какие виды механической энергии существуют

Механическая энергия и ее виды

Работа и энергия

Механическую работу можно определить, если известны сила, действующая на тело, и перемещение тела. Существует и другой способ для расчета механической работы. Рассмотрим пример:

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Чему равна механическая энергия

Механической энергией называют скалярную физическую величину, которая определяет способность тела выполнять работу.

Энергия и работа обладают одинаковыми единицами измерения: [А] = [Е] = 1 Дж.

Виды механической энергии

Механическая свободная энергия делится на два вида: кинетическую и потенциальную.

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Кинетическая энергия присуща подвижным телам. Останавливаясь, они выполняют механическую работу.

В различных системах отсчета скорости одного и того же тела в произвольный момент времени могут быть разными. Поэтому кинетическая энергия – относительная величина, она обуславливается выбором системы отсчета.

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Если на тело во время движения действует сила (или одновременно несколько сил), кинетическая энергия тела меняется: тело ускоряется или останавливается. При этом работа силы или работа равнодействующей всех сил, которые приложены к телу, будет равняться разнице кинетических энергий:

Потенциальной энергией именуют энергию, обусловленную взаимодействием между телами.

При падении тела массой m с высоты h сила притяжения выполняет работу. Поскольку работа и изменение энергии связаны уравнением, можно записать формулу для потенциальной энергии тела в поле силы тяжести:

В отличие от кинетической энергии Ek потенциальная Ep может иметь отрицательное значение, когда h 2

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Полной механической энергией тела именуют сумму энергий: кинетической и потенциальной.

Закон сохранения механической энергии

Одни из самых точных опытов, которые провели в середине XIX века английский физик Джоуль и немецкий физик Майер, показали, что количество энергии в замкнутых системах остается неизменной. Она лишь переходит от одних тел к другим. Эти исследования помогли открыть закон сохранения энергии:

Полная механическая энергия изолированной системы тел остается постоянной при любых взаимодействиях тел между собой.

В отличие от импульса, который не имеет эквивалентной формы, энергия имеет много форм: механическую, тепловую, энергию молекулярного движения, электрическую энергию с силами взаимодействия зарядов и другие. Одна форма энергии может переходить в другую, например, в тепловую кинетическая энергия переходит в процессе торможения автомобиля. Если сил трения нет, и тепло не образуется, то полная механическая энергия не утрачивается, а остается постоянной в процессе движения или взаимодействия тел:

Когда действует сила трения между телами, тогда происходит уменьшение механической энергии, однако и в этом случае она не теряется бесследно, а переходит в тепловую (внутреннюю). Если над замкнутой системой выполняет работу внешняя сила, то происходит увеличение механической энергии на величину выполненной этой силой работы. Если же замкнутая система выполняет работу над внешними телами, тогда происходит сокращение механической энергии системы на величину выполненной ею работы.
Каждый вид энергии может превращаться полностью в произвольный иной вид энергии.

Источник

Закон сохранения механической энергии

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Энергия: что это такое

Если мы погуглим определение слова «Энергия», то скорее всего найдем что-то про формы взаимодействия материи. Это верно, но совершенно непонятно.

Поэтому давайте условимся здесь и сейчас, что энергия — это запас, который пойдет на совершение работы.

Энергия бывает разных видов: механическая, электрическая, внутренняя, гравитационная и так далее. Измеряется она в Джоулях (Дж) и чаще всего обозначается буквой E.

Механическая энергия

Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Она представляет собой совокупность кинетической и потенциальной энергии. Кинетическая энергия — это энергия действия. Потенциальная — ожидания действия.

Представьте, что вы взяли в руки канцелярскую резинку, растянули ее и отпустили. Из растянутого положения резинка просто «полетит», как только вы ей позволите это сделать. В этом процессе в момент натяжения резинка обладает потенциальной энергией, а в момент полета — кинетической.

Еще один примерчик: лыжник скатывается с горы. В самом начале — на вершине — у него максимальная потенциальная энергия, потому что он в режиме ожидания действия (ждущий режим 😂), а внизу горы он уже явно двигается, а не ждет, когда с ним это случится — получается, внизу горы кинетическая энергия.

Кинетическая энергия

Еще разок: кинетическая энергия — это энергия действия. Величина, которая очевиднее всего характеризует действие — это скорость. Соответственно, в формуле кинетической энергии точно должна присутствовать скорость.

Кинетическая энергия

Ек = (m*v^2)/2

Ек — кинетическая энергия [Дж]

Чем быстрее движется тело, тем больше его кинетическая энергия. И наоборот — чем медленнее, тем меньше кинетическая энергия.

Задачка раз

Определить кинетическую энергию собаченьки массой 10 килограмм, если она бежала за мячом с постоянной скоростью 2 м/с.

Решение:

Формула кинетической энергии Ек = (m*v^2)/2

Ответ: кинетическая энергия пёсы равна 20 Дж.

Задачка два

Найти скорость бегущего по опушке гнома, если его масса равна 20 килограммам, а его кинетическая энергия — 40 Дж

Решение:

Формула кинетической энергии Ек = (m*v^2)/2

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Ответ: гном бежал со скоростью 2 м/с.

Потенциальная энергия

В отличие от кинетической энергии, потенциальная чаще всего тем меньше, чем скорость больше. Потенциальная энергия — это энергия ожидания действия.

Например, потенциальная энергия у сжатой пружины будет очень велика, потому что такая конструкция может привести к действию, а следовательно — к увеличению кинетической энергии. То же самое происходит, если тело поднять на высоту. Чем выше мы поднимаем тело, тем больше его потенциальная энергия.

Потенциальная энергия деформированной пружины

Еп — потенциальная энергия [Дж]

x — удлинение пружины [м]

Потенциальная энергия

Еп = mgh

Еп — потенциальная энергия [Дж]

g — ускорение свободного падения [м/с^2]

На планете Земля g ≃ 9,8 м/с^2

Задачка раз

Найти потенциальную энергию рака массой 0,1 кг, который свистит на горе высотой 2500 метров. Ускорение свободного падения считать равным 9,8 м/с^2.

Решение:

Формула потенциальной энергии Еп = mgh

Eп = 0,1 * 9,8 * 2500=2450 Дж

Ответ: потенциальная энергия рака, свистящего на горе, равна 2450 Дж.

Задачка два

Найти высоту горки, с которой собирается скатиться лыжник массой 65 килограмм, если его потенциальная энергия равна 637 кДж. Ускорение свободного падения считать равным 9,8 м/с^2.

Решение:

Формула потенциальной энергии Еп = mgh

Переведем 637 кДж в Джоули.

637 кДж = 637000 Дж

h = 637 000/(65 * 9,8) = 1000 м

Ответ: высота горы равна 1000 метров.

Задачка три

Два шара разной массы подняты на разную высоту относительно поверхности стола (см. рисунок). Сравните значения потенциальной энергии шаров E1 и E2. Считать, что потенциальная энергия отсчитывается от уровня крышки стола.

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Решение:

Потенциальная энергия вычисляется по формуле: E = mgh

Таким образом, получим, что

Ответ: E1 = E2.

Закон сохранения энергии

В физике и правда ничего не исчезает бесследно. Чтобы это как-то выразить, используют законы сохранения. В случае с энергией — Закон сохранения энергии.

Закон сохранения энергии

Полная механическая энергия замкнутой системы остается постоянной.

Полная механическая энергия — это сумма кинетической и потенциальной энергий. Математически этот закон описывается так:

Закон сохранения энергии

Еполн.мех. = Еп + Eк = const

Еполн.мех. — полная механическая энергия системы [Дж]

Еп — потенциальная энергия [Дж]

Ек — кинетическая энергия [Дж]

const — постоянная величина

Задачка раз

Мяч бросают вертикально вверх с поверхности Земли. Сопротивление воздуха пренебрежимо мало. Как изменится высота подъёма мяча при увеличении начальной скорости мяча в 2 раза?

Решение:

Должен выполняться закон сохранения энергии:

В начальный момент времени высота равна нулю, значит Еп = 0. В этот же момент времени Ек максимальна.

В конечный момент времени все наоборот — кинетическая энергия равна нулю, так как мяч уже не может лететь выше, а вот потенциальная максимальна, так как мяч докинули до максимальной высоты.

Это можно описать соотношением:

Еп1 + Ек1 = Еп2 + Ек2

Разделим на массу левую и правую часть

Из соотношения видно, что высота прямо пропорциональна квадрату начальной скорости, значит при увеличении начальной скорости мяча в два раза, высота должна увеличиться в 4 раза.

Ответ: высота увеличится в 4 раза

Задачка два

Тело массой m, брошенное с поверхности земли вертикально вверх с начальной скоростью v0, поднялось на максимальную высоту h0. Сопротивление воздуха пренебрежимо мало. Чему будет равна полная механическая энергия тела на некоторой промежуточной высоте h?

Решение

По закону сохранения энергии полная механическая энергия изолированной системы остаётся постоянной. В максимальной точке подъёма скорость тела равна нулю, а значит, оно будет обладать исключительно потенциальной энергией Емех = Еп = mgh0.

Таким образом, на некоторой промежуточной высоте h, тело будет обладать и кинетической и потенциальной энергией, но их сумма будет иметь значение Емех = mgh0.

Ответ: Емех = mgh0.

Задачка три

Мяч массой 100 г бросили вертикально вверх с поверхности земли с начальной скоростью 6 м/с. На какой высоте относительно земли мяч имел скорость 2 м/с? Сопротивлением воздуха пренебречь.

Решение:

Переведем массу из граммов в килограммы:

У поверхности земли полная механическая энергия мяча равна его кинетической энергии:

Е = Ек0 = (m*v^2)/2 = (0,1*6^2)/2 = 1,8 Дж

На высоте h потенциальная энергия мяча есть разность полной механической энергии и кинетической энергии:

mgh = E — (m*v^2)/2 = 1,8 — (0,1 * 2^2)/2 = 1,6 Дж

h = E/mg = 1,6/0,1*10 = 1,6 м

Ответ: мяч имел скорость 2 м/с на высоте 1,6 м

Переход механической энергии во внутреннюю

Внутренняя энергия — это сумма кинетической энергии хаотичного теплового движения молекул и потенциальной энергии их взаимодействия. То есть та энергия, которая запасена у тела за счет его собственных параметров.

Часто механическая энергия переходит во внутреннюю. Происходит этот процесс путем совершения механической работы над телом. Например, если сгибать и разгибать проволоку — она будет нагреваться.

Или если кинуть мяч в стену, часть энергии при ударе перейдет во внутреннюю.

Задачка

Какая часть начальной кинетической энергии мяча при ударе о стену перейдет во внутреннюю, если полная механическая энергия вначале в два раза больше, чем в конце?

Решение:

В самом начале у мяча есть только кинетическая энергия, то есть Емех = Ек.

В конце механическая энергия равна половине начальной, то есть Емех/2 = Ек/2

Часть энергии уходит во внутреннюю, значит Еполн = Емех/2 + Евнутр

Емех = Емех/2 + Евнутр

Ответ: во внутреннюю перейдет половина начальной кинетической энергии

Закон сохранения энергии в тепловых процессах

Чтобы закон сохранения энергии для тепловых процессов был сформулирован, было сделано два важных шага. Сначала французский математик и физик Жан Батист Фурье установил один из основных законов теплопроводности. А потом Сади Карно определил, что тепловую энергию можно превратить в механическую.

Вот что сформулировал Фурье:

При переходе теплоты от более горячего тела к более холодному температуры тел постепенно выравниваются и становятся едиными для обоих тел — наступает состояние термодинамического равновесия.

Таким образом, первым важным открытием было открытие того факта, что все протекающие без участия внешних сил тепловые процессы необратимы.

Дальше Карно установил, что тепловую энергию, которой обладает на­гретое тело, непосредственно невозможно превратить в механиче­скую энергию для производства работы. Это можно сделать, только если часть тепловой энергии тела с большей температурой передать другому телу с меньшей температурой и, следовательно, нагреть его до более высокой температуры.

Закон сохранения энергии в тепловых процессах

При теплообмене двух или нескольких тел абсолютное количество теплоты, которое отдано более нагретым телом, равно количеству теплоты, которое получено менее нагретым телом.

Математически его можно описать так:

Уравнение теплового баланса

Q отд = Q пол

Qотд — отданное системой количество теплоты [Дж]

Q пол — полученное системой количество теплоты [Дж]

Данное равенство называется уравнением теплового баланса. В реальных опытах обычно получается, что отданное более нагретым телом количество теплоты больше количества теплоты, полученного менее нагретым телом:

Это объясняется тем, что некоторое количество теплоты при теплообмене передаётся окружающему воздуху, а ещё часть — сосуду, в котором происходит теплообмен.

Задачка раз

Сколько граммов спирта нужно сжечь в спиртовке, чтобы нагреть на ней воду массой 580 г на 80 °С, если учесть, что на нагревание пошло 20% затраченной энергии.

Удельная теплота сгорания спирта 2,9·10^7Дж/кг, удельная теплоёмкость воды 4200 Дж/(кг·°С).

Решение:

При нагревании тело получает количество теплоты

где c — удельная теплоемкость вещества

При сгорании тела выделяется энергия

где q — удельная теплота сгорания топлива

По условию задачи нам известно, что на нагревание пошло 20% затраченной энергии.

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Ответ: масса сгоревшего топливаа равна 33,6 г.

Задачка два

Какое минимальное количество теплоты необходимо для превращения в воду 500 г льда, взятого при температуре −10 °С? Потерями энергии на нагревание окружающего воздуха пренебречь. Удельная теплоемкость льда равна 2100 Дж/кг*℃, удельная теплота плавления льда равна 3,3*10^5 Дж/кг.

Решение:

Для нагревания льда до температуры плавления необходимо:

Qнагрев = 2100 * 0,5 * (10-0) = 10500 Дж

Для превращения льда в воду:

Qпл = 3,3 * 10^5 * 0,5 = 165000 Дж

Q = Qнагрев + Qпл = 10500 + 165000 = 175500 Дж = 175,5 кДж

Ответ: чтобы превратить 0,5 кг льда в воду при заданных условиях необходимо 175,5 кДж тепла.

Источник

Механическая энергия и ее виды

теория по физике 🧲 законы сохранения

Совершение работы телом не проходит бесследно. Рассмотрим, например, часы с пружинным заводом. При заводе часов состояние системы (часового механизма) меняется так, что она приобретает способность совершать работу в течение длительного времени. Пружина поддерживает движение всех колес, стрелок и маятника, испытывающих сопротивление движению, вызванное трением. По мере хода часов способность пружины совершать работу постепенно утрачивается. Состояние пружины меняется.

Если тело или система тел могут совершить работу, говорят, что они обладает механической энергией.

Механическая энергия — скалярная физическая величина, являющаяся единой мерой всех форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие.

Механическая энергия обозначается буквой E. Единица изменения энергии — Джоуль (Дж).

Виды механической энергии

В механике состояние системы определяется положением тел и их скоростями. Поэтому в ней выделяют два вида энергии: потенциальную и кинетическую.

Определение кинетической энергии

Кинетическая энергия — это энергия, которой обладает движущееся тело. Она обозначается как Ek. Кинетическая энергия тела зависит от его массы и скорости. Численно она равна половине произведения массы тела на квадрат его скорости:

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Определение потенциальной энергии

Потенциальная энергия — это энергия взаимодействующих тел. Она обозначается как Ep.

Потенциальная энергия в поле тяготения Земли численно равна произведению массы тела на его высоту (расстояние от поверхности планеты) и на ускорение свободного падения:

Потенциальная энергия упруго деформированного тела определяется формулой:

k — жесткость пружины, x — ее удлинение.

Пример №1. Мальчик подбросил футбольный мяч массой 0,4 кг на высоту 3 м. Определить его потенциальную и кинетическую энергию в верхней точке.

Потенциальная энергия мяча в поле тяготения Земли равна:

В верхней точке полета скорость мяча равна нулю. Следовательно, кинетическая энергия мяча в этой точке тоже будет равна нулю:

Теорема о кинетической энергии

Изменение кинетической энергии тела равно работе равнодействующей всех сил, действующих на тело:

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Эта теорема справедлива независимо от того, какие силы действуют на тело: сила упругости, сила трения или сила тяжести.

Пример №2. Скорость движущегося автомобиля массой 1 т изменилась с 10 м/с до 20 м/с. Чему равна работа равнодействующей силы?

Сначала переведем единицы измерения в СИ: 1 т = 1000 кг. Работа равна изменения кинетической энергии, следовательно:

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Работа и потенциальная энергия тела, поднятого над Землей

Величина потенциальной энергии зависит от выбора нулевого уровня энергии. В поле тяготения Земли нулевым уровнем энергии обладает тело, находящееся на поверхности планеты.

Работа силы тяжести

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:

Если тело поднимается, сила тяжести совершает отрицательную работу. Если тело падает, сила тяжести совершает положительную работу.

Сначала переведем единицы измерения в СИ: 100 г = 0,1 кг. Под действием силы тяжести положение тела относительно Земли изменилось на величину, равную высоте горки. Высоту горки мы можем найти, умножим ее длину на синус угла наклона. Начальная высота равна высоте горки, конечная — нулю. Отсюда:

A = mg(h0 – h) = 0,1∙10(2∙sin30 o – 0) =2∙0,5 = 1 (Дж)

Потенциальная энергия протяженного тела

Потенциальная энергия протяженного тела выражается через его центр масс. К примеру, чтобы поднять лом длиной l и массой m, нужно совершить работу равную:

где h — высота центра массы лома над поверхностью Земли. Так как лом однородный по всей длине, его центр масс будет находиться посередине между его концами, или:

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Отсюда работа, которую необходимо совершить, чтобы поднять этот лом, будет равна:

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Пример №4. Лежавшую на столе линейку длиной 0,5 м ученик поднял за один конец так, что она оказалась в вертикальном положении. Какую минимальную работу совершил ученик, если масса линейки 40 г?

Переведем единицы измерения в СИ: 40 г = 0,04 кг. Минимальная работа, необходимая для поднятия линейки за один конец, равна:

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Работа и изменение потенциальной энергии упруго деформированного тела

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Вспомним, что работа определяется формулой:

Когда мы сжимаем пружину, шарик перемещается в ту же сторону, в которую направлена сила тяги. Если мы растягиваем ее, шарик перемещается так же в сторону направления силы тяги. Поэтому вектор силы упругости и вектор перемещения сонаправлены, следовательно, угол между ними равен нулю, а его косинус — единице:какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Модуль силы тяги равен по модулю силе упругости, поэтому:

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Перемещение определяется формулой:

Следовательно, работа силы тяги по сжатию или растяжению пружины равна:

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Но известно, что потенциальная энергия упруго деформированного тела равна:

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Следовательно, работа силы, под действием которой растягивается или сжимается пружина, равна изменению ее потенциальной энергии:

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуютНа рисунке представлен схематичный вид графика изменения кинетической энергии тела с течением времени. Какой из представленных вариантов описания движения соответствует данному графику?

а) Тело брошено под углом к горизонту с поверхности Земли и упало в кузов проезжающего мимо грузовика.

б) Тело брошено под углом к горизонту с поверхности Земли и упало на Землю.

в) Тело брошено под углом к горизонту с поверхности Земли и упало на балкон.

г) Тело брошено вертикально вверх с балкона и упало на Землю.

Алгоритм решения

Решение

Согласно графику, кинетическая энергия тела сначала уменьшалась, а затем увеличилась. Затем она резко уменьшилась до некоторого значения и осталась постоянной.

Кинетическая энергия тела определяется формулой:

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуют

Кинетическая энергия зависит прямо пропорциональной от квадрата скорости. Следовательно, когда уменьшается кинетическая энергия, скорость тоже уменьшается. Когда она возрастает — скорость тоже возрастает. Когда она постоянная — скорость тоже постоянна и не равна нулю.

Если тело брошено под углом к горизонту, скорость сначала будет уменьшаться, так как ускорение свободного падения направлено вниз. Если тело бросить вертикально вверх, скорость тоже сначала будет уменьшаться. Но в этом случае при достижении верхней точки траектории на момент скорость тела будет равна нулю. Следовательно, график зависимости кинетической энергии от времени в этот момент тоже должен быть равен нулю. Но это не так. Поэтому последний вариант ответа не подходит.

Если бы тело упало на неподвижный объект, его скорость относительно Земли стала бы равной нулю. Но так как его кинетическая энергия не равна нулю и является постоянной, тело начало двигаться с постоянной скоростью. Это возможно только в случае, если тело упало на объект, движущийся с постоянной скоростью. Поэтому из всех вариантов ответа подходит только первый, когда тело падает в проезжающий мимо грузовик.

pазбирался: Алиса Никитина | обсудить разбор | оценить

какие виды механической энергии существуют. Смотреть фото какие виды механической энергии существуют. Смотреть картинку какие виды механической энергии существуют. Картинка про какие виды механической энергии существуют. Фото какие виды механической энергии существуютК бруску массой 0,4 кг, лежащему на горизонтальной поверхности стола, прикреплена пружина. Свободный конец пружины тянут медленно в вертикальном направлении (см. рисунок). Определите величину потенциальной энергии, запасённой в пружине к моменту отрыва бруска от поверхности стола, если пружина при этом растягивается на 2 см. Массой пружины пренебречь.

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *