная химическая связь.

Биогенные элементы

Элементы, необходимые организму для построения и жизнедеятельности клеток и органов, называют биогенными элементами.

Источник

Какие виды элементов бывают

На данном уроке дана подробная историческая справка о попытках классификации химических элементов учеными-химиками, формируется представление о структуре периодического закона химических элементов Д.И. Менделеева, подчеркивается значение этого закона для химической науки.

I. Классификация химических элементов

1. Триады Дёберейнера

По­пыт­ки клас­си­фи­ка­ции хи­ми­че­ских эле­мен­тов на­ча­лись за­дол­го до от­кры­тия Д.И.Мен­де­ле­е­вым пе­ри­о­ди­че­ско­го за­ко­на. Есте­ство­ис­пы­та­те­ли в на­ча­ле XIX стал­ки­ва­лись с боль­ши­ми труд­но­стя­ми в этом на­прав­ле­нии, по­то­му что хи­ми­че­ских эле­мен­тов было из­вест­но всего 63, а атом­ные массы были опре­де­ле­ны для них неточ­но.

Три­а­ды Дё­бе­рей­не­ра

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

В 1829 году немец­кий химик И.В.Дё­бе­рей­нер за­ме­тил, что неко­то­рые сход­ные по своим свой­ствам эле­мен­ты можно объ­еди­нить по три в груп­пы. Он на­звал их три­а­да­ми.

Сущ­ность дан­ной клас­си­фи­ка­ции за­клю­ча­ет­ся в сле­ду­ю­щем: в каж­дой три­а­де есть сред­ний эле­мент, масса атома ко­то­ро­го будет равна сред­ней ариф­ме­ти­че­ской массе двух край­них эле­мен­тов.

На­при­мер, рас­смот­рим первую три­а­ду: Li, Na, K.

Их атом­ные массы со­от­вет­ствен­но равны 7, 23, 39.

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

Си­сте­ма клас­си­фи­ка­ции И.В.Дё­бе­рей­не­ра ока­за­лась несо­вер­шен­ной. Неко­то­рые три­а­ды не со­дер­жа­ли тех эле­мен­тов, ко­то­рые были бы по­хо­жи с ними по хи­ми­че­ским свой­ствам.

Ошиб­ка И.В.Дё­бе­рей­не­ра за­клю­ча­лась в том, что он огра­ни­чил себя по­ис­ком трой­ствен­ных со­ю­зов, т.е. триад.

Но И.В.Дё­бе­рей­нер был пер­вым из есте­ство­ис­пы­та­те­лей, ко­то­рый свя­зал свой­ства хи­ми­че­ских эле­мен­тов с их атом­ны­ми мас­са­ми. Все даль­ней­шие по­пыт­ки клас­си­фи­ка­ции хи­ми­че­ских эле­мен­тов ос­но­вы­ва­лись на связи масс ато­мов с их хи­ми­че­ски­ми свой­ства­ми.

2. Спираль Шанкурту

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

В се­ре­дине XIX века по­яви­лось много работ уче­ных, ко­то­рые пы­та­лись клас­си­фи­ци­ро­вать хи­ми­че­ские эле­мен­ты. Фран­цуз­ский гео­лог и химик А.Э. Шан­кур­туа в 1862 году пред­ло­жил свою клас­си­фи­ка­цию хи­ми­че­ских эле­мен­тов.

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

Рис. 1. Спи­раль Шан­кур­туа

Он рас­по­ло­жил все из­вест­ные к тому вре­ме­ни хи­ми­че­ские эле­мен­ты в по­ряд­ке воз­рас­та­ния их атом­ных масс, а по­лу­чен­ный ряд нанес на по­верх­ность ци­лин­дра, по линии ис­хо­дя из его ос­но­ва­ния под углом 45какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бываютк плос­ко­сти ос­но­ва­ния, так на­зы­ва­е­мая зем­ная спи­раль. Рис.1.

После раз­вер­ты­ва­ния этого ци­лин­дра ока­за­лось, что на вер­ти­каль­ных ли­ни­ях, па­рал­лель­ных оси ци­лин­дра, на­хо­дят­ся хи­ми­че­ские эле­мен­ты со сход­ны­ми хи­ми­че­ски­ми свой­ства­ми. Так на одну вер­ти­каль по­па­да­ли Li, Na, K; а также Be, Mg, Ca. Кис­ло­род, сера, тел­лур. Недо­стат­ком спи­ра­ли Шан­кур­туа было то, что в вер­ти­каль­ную груп­пу хи­ми­че­ских эле­мен­тов по­па­да­ли не име­ю­щие ни­че­го сход­но­го с ними хи­ми­че­ские эле­мен­ты. Так в груп­пу ще­лоч­ных ме­тал­лов, по­па­дал мар­га­нец. А в груп­пу кис­ло­ро­да и серы, по­па­дал титан.

3. Октавы Ньюлендса

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

В 1865 году 18 ав­гу­ста ан­глий­ский уче­ный Дж.А.Нью­лендс рас­по­ло­жил хи­ми­че­ские эле­мен­ты в по­ряд­ке воз­рас­та­ния их атом­ных масс. В ре­зуль­та­те он за­ме­тил, что каж­дый вось­мой эле­мент на­по­ми­на­ет по свой­ствам пер­вый эле­мент. Най­ден­ную за­ко­но­мер­ность, он на­звал за­ко­ном октав по ана­ло­гии с семью ин­тер­ва­ла­ми му­зы­каль­ной гаммы.Рис.2.Закон октав он сфор­му­ли­ро­вал сле­ду­ю­щим об­ра­зом:

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

Рис. 2. Ок­та­вы Нью­ленд­са

«Но­ме­ра ана­ло­гич­ных эле­мен­тов, как пра­ви­ло, от­ли­ча­ют­ся или на целое число семь или на крат­ное семи; дру­ги­ми сло­ва­ми члены одной и той же груп­пы со­от­но­сят­ся друг с дру­гом в том же от­но­ше­нии, как и край­ние точки одной или боль­ше октав в му­зы­ке».

В 1864 году ан­глий­ский химик У. Од­линг опуб­ли­ко­вал таб­ли­цу, в ко­то­рой эле­мен­ты были раз­ме­ще­ны, со­глас­но их атом­ным весам и сход­ствам хи­ми­че­ских свойств. Но он не дал ни­ка­ких ком­мен­та­ри­ев к своей ра­бо­те, и она не была за­ме­че­на.

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

4. Таблица химических элементов Мейера

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

Рис. 3. Таб­ли­ца хи­ми­че­ских эле­мен­тов Мей­е­ра

В 1870 году по­яви­лась пер­вая таб­ли­ца немец­ко­го хи­ми­ка Ю.Л. Мей­е­ра под на­зва­ни­ем « При­ро­да эле­мен­та, как функ­ция их атом­но­го веса». В неё были вклю­че­ны 28 эле­мен­тов, раз­ме­щен­ные в 6 столб­цов, со­глас­но их ва­лент­но­сти. Ю.Л. Мейер на­ме­рен­но огра­ни­чил число эле­мен­тов в таб­ли­це, чтобы под­черк­нуть за­ко­но­мер­ные из­ме­не­ния атом­ной массы в рядах сход­ных эле­мен­тов. Рис. 3.Сход­ные эле­мен­ты рас­по­ла­га­ют­ся в вер­ти­каль­ных рядах таб­ли­цы. Неко­то­рые ячей­ки Ю.Л. Мейер оста­вил неза­пол­нен­ны­ми.

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

5. Открытие периодического закона Д.И.Менделеевым

В марте 1869 года рус­ский химик Д. И. Мен­де­ле­ев пред­ста­вил рус­ско­му хи­ми­че­ско­му об­ще­ству со­об­ще­ние об от­кры­тии им пе­ри­о­ди­че­ско­го за­ко­на хи­ми­че­ских эле­мен­тов. В том же году вышло пер­вое из­да­ние Мен­де­ле­ев­ско­го учеб­ни­ка «Ос­но­вы химии», в ко­то­ром была при­ве­де­на его пе­ри­о­ди­че­ская таб­ли­ца.

В конце 1870 года Д. И. Мен­де­ле­ев де­ла­ет до­клад рус­ско­му хи­ми­че­ско­му об­ще­ству под на­зва­ни­ем «Есте­ствен­ные си­сте­мы хи­ми­че­ских эле­мен­тов и при­ме­не­ние её к ука­за­нию свойств еще неиз­вест­ных эле­мен­тов». В этом до­кла­де Д. И. Мен­де­ле­ев пред­ска­зы­ва­ет су­ще­ство­ва­ние трех еще неиз­вест­ных эле­мен­тов: эка­си­ли­ций, эка­бор и эка­а­лю­ми­ний. Он утвер­жда­ет, что свой­ства хи­ми­че­ских эле­мен­тов, сто­я­щих в одной груп­пе, будут нечто сред­ним между свой­ства­ми эле­мен­тов, сто­я­щих свер­ху и снизу дан­но­го эле­мен­та. Если рас­смат­ри­вать этот эле­мент в пе­ри­о­де, то он будет об­ла­дать сред­ни­ми свой­ства­ми эле­мен­тов, сто­я­щи­ми слева и спра­ва от него.

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

Рис. 4. Таб­ли­ца хи­ми­че­ских эле­мен­тов Мен­де­ле­е­ва

Еще алхимики пытались найти закон природы, на основе которого можно было бы систематизировать химические элементы. Но им недоставало надежных и подробных сведений об элементах. К середине XIX в. знаний о химических элементах стало достаточно, а число элементов возросло настолько, что в науке возникла естественная потребность в их классификации. Первые попытки классификации элементов на металлы и неметаллы оказались несостоятельными. Предшественники Д.И.Менделеева (И. В. Деберейнер, Дж. А. Ньюлендс, Л. Ю. Мейер) многое сделали для подготовки открытия периодического закона, но не смогли постичь истину. Дмитрий Иванович установил связь между массой элементов и их свойствами.

Дмитрий Иванович родился в г. Тобольске. Он был семнадцатым ребенком в семье. Закончив в родном городе гимназию, Дмитрий Иванович поступил в Санкт-Петербурге в Главный педагогический институт, после окончания которого с золотой медалью уехал на два года в научную командировку за границу. После возвращения его пригласили в Петербургский университет. Приступая к чтению лекций по химии, Менделеев не нашел ничего, что можно было бы рекомендовать студентам в качестве учебного пособия. И он решил написать новую книгу – «Основы химии».

Открытию периодического закона предшествовало 15 лет напряженной работы. 1 марта 1869 г. Дмитрий Иванович предполагал выехать из Петербурга в губернии по делам.

Видео-фильм о Д.И. Менделееве

II. Открытие Периодического закона

Периодический закон был открыт на основе характеристики атома – относительной атомной массы.

Менделеев расположил химические элементы в порядке возрастания их атомных масс и заметил, что свойства элементов повторяются через определенный промежуток – период, Дмитрий Иванович расположил периоды друг под другом., так, чтобы сходные элементы располагались друг под другом – на одной вертикали, так была построена периодическая система элементов.

1 марта 1869г. Формулировка периодического закона Д.И. Менделеева.

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

К сожалению, сторонников периодического закона сначала было очень мало, даже среди русских ученых. Противников – много, особенно в Германии и Англии.
Открытие периодического закона – это блестящий образец научного предвидения: в 1870 г. Дмитрий Иванович предсказал существование трех еще неизвестных тогда элементов, которые назвал экасилицием, экаалюминием и экабором. Он сумел правильно предсказать и важнейшие свойства новых элементов. И вот через 5 лет, в 1875 г., французский ученый П.Э. Лекок де Буабодран, ничего не знавший о работах Дмитрия Ивановича, открыл новый металл, назвав его галлием. По ряду свойств и способу открытия галлий совпадал с экаалюминием, предсказанным Менделеевым. Но его вес оказался меньше предсказанного. Несмотря на это, Дмитрий Иванович послал во Францию письмо, настаивая на своем предсказании.
Ученый мир был ошеломлен тем, что предсказание Менделеевым свойств экаалюминияоказалось таким точным. С этого момента периодический закон начинает утверждаться в химии.
В 1879 г. Л. Нильсон в Швеции открыл скандий, в котором воплотился предсказанный Дмитрием Ивановичем экабор.
В 1886 г. К. Винклер в Германии открыл германий, который оказался экасилицием.

Но гениальность Дмитрия Ивановича Менделеева и его открытия — не только эти предсказания!

В четырёх местах периодической системы Д. И. Менделеев расположил элементы не в порядке возрастания атомных масс:

Ещё в конце 19 века Д.И. Менделеев писал, что, по-видимому, атом состоит из других более мелких частиц. После его смерти в 1907 г. было доказано, что атом состоит из элементарных частиц. Теория строения атома подтвердила правоту Менделеева, перестановки данных элементов не в соответствии с ростом атомных масс полностью оправданы.

Современная формулировка периодического закона.

Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.
И вот спустя более 130 лет после открытия периодического закона мы можем вернуться к словам Дмитрия Ивановича, взятым в качестве девиза нашего урока: «Периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещаются». Сколько химических элементов открыто на данный момент? И это далеко не предел.

III. Периодическая система химических элементов

Графическим изображением периодического закона является периодическая система химических элементов. Это краткий конспект всей химии элементов и их соединений.

Изменения свойств в периодической системе с ростом величины атомных весов в периоде (слева направо):

1. Металлические свойства уменьшаются

2. Неметаллические свойства возрастают

3. Валентность элементов в формулах высших оксидов возрастает от I до VII, а в формулах летучих водородных соединений уменьшается от IV до I.

Основные принципы построения периодической системы

Как устанавливается последовательность элементов по номерам? (что положено в основу п.с.?)

Элементы расставлены в порядке увеличения их относительных атомных масс. При этом есть исключения.

Принцип объединения элементов в группы.

Качественный признак. Сходство свойств простых веществ и однотипных сложных.

Принцип объединения элементов в периоды.

Совокупность элементов по мере роста относительной атомной массы от одного щелочного металла до другого.

На се­го­дняш­ний день от­кры­то 118 хи­ми­че­ских эле­мен­тов, каж­дый из ко­то­рых занял свою ячей­ку в Пе­ри­о­ди­че­ской си­сте­ме. Новые от­кры­ва­е­мые эле­мен­ты имеют боль­шую от­но­си­тель­ную атом­ную массу, чем уже из­вест­ные и по­па­да­ют в конец таб­ли­цы. В на­сто­я­щее время ис­поль­зу­ют­ся длин­ная и ко­рот­кая формы пе­ри­о­ди­че­ских таб­лиц.

В ячей­ке таб­ли­цы за­пи­сы­ва­ет­ся сим­вол хи­ми­че­ско­го эле­мен­та, его на­зва­ние и по­ряд­ко­вый номер, зна­че­ние от­но­си­тель­ной атом­ной массы.

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

Рис. Ин­фор­ма­ция о хи­ми­че­ском эле­мен­те кис­ло­ро­де

При изу­че­нии школь­но­го курса химии, как пра­ви­ло, поль­зу­ют­ся ко­рот­кой фор­мой Пе­ри­о­ди­че­ской таб­ли­цы. Она со­дер­жит 8 вер­ти­каль­ных столб­цов (групп), ко­то­рые ну­ме­ру­ют­ся рим­ски­ми циф­ра­ми. Каж­дая груп­па вклю­ча­ет в себя глав­ную (А) и по­боч­ную (В) под­груп­пы.

У эле­мен­тов глав­ных под­групп выс­шая ва­лент­ность, как пра­ви­ло, равна но­ме­ру груп­пы. Од­ни­ми из ис­клю­че­ний этого пра­ви­ла яв­ля­ют­ся кис­ло­род (его ва­лент­ность все­гда равна II) и фтор (выс­шая ва­лент­ность ко­то­ро­го – I).

С по­мо­щью Пе­ри­о­ди­че­ской таб­ли­цы можно опре­де­лить и низ­шую ва­лент­ность эле­мен­та. Для этого из 8 (мак­си­маль­но­го числа групп) надо вы­честь номер груп­пы, в ко­то­рой на­хо­дит­ся эле­мент. На­при­мер, выс­шая ва­лент­ность фос­фо­ра равна V (т. к. фос­фор на­хо­дит­ся в V груп­пе), а низ­шая равна III. Толь­ко это пра­ви­ло при­ме­ни­мо для эле­мен­тов глав­ных под­групп V–VII групп.

Го­ри­зон­таль­ные ряды хи­ми­че­ских эле­мен­тов в Пе­ри­о­ди­че­ской таб­ли­це на­зы­ва­ют­ся пе­ри­о­да­ми. Пока их 7. Пер­вые три пе­ри­о­да на­зы­ва­ют ма­лы­ми (пер­вый пе­ри­од со­дер­жит всего 2 хим. эле­мен­та, а 2 и 3 – по 8 эле­мен­тов). Пе­ри­о­ды 4, 5, 6, 7 на­зы­ва­ют­ся боль­ши­ми.

По по­ло­же­нию эле­мен­та в Пе­ри­о­ди­че­ской си­сте­ме можно опре­де­лить его при­над­леж­ность к ме­тал­лам или неме­тал­лам. Для этого в ко­рот­кой форме таб­ли­цы нужно про­ве­сти диа­го­наль от бе­рил­лия к аста­ту. Эле­мен­ты глав­ных под­групп, на­хо­дя­щи­е­ся выше этой диа­го­на­ли (плюс во­до­род), от­но­сят­ся к неме­тал­лам. Все осталь­ные эле­мен­ты – ме­тал­лы. Инерт­ные газы He, Ne, Ar, Kr, Xe, Rn не от­но­сят ни к ме­тал­лам, ни к неме­тал­лам.

В длин­ной форме таб­ли­цы можно про­ве­сти диа­го­наль от бора к аста­ту. Все эле­мен­ты, ко­то­рые на­хо­дят­ся ниже этой диа­го­на­ли, об­ра­зу­ют про­стые ве­ще­ства ме­тал­лы.

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

Рис. Длин­ная форма пе­ри­о­ди­че­ской си­сте­мы хи­ми­че­ских эле­мен­тов

По по­ло­же­нию эле­мен­та в пе­ри­о­ди­че­ской си­сте­ме можно по­лу­чить ин­фор­ма­цию о его выс­шем ок­си­де и гид­рок­си­де. У неме­тал­лов выс­ший оксид и гид­рок­сид имеют кис­лот­ный ха­рак­тер, у ме­тал­лов – ос­нов­ный, у пе­ре­ход­ных ме­тал­лов оксид и гид­рок­сид, как пра­ви­ло, ам­фо­тер­ные (см. рис.).

какие виды элементов бывают. Смотреть фото какие виды элементов бывают. Смотреть картинку какие виды элементов бывают. Картинка про какие виды элементов бывают. Фото какие виды элементов бывают

Рис. Связь свойств эле­мен­тов и об­ра­зо­ван­ных ими со­еди­не­ний

От­кры­тие новых хи­ми­че­ских эле­мен­тов

С этого мо­мен­та пе­ри­о­ди­че­ский закон и пе­ри­о­ди­че­ская си­сте­ма Д. И. Мен­де­ле­е­ва ста­но­вит­ся об­ще­при­знан­ной всем ми­ро­вым хи­ми­че­ским со­об­ще­ством. Осо­бая за­слу­га Д. И. Мен­де­ле­е­ва за­клю­ча­ет­ся в том, что он не толь­ко рас­по­ло­жил хи­ми­че­ские эле­мен­ты в опре­де­лен­ной по­сле­до­ва­тель­но­сти, но и дал опи­са­тель­ную ха­рак­те­ри­сти­ку своей пе­ри­о­ди­че­ской си­сте­мы. При по­мо­щи её можно было пред­ска­зы­вать хи­ми­че­ские свой­ства раз­лич­ных хи­ми­че­ских эле­мен­тов.

Д. И. Мен­де­ле­ев взял на себя сме­лость оста­вить пу­стые клет­ки в своей таб­ли­це и ис­пра­вить неко­то­рые зна­че­ния атом­ных масс хи­ми­че­ских эле­мен­тов, пред­ска­зать свой­ства еще неот­кры­тых целых групп со­еди­не­ний. Таким об­ра­зом, Д. И. Мен­де­ле­ев яв­ля­ет­ся пер­во­от­кры­ва­те­лем од­но­го из глав­ных за­ко­нов при­ро­ды.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *