какие виды иммунитета по происхождению бывают
Иммунная система Часть 1 Вводная
Иммунная система Часть 1 Вводная
Иммунная система предназначена различать «свое» и «чужое», не трогать свое и удалять чужое. «Чужим» являются как внешние агенты, так и измененные клетки собственных тканей, например, опухолевые. Любая молекула, которую распознает иммунная система, называется антиген (АГ).
Органы иммунной системы
Первой линией защиты от проникновения «чужого» является физический барьер, представляющий кожу и слизистые оболочки дыхательных путей, желудочно-кишечного и урогенитального трактов. Также они участвуют в естественном иммунитете. В коже вырабатываются вещества, подавляющих рост микробов – молочная кислота, жирные кислоты. На поверхности и внутри органов активно работают иммунные клетки и антимикробные вещества, такие как лизоцим, лактоферрины, секреторный иммуноглобулин А.
Главными органами иммунной системы являются места рождения и созревания иммунных клеток:
Костный мозг (ткань, расположенная внутри некоторых костей) – место рождения основных клеток иммунной системы и созревания В-лимфоцитов.
Тимус или вилочковая железа (небольшой орган в верхней части грудной клетки) – место созревания Т-лимфоцитов.
Разбросанные по всему организму лимфатические узлы и протоки, единичные или в виде скоплений, таких как аденоиды, миндалины в глотке, пейеровы бляшки в кишечнике и другие, а также селезенка – территория взаимодействия зрелых иммунных клеток с антигенами, их активация и гибель при завершении иммунного ответа.
Врожденный иммунитет
Естественный иммунитет – это защита, с которой мы рождается, поэтому он называется врожденным. Он позволяет нам попасть в этот мир, не требует предварительного воздействия антигена и немедленно отвечает на чужое. Его основу составляют разные виды иммунных клеток и некоторые антимикробные молекулы, вырабатываемые в коже и слизистых. Некоторые виды клеток врожденного иимунитета:
Фагоцитирующие клетки (нейтрофилы в крови и тканях, моноциты в крови, макрофаги в тканях) поглощают и разрушают антигены, вплоть до целых микробных клеток.
Естественные клетки-киллеры уничтожают клетки, зараженные вирусом и клетки некоторых опухолей.
Некоторые виды лейкоцитов (нейтрофилы, эозинофилы, базофилы) выделяют особые вещества, обуславливающие воспаление и клинические проявления (зуд, отек, краснота).
Приобретенный иммунитет
Приобретенный иммунитет называется адаптивный, т.е. он позволяет нам выживать в этом мире. Ему требуется время для развития и предварительная встреча с антигенами. Далее он запоминает контакт и при повторной встрече с тем же антигеном отвечает быстрее, не давая развиться повторному заболеванию.
Приобретенный иммунитет включает:
B-лимфоциты и Т-лимфоциты работают вместе с клетками врожденного иммунитета. Весь процесс от момента поступления антигена до его уничтожения называет иммунный ответ.
Какие бывают виды иммунитета и как укрепить его
Сильный иммунитет защищает от инфекций, сохраняет кожу упругой, десны, кости и нервы — крепкими, а настроение — бодрым. Иммунитет бывает активный, пассивный, врожденный, специфический, гуморальный, клеточный, приобретенный, но многие люди не понимают, в чем различия.
Чем отличаются виды иммунитета и как его нужно укреплять, рассказывает врач-иммунолог Борисова Татьяна Сергеевна, эксперт маркетплейса витаминов и натуральных товаров для здорового образа жизни iHerb.
Какой бывает иммунитет: врожденный и приобретенный
Существует две основных «категории» иммунитета — врожденный и приобретенный. У животных и растений первый считается ключевым, у людей эти виды примерно равны по значимости.
Врожденный, или неспецифический иммунитет — первая линия обороны организма. Он защищает организм с помощью различных видов фагоцитов, лейкоцитов, макрофагов и тучных клеток, которые участвуют в развитии аллергической реакции. Врожденный иммунитет срабатывает при первом проникновении микроба или бактерии. Но он не становится крепче или слабее: это своеобразная настройка, которая каждый раз работает одинаково.
shutterstock.com
Приобретенный иммунитет, он же адаптивный или специфический, появился позже. Он активируется после врожденного, если возбудитель инфекции преодолел первую линию обороны. Основной механизм приобретенного иммунитета — выработка антител, которую обеспечивают лимфоциты. Этот иммунитет действует более избирательно и за счет иммунной памяти может стать крепче со временем. При первой встрече с антигеном часть лимфоцитов сохраняет информацию, и в следующий раз организм распознает его и реагирует быстрее, не позволяя болезни развиться. По такому принципу работает вакцинация.
shutterstock.com
Активный иммунитет вырабатывается после перенесенного заболевания или введения вакцины. Пассивный — с молоком матери, а во взрослом возрасте после введения сыворотки с готовыми антителами. Клеточный иммунный ответ происходит за счет фагоцитов и лимфоцитов, а гуморальный — за счет антител.
Врожденный и приобретенный иммунитет работают в тандеме, поэтому укрепить один из них нельзя. Не совсем правильно говорить «укрепить иммунитет», это как сказать «починить машину». Ведь ломается не машина, а конкретные детали и механизмы. То же самое с организмом: укрепить можно состояние органов иммунной системы и работу конкретных реакций.
Виды иммунитета: клеточный и гуморальный
Еще есть клеточный иммунитет, который связан с клетками организма. В его случае иммунный ответ организма происходит без участия антител и системы комплемента.
Т-лимфоциты в составе этого иммунитета вырабатывают рецепторы в мембранах клетки, которые реагируют на инородный раздражитель. Клеточный иммунитет «специализируется» на вирусах, грибах, опухолях различной этиологии, различных микроорганизмах, проникших в клетку.
Многие также слышали про гуморальный иммунитет. Главное отличие от клеточного — в местонахождении объектов воздействия. Гуморальному иммунитету помогают В-лимфоциты, которые образуются у взрослых людей в костном мозге. Активируют В-лимфоциты чужеродные агенты или Т-клетки, когда они встречаются с бактериями и патогенными агентами в кровяном или лимфатическом русле.
Как укрепить иммунитет
Поддерживайте уровень витаминов
Дефицит любого полезного вещества приводит к неполадкам разной степени в работе иммунной системы. Особенно она зависит от нескольких витаминов и микроэлементов.
Витамин С — участвует в выработке лимфоцитов, стимулирует активность макрофагов, выработку антител и интерферона, белка, который препятствует размножению вируса. Это мощный антиоксидант, который обеспечивает общую защиту клеток от внешних раздражителей.
Витамин D — стимулирует работу лимфоцитов, моноцитов, макрофагов. В этих клетках находятся рецепторы к витамину D. Стимулирует выработку антимикробных белков на слизистых в верхних дыхательных путях, защищая организм от заражения воздушно-капельным путем.
Витамин А — помогает формировать местный иммунитет, на коже и слизистых которые считаются первым и главным барьером на пути инфекции.
shutterstock.com
Цинк, селен, медь и железо — ключевые микроэлементы для нормальной работы иммунной системы. Цинк препятствует воспалительным процессам в дыхательных путях и стимулирует активность лимфоцитов. Селен ускоряет распространение лимфоцитов и препятствует возникновению опухолей. Медь необходима для выработки и распределения в тканях нейтрофилов, а также для усвоения железа. Железо стимулирует активность нейтрофилов и макрофагов, участвует в созревании лимфоцитов. Важно контролировать уровень железа в организме. Если принимать препараты железа в период инфекции, состояние организма ухудшится.
Чтобы точно узнать, каких именно веществ не хватает в вашем организме, рекомендуется сдать анализы на уровень содержания основных витаминов и микроэлементов, а витаминные комплексы подбирать вместе с врачом.
Добавляйте в рацион больше клетчатки
В нашей стране большинство фруктов и овощей мы можем купить вне сезона, но это не очень полезно для здоровья. Зимой фрукты и овощи до того, как попасть на прилавки, долго лежат на складе или едут в контейнерах, выращиваются на почвах со стимуляторами. В результате в них содержится менее 50% полезных веществ. Мы получаем переизбыток сахара и фруктозы, к которой организм зимой не готов. Также образуется избыток лептинов, которые содержатся в свежих овощах. Организм способен нейтрализовать этот избыток около трех месяцев, но не весь год. Поэтому важно добавлять в рацион сезонные продукты, характерные для климата, где вы родились, заготовки, квашеные и маринованные овощи: лептины в их составе переработаны бактериями.
shutterstock.com
Сокращайте сладкие продукты. Сахар — питательная среда для роста патогенных бактерий и грибов. Также сахар поддерживает воспалительный процесс посредством работы инсулина. Хронические кандидозы часто выглядят как рецидивирующая молочница, перхоть, аллергия, насморк, усталость, туман в голове, колиты, панкреатиты и прочие воспалительные процессы. Выход: ограничить употребление сладкого. Особенно в сезон простуд.
Занимайтесь спортом
Кровь и лимфа застаиваются, если человек много сидит и ведет малоподвижный образ жизни. Застои нарушают циркуляцию лимфы и крови: иммунные клетки медленнее добираются до точки, куда проник возбудитель инфекции. Токсины, бактерии и вирусы остаются в организме, если лимфатическая система прекращает циркулировать и очищаться. Это может провоцировать синдром интоксикации, в более тяжелых случаях — реакцию Герксгеймера (среди симптомов — повышение температуры, озноб, снижение давления, тахикардия, тошнота, головная боль, боль в мышцах).
Регулярные упражнения обеспечивают нормальное кровообращение и вентиляцию легких. Тренировки не должны быть высокоинтенсивными, считается и получасовая прогулка в среднем темпе, и утренняя разминка. Признаком достаточности физической нагрузки считается легкий пот.
shutterstock.com
Следите за качеством сна
Сон не только необходим для полноценного восстановления организма и нормальной работы нервной системы. Пока мы спим, лимфоциты обрабатывают информацию о вредоносных клетках и веществах и при следующей встрече быстрее их распознают. Во сне формируется иммунная память, без которой все, что иммунная система познала днем, пройдет мимо.
Это основные факторы нормальной работы иммунной системы. Чтобы организм был устойчив перед инфекциями и внешними раздражителями, недостаточно разобраться только со сном. Нужно учитывать все факторы сразу, и образ жизни будет здоровым.
Иммунитет
Иммунная система осуществляет защиту организма от инфекционных и неинфекционных чужеродных агентов. При появлении и накоплении в организме клеток, отличающихся генетически, запускается каскад иммунных реакций и формируется иммунный ответ.
Основное назначение иммунной системы — это обезвреживание потенциально опасного антигена и формирование резистентности к нему.
Строение
Иммунная система состоит из совокупности лимфоидных органов и тканей, суммарная масса которых составляет 2% от массы тела и которые разрознены между собой в анатомическом смысле. Однако благодаря наличию медиаторов, сигнальных молекул и клеток, способных к миграции в различные органы и ткани, иммунная система представляет четко организованную структуру в функциональном смысле.
Иммунная система включает центральные и периферические органы. К центральным относят тимус и костный мозг. В этих органах начинается созревание зрелых лимфоцитов.
Периферические органы объединяют селезенку, лимфатические узлы и лимфоидную ткань, печень, кровь, лимфу. Наиболее известными структурами являются миндалины и пейеровы бляшки.
Лимфоциты — основные функциональные клетки иммунной системы. Они образуются в костном мозге, а затем проходят созревание. В зависимости от того, в каком органе лимфоциты проходят созревание, они подразделяются на две гетерогенные популяции: Т-лимфоциты (тимус) и В-лимфоциты (лимфоузлы). Т-лимфоциты ответственны за клеточный иммунитет, В-лимфоциты отвечают за гуморальный. В-лимфоциты являются предшественниками антителообразующих клеток.
Благодаря существованию механизма «иммунологической памяти», иммунный ответ при повторном взаимодействии с теми же антигенами возникает в более короткие сроки и имеет более яркое выражение. Индукция иммунитета является благоприятным исходом иммунных реакций и ведет к восстановлению гомеостаза организма.
Виды иммунитета
Состояние иммунитета обеспечивают наследуемые и индивидуально формируемые механизмы.
К первому относится невосприимчивость человека или определенных видов животных к возбудителям некоторых инфекционных болезней. Например, люди невосприимчивы к возбудителю чумы собак, многие животные — к вирусу кори, гонококку и т.д. Устойчивость к соответствующей инфекции наследуется, как видовой признак, и проявляется у всех представителей данного вида. Это врожденный иммунитет или видовой.
Приобретенный иммунитет формируется в течение всей жизни индивидуума. Примером естественного приобретенного иммунитета является невосприимчивость к инфекции после перенесенного заболевания. Так называемый постинфекционный иммунитет. Например, ветряная оспа.
Приобретенный иммунитет может быть активным и пассивным. Активно приобретенный иммунитет возникает в результате перенесенного инфекционного заболевания или введения в организм вакцины. Пассивно приобретенный иммунитет формируется при передаче антител от матери к плоду или может быть искусственно создан путем парентерального введения в организм готовых иммунореагентов. К ним относят специфические иммуноглобулины, иммунные сыворотки и лимфоциты, способные защитить организм от антигенов.
Иммунитет может быть генерализованным и местным. При местном иммунитете происходит защита покровов организма, которые контактируют с внешней средой: слизистые оболочки мочеполовых органов, желудочно-кишечного тракта и т.д.
Иммунный статус
Характеристику состояния иммунной системы организма, выраженную количественными и качественными показателями ее компонентов, называют иммунным статусом. Определение иммунного статуса проводят с целью правильной постановки диагноза заболевания, прогнозирования его течения и выбора метода лечения.
Современные данные о видах иммунного ответа
В статье раскрыто современное определение иммунного ответа. Филогенез иммунитета составляет единую систему и является неотделимой частью развития многоклеточных микроорганизмов. Возникновение многоклеточных организмов способствовало формированию обособлен
Abstract. The article discloses a modern definition of the immune response. The phylogenesis of immunity constitutes a single system and is an integral part of the development of multicellular microorganisms. The emergence of multicellular organisms contributed to the formation of a separate community of cells that would be responsible for maintaining homeostasis of the internal environment of the body. The interaction of these cells was a prototype of modern immunity, and the immune response became a form of regulation of the constancy of the internal environment. The role of the immune response in the body is as follows: the search and elimination of foreign particles, both exogenously penetrating (pathogens of infectious diseases) and endogenously formed (cells infected with viruses, tumor cells). The role of the innate and acquired immune response is determined. Particular emphasis is placed on the pathogen recognizing receptors, on their various types. The concept of a pathogen of recognizing receptors is disclosed, their interaction and activation is shown for various types of pathogens. Modern perceptions of interleukins and transcription factors are characterized. For citation: Sizov D. A., Rukina N. Yu. Current condition of immune response types // Lechaschy Vrach. 2020; vol. 23 (11): 35-39. DOI: 10.26295/OS.2020.98.43.008
Резюме. В статье раскрыто современное определение иммунного ответа. Филогенез иммунитета составляет единую систему и является неотделимой частью развития многоклеточных микроорганизмов. Возникновение многоклеточных организмов способствовало формированию обособленного сообщества клеток, которые бы отвечали за поддержание гомеостаза внутренней среды организма. Взаимодействие данных клеток явилось прообразом современного иммунитета, а видом регуляции постоянства внутренней среды стал иммунный ответ. Роль иммунного ответа в организме заключается в следующем: поиск и элиминация чужеродных частиц, как проникающих экзогенно (возбудители инфекционных заболеваний), так и эндогенно образованных (инфицированные вирусами клетки, опухолевые клетки). Определена роль врожденного и приобретенного иммунного ответа. Особый акцент сделан на патоген-распознающие рецепторы, на их различные виды. Раскрыто понятие патоген-распознающих рецепторов, показаны их взаимодействие и активация при различных видах патогенов. Охарактеризованы современные представления об интерлейкинах и факторах транскрипции.
Иммунная система всегда представляла одну из самых сложных и интригующих загадок в человеческом организме. Даже в 2020 г. ведутся споры о том, как происходит активация и распознавание антигена иммунной системой, тот ли вид рецепторов или тот ли определенный патоген запускает ее работу. С открытия данного вида регуляции организма прошло уже более ста лет, и мы до сих пор открываем для себя все новые и новые элементы ее работы. В связи с информацией, полученной в период с 2005 г. по 2019 г., роль иммунной системы в ранней фазе развития инфекции и воспаления пересматривается.
Патоген-распознающие рецепторы и молекулярные структуры, ассоциированные с гибелью клеток
Врожденный иммунитет считается «первой линией защиты» от проникновения патогена, за счет быстрого распознавания которого запускается инициация патоген-специфического адаптивного иммунного ответа. Адъюванты усиливают и запускают иммунный ответ. Действие данного класса веществ осуществляется при помощи патоген-распознающих рецепторов (Раthogen Recognizing Receptors – PRRs) иммунокомпетентных клеток, которые взаимодействуют с молекулярными структурами патогенных микроорганизмов (патоген-ассоциированные молекулярные образы – Pathogen Associated Molecular Patterns – PAMPs).
При контакте PAMPs и PRRs возникают сложные сигнальные каскады, с помощью которых возможна продукция клетками соответствующего набора хемокинов и цитокинов, включая интерфероны, увеличивающие способность антиген-презентирующих клеток представлять антиген и стимулирующие миграцию дендритных клеток в лимфоидные ткани, где происходит их встреча с Т- и В-лимфоцитами, в результате чего формируется адаптивный иммунный ответ [1].
В 1996 г. были открыты и изучены структуры системы врожденного иммунитета, такие как «патоген-ассоциированные молекулярные образы», или PAMPs. Наиболее распространенными PAMPs являются липополисахариды, которые находятся в составе клеточной стенки грамотрицательных бактерий, липотейхоевые кислоты грамположительных бактерий, ДНК бактерий, РНК вирусов.
Данные классы этих молекулярных структур PAMPs имеют общие свойства:
Еще одним компонентом врожденного иммунитета, инициирующим его запуск, являются молекулярные структуры, образующиеся при гибели любых видов клеток (микро- и макроорганизмов: Damage Associated Molecular Patterns – DAMPs), которые представляют собой разнородную группу разобщенных молекул. Они содержат нуклеиновые кислоты в различных конформациях (например, одноцепочечные (ss/ds) РНК или ДНК), ядерные белки (например, группа ядерных негистоновых белков box-1, HMGB-1), цитозольные белки (например, кератин-18, K18), пуриновые нуклеотиды (например, аденозинтрифосфат, АТФ) или митохондриальные соединения (например, мтДНК, N-формильные пептиды). Определяемые эволюционными патоген-распознающими рецепторами [2] в цитозоле, DAMPs оповещают о реакции врожденного иммунитета.
Кроме того, некоторые DAMPs образуют комплексы с молекулами для усиления или облегчения передачи сигналов. Среди них — амфотерин (HMGB1), который является одним из первых идентифицированных и наиболее полно охарактеризованных DAMPs. Амфотерин — это белок, ассоциированный с хроматином, который присутствует во всех клетках животных [3]. Внеклеточный амфотерин служит промежуточным звеном в ряде биологических ответов, соединяясь с распознающими рецепторами, такими как рецептор конечных продуктов гликозилирования (RAGE), Тoll-подобный рецептор 2-го типа (TLR2), Тoll-подобный рецептор 4-го типа (TLR4), Тoll-подобный рецептор 9-го типа (TLR9), C-X-C хемокиновый рецептор типа 4 (CXCR4), рецептор Т-клеточного иммуноглобулина и домен муцина 3-го типа (Tim-3) [4, 5]. Недавние исследования показали, что восстановленный амфотерин (HMGB1) образует гетерокомплекс со стромальным производным фактором-1 (CXCL12), который способствует привлечению воспалительных клеток в поврежденную ткань путем распознавания рецептором CXCR4 [6].
Рецепторы (PRRs) являются важными компонентами врожденной иммунной системы. Они распознают микробы или повреждение тканей с помощью специфических молекулярных структур, называемых патоген-ассоциированными молекулярными образами (PAMPs) или cвязанными с опасностью молекулярными образами (DAMPs) [7, 8]. Основные функции PRRs состоят в том, чтобы стимулировать фагоцитоз и выступать посредником воспаления, обнаруживая различные патогены и молекулы из поврежденных клеток. В результате PRRs активируют воспалительные сигнальные пути, чтобы активировать врожденный иммунитет [9].
Активация находящихся на поверхности клетки и внутриклеточно расположенных рецепторов (PRRs) приводит к передаче сигналов и воспалительным реакциям. Оксидативный стресс может приводить к повреждению клеточных компонентов, таких как митохондрии, генерирующие АФК (активные формы кислорода). Увеличение выработки АФК и оксидативный стресс могут иметь множественные эффекты, включая усиление транслокации и активное высвобождение DAMPs в дальнейшем, приводя к порочному кругу [10] (рис. 1).
Виды рецепторов врожденного иммунитета и их классификация
Существует несколько классификаций рецепторов, самые распространенные представлены делением по функциям и типам. В зависимости от функций патоген-распознающих рецепторов они подразделяются на следующие группы: а) секретируемых внеклеточных рецепторов; б) мембранных рецепторов, участвующих в эндоцитолизе, в) сигнальных трансмембранных Toll-подобных рецепторов; г) внутриклеточных цитозольных рецепторов. Класс продуцируемых рецепторов в основном воспроизводится нейтрофилами и макрофагами/моноцитами. Рецепторы, связываясь с РАМРs инфекционного агента, предопределяют выраженность и характер процессов воспаления, а также могут воздействовать на выраженность специфического иммунного ответа [11].
На данный момент представлены несколько типов рецепторов PRRs, в том числе детально описаны сигнальные Toll-подобные рецепторы (Toll Lik-Receptors – TLRs), RIGI-подобные рецепторы (Retinoic Acid Inducible Gene Like Receptors – RLRs), NOD-подобные рецепторы (Nucleotide Binding Oligomerization Domain Like Receptors – NLRs), лектиновые рецепторы типа C (C-Type Lectin Receptors – CLRs) и цитозольные сенсоры ДНК (Cytosolic DNA Sensors – CDSs).
Самыми изученными и известными являются Toll-подоб-ные рецепторы. Большая часть этих Toll-рецепторов клетки всегда расположена ближе к поверхности, гораздо реже в цитоплазме около структуры аппарата Гольджи. На поверхностях мембран клеток располагаются данные рецепторы, начинающие взаимодействие с микроорганизмами, которые развиваются внеклеточно. Взаимодействие рецепторов происходит в парах для распознавания большинства веществ. На некоторых типах антиген-презентирующих клеток (АПК), например, на дендритных клетках (ДК), экспрессируются данные рецепторы (PRRs), что позволяет им распознавать сразу несколько антигенов патогенных микробов [12]. Данный класс рецепторов может также реагировать на разнообразные аллергены, а не только распознавать молекулярные структуры микроорганизмов. Обычно TLR, которые реагируют на бактериальные структуры, такие как триацил- и диациллипопротеины, являются трансмембранными рецепторами и экспрессируются на клеточных мембранах кишечного эпителия. TLR2 вместе со своими партнерами TLR1, TLR6 и TLR5 относятся к этой категории. Напротив, чувствительные к нуклеиновой кислоте TLR, такие как TLR3, TLR7, TLR8, TLR9, TLR11, TLR12 и TLR13, экспрессируются исключительно на мембране внутриклеточных структур [13].
Активация TLR может проходить через MyD88 (Myeloid differentiation primary response gene – адаптерный белок, коактиватор сигнала с TLR) зависимые или TRIF (TIR domain-containing adaptor inducing interferon-beta – адаптерный белок, участвующий в индукции транскрипционного фактора IRF3) зависимые пути. Активация расположенных в эндосоме TLR (TLR7 и TLR9) через MyD88 активирует NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells – транскрипционный фактор «каппа-би»), а также IRF7, приводя соответственно к продукции воспалительных цитокинов и IFN 1-го типа (рис. 2) [14].
Равнозначно с TLR другим многочисленным семейством клеточных рецепторов врожденного иммунитета являются лектины С-типа. Данный класс рецепторов распознает углеводы, которые часто связаны с посттрансляционной модификацией белков, причем это связывание требует участия ионов кальция. Но вскоре ученые пришли к выводу, что те же самые белковые модули рецепторов (CTLD) могут распознавать бактериальные, дрожжевые и даже грибковые микробные паттерны, представленные бета-глюканами и маннанами, причем это не зависит от концентраций ионов кальция. Самые изученные рецепторы этого семейства — Dectin-1, Dectin-2, DC-SIGN, Langerin, CD69, DEC-205 и маннозный рецептор CD206.
В последние годы все больше внимания уделяется изучению сигнальных путей, опосредующих запуск иммунного ответа при проникновении в клетку нуклеиновых кислот экстраклеточной локализации (вирусной РНК, вирусной и бактериальной ДНК, разных типов синтетических олигонуклеотидов, геномной ДНК) [15]. Реакция клетки на интернализацию экстраклеточных нуклеиновых кислот начинается в процессе преодоления этими PAMPs цитоплазматической мембраны. Оказавшись в цитоплазме клетки, дцДНК (двуцепочечная ДНК) или РНК молекулы опознаются соответствующими сенсорными факторами. Известны, в частности, следующие сенсоры дцДНК и активируемые ими пути трансдукции сигнала. Молекулы АТ-богатой дцДНК в цитозоле обнаруживаются РНК-полимеразой III. Полученный в результате синтеза с этой дцДНК транскрипт, содержащий 5’-трифосфат, активирует RLН-опосредованный путь индукции экспрессии генов (RLH – nucleotide binding domain and leucine rich repeat containing) IFNβ и комплекса провоспалительных цитокинов [16]. Цитозольный сенсор DAI (DNA-dependent activator of IRFs) необходим для распознавания цитозольной ДНК в В-форме определенного размера и нуклеотидного состава (интерферон-стимулирующая ДНК [ISD] или дцДНК длиной не менее 45 п.о., не содержащая CpG-мотивов) и запуска DAI-опосредованного пути активации синтеза интерферонов/цитокинов [17].
Еще одним немаловажным классом являются NOD-подобные рецепторы. Изначально роль NOD-подобных рецепторов (NLRs) в защитных реакциях на проникновение антигенов была найдена у растений, а позже и у животных. Данные рецепторы могут экспрессироваться в цитоплазме макрофагов/моноцитов, нейтрофилов, лимфоцитов, характеризуются самым высоким уровнем специфичности и участвуют в распознавании PAMPs, DAMPs.
Исходом этого контакта (PRRs с РАМРs) и активации сигнальных путей является активация большого количества генов, в частности генов провоспалительных цитокинов. Другой путь выработки некоторых цитокинов клетками — это активация иммунокомпетентных клеток факторами транскрипции, являющимися компонентами регуляторного сигнально-трансдуктивного пути.
Роль и разновидности клеточного состава иммунитета
Иммунная система располагает большим количеством клеток, которые подразделяются на субпопуляции в зависимости от их функций. Каждая субпопуляция отвечает за отдельный механизм в звене иммунного ответа. Центральная роль в клеточной фазе иммунного ответа отводится нативным CD4+ T-клеткам, отвечающим за функционирование иммунной системы, особенно за адаптивный иммунитет. Они помогают активировать другие иммунные клетки, высвобождая Т-клеточные цитокины. Клеточные элементы, входящие в состав линий защиты организма, разнообразны в зависимости от этапа, на котором происходит их активация. К клеточным элементам врожденного иммунитета относятся фагоциты (нейтрофилы, базофилы, эозинофилы, тканевые или тучные клетки), внутриэпителиальные субпопуляции лимфоцитов – Тγδ-клетки, киллеры – естественные (NK-клетки), киллерные и лимфокин-активированные киллерные клетки (ЛАК-клетки) и так называемые Pit-клетки – субпопуляция NK-клеток с фенотипом CD56+/CD16– [18]. Клетка – предшественница миелопоэза (CMP) является общей для макрофагов, гранулоцитов, тучных клеток и дендритных клеток врожденной иммунной системы. Макрофаги, гранулоциты и дендритные клетки составляют три типа фагоцитов в иммунной системе [19].
CD4+ T-клетки можно подразделить на группы, основанные на иммунологических функциях, специфических факторах транскрипции и цитокинах: Th1, Th2, Th9, Th17, Th22, T-фолликулярные и T-регуляторные клетки [20]. В ответ на провоспалительные или иные неблагоприятные условия T-регуляторные клетки трансдифференцируются в T-эффекторные клетки, включающие Th1, Th2 и Th17 типа клетки [21].
Факторы транскрипции как связь между клеточным и гуморальными звеньями иммунитета
Рассматривая систему активации иммунных клеток, мы должны упомянуть про важные элементы, с помощью которых происходит их активация. Факторы транскрипции – это группа белков, обеспечивающих прочтение и интерпретацию генетической информации. Факторы транскрипции необходимы для регуляции экспрессии генов и обнаружены у всех живых организмов [22]. T-bet (фактор транскрипции TBX21 Т-хелперов 1-го типа, кодирующийся геном T-bet) – отвечает за дифференцировку наивных Т-лимфоцитов в Т-хелперы 1-го типа. Основной транскрипционный фактор, определяющий дифференцировку в Т-хелперы 2-го типа, – GATA-3 (фактор транскрипции Т-хелперов 2-го типа, кодирующийся геном GATA3). Семейство факторов транскрипции GATA участвует также в развитии гемопоэтических клеток. Еще одним семейством факторов транскрипции является FOX – ДНК-связывающие белки, включающие в себя FOXA3, FOXC1, FOXF1, FOXP1, FOXP2, FOXP3. Подсемейство FOX представлено у млекопитающих тремя белками FOXA1, FOXA2 и FOXA3, которые известны также как HNF3 α, β, γ – ядерные факторы гепатоцитов [23]. Среди FOXP-группы транскрипционных факторов только FOXP3 обладает способностью подавлять выработку ИЛ-2, ИЛ-4 и ИФН-γ в Т-лимфоцитах.
Определенные группы клеток иммунной системы приобретают способность вырабатывать свои цитокины путем экспрессии транскрипционных факторов (табл. 1) [24, 25].
При развитии иммунной реакции одновременно с активированными клетками образуются клетки памяти, которые не вовлекаются в данный процесс при первичном проникновении антигена и являются важной частью, на которую мы могли обратить свое внимание, но но которые занимаются воспроизведением реакции на антиген, уже побывавший когда-то в организме. В основе феномена иммунологической памяти лежит следующий факт: часть лимфоцитов антиген-специфического клона, вовлеченного в первичный иммунный ответ, «замораживается» и персистирует в организме в течение неопределенного времени [26]. Численность Т-лимфоцитов памяти на порядок выше, чем других субпопуляций лимфоцитов, обычно в 2-3 раза. Однако эффективность клеток памяти до сих пор не ясна полностью.
Хемокины и виды хемокиновых рецепторов
На момент наступления 2008 г. было известно уже около 50 молекул, составляющих хемокиновое семейство. Хемокины подразделяются на 4 класса в зависимости от расположения консервативных цистеинов в белковой молекуле: CXC, CC, CX3C и С, где С обозначает цистеиновый остаток, а Х – любой другой аминокислотный остаток, разделяющий цистеины. СХС-хемокины действуют в основном на нейтрофилы и лимфоциты, тогда как СС-хемокины – на моноциты и лимфоциты [27].
Обширный анализ популяций CD4+ Т-клеток выявил различные способности к миграции, что отражается в экспрессии уникальных наборов рецепторов хемокинов, которые опосредуют миграцию вдоль градиента хемокинов (табл. 2) [28].
Лигандом для CCR6 является CCL20, который преимущественно продуцируется эпителиальными клетками, лимфоидными тканями, ассоциированными с органами, и печенью, что обеспечивает широкий выбор для миграции, который определяется совместной экспрессией других рецепторов хемокинов [29].
Семейство цитокинов (интерлейкины (ИЛ), хемокины, интерфероны и фактор некроза опухолей) представляет собой небольшие неструктурные белки, которые имеют множество плейотропных эффектов в различных органах [30]. Они высвобождаются в паракринных, аутокринных или эндокринных путях и могут быть вовлечены в процесс при различных инфекциях и влияют на иммунную систему как провоспалительными, так и противовоспалительными механизмами. Цитокины, которые оказывают провоспалительное действие, включают в себя интерферон-(IFN-)-γ, ИЛ-17, ИЛ-1, и фактор некроза опухоли-(ФНО-)-α, и те, которые оказывают противовоспалительное действие и включают в себя ИЛ-10, ИЛ-4 и ИЛ-1р [31]. Семейство цитокинов семейства ИЛ-12 (ИЛ-12, ИЛ-23, ИЛ-27, ИЛ-35), преимущественно вырабатываемых активированными антиген-презентирующими клетками, такими как дендритные клетки и макрофаги, выступает в ключевой иммунологической роли, способствующей координации врожденных и адаптивных иммунных реакций, главным образом посредством регуляции популяций Т-клеток [32, 33].
Тем не менее различия между про- и противовоспалительным эффектами цитокинов не всегда полностью ясны: пути взаимодействия играют важную роль как индивидуально, так и в комбинациях нескольких цитокинов, они могут способствовать усилению регуляции или подавлению других цитокинов, а определенные цитокины могут оказывать как провоспалительные, так и противовоспалительные действия [34]. Согласно цитокиновой теории заболеваний состояние здоровья характеризуется постоянной сбалансированной продукцией цитокинов на низком уровне, что необходимо для поддержания гомеостаза. Однако при сверхпродукции некоторых цитокинов могут возникать различные заболевания, тяжесть которых варьирует от легкой до смертельной [35].
В последнее десятилетие появилась новая информация о том, что приобретенный иммунитет может воздействовать на врожденный иммунитет. Как врожденный, так и приобретенный иммунитеты являются основными аналогами друг для друга и необходимы для эффективного контроля вирусных инфекций [36]. Таким образом, мы видим, что иммунная система взаимосвязана, приобретенный иммунитет дополняет функции врожденного иммунитета. Врожденный иммунитет является неотъемлемой частью филогенетического процесса. Приобретенный иммунитет характеризует весь накопленный опыт организма за всю жизнь путем приспособления к патогенам, механизмам адаптации, а также сохранения информации о патогенах. Дальнейшее раскрытие тайн механизма иммунного взаимодействия между двумя типами иммунитета поспособствует быстрой реакции на внедрение патогенного агента и скорейшей его элиминации из организма. Современный взгляд и позиция роли иммунитета в естественной и приобретенной невосприимчивости к инфекционным агентам позволят реализовать перспективы для более конкретного метода управления этим процессом при помощи вакцинации, иммуномодуляторов и других средств фармакотерапии.
Литература/References
Д. А. Сизов 1
Н. Ю. Рукина, кандидат медицинских наук
ФГБОУ ВО ДВГМУ, Хабаровск, Россия
Современные данные о видах иммунного ответа/ Д. А. Сизов, Н. Ю. Рукина
Для цитирования: Сизов Д. А., Рукина Н. Ю. Современные данные о видах иммунного ответа // Лечащий Врач. 2020; т. 23 (11): 35-39. DOI: 10.26295/OS.2020.98.43.008
Теги: иммунный ответ, антигены, инфекция, воспаление