какие виды самостоятельного разряда вы знаете
Виды самостоятельного разряда в газах.
1. Тлеющий разряд наблюдается в разреженном газе (давление
2. Коронный разряд представляет собой слабый ток через газ при атмосферном давлении, возникающий при ударной ионизации под действием неоднородного электрического поля высокой напряженности (возле проводов высокого напряжения). Коронный разряд сопровождается слабым свечением и тихим шумом.
3. Дуговой разряд – это ток большой плотности через газ (порядка сотен ампер на 1 мм 2 ) при невысоких напряжениях (десятки вольт). Электроды при этом нагреты до высокой температуры при атмосферном или повышенном давлении.
Дуговой разряд поддерживается термоэлектронной эмиссией, происходящей с поверхности разогретого катода, и термической ионизацией молекул газа.
Широко используется в технике: дуговые электропечи, для электросварки, мощные источники света.
4. Искровой разряд – электрический пробой газа при кратковременном лавинообразном увеличении числа ионов в нем, вызванном ударной ионизацией газа при высоких напряжениях.
Сопровождается свечением, звуковым эффектом, а также излучением электромагнитных волн. При искровом разряде в газе возникают каналы сильно ионизированного газа – стриммеры, по которым происходит распространение искрового разряда. Пример искрового разряда – молния.
Плазма – вещество, в целом электрически нейтральное, содержащее равное количество положительных и отрицательных зарядов. В зависимости от степени ионизации различают частично ионизированную и полностью ионизированную плазму.
§ 3.9. Различные типы самостоятельного разряда и их техническое применение
В зависимости от свойств и состояния газа, характера и расположения электродов, а также от приложенного к электродам напряжения в газах возникают различные виды самостоятельного разряда. Рассмотрим несколько основных видов самостоятельного разряда: тлеющий, коронный, искровой и дуговой.
Тлеющий разряд
Электроны могут приобрести энергию, необходимую для совершения ионизации, не только за счет увеличения напряжения между электродами, но, как видно из формулы (3.8.1), и за счет увеличения длины свободного пробега электронов. Последнее можно достигнуть путем разрежения газа.
Для наблюдения разряда в разреженных газах удобно использовать стеклянную трубку длиной около полуметра с двумя электродами (анодом А и катодом К) и с патрубком для откачивания воздуха (рис. 3.19). Присоединим электроды к источнику постоянного тока с напряжением в несколько тысяч вольт (электрическая машина или высоковольтный выпрямитель).
При атмосферном давлении тока в трубке нет, так как приложенного напряжения в несколько тысяч вольт недостаточно для того, чтобы пробить длинный газовый промежуток. Но если мы начнем откачивать воздух из трубки, ток вскоре появится, что можно обнаружить по свечению воздуха в трубке. При давлении порядка 100 мм рт. ст. между электродами появляется разряд в виде светящейся змейки (в воздухе — малинового цвета, в других газах — иных цветов), соединяющей оба электрода. По мере дальнейшей откачки воздуха светящаяся змейка расширяется, и свечение постепенно заполняет почти всю трубку.
При давлении 1—2мм рт. ст. и ниже возникает тлеющий разряд. В тлеющем разряде отчетливо выделяются четыре области (рис. 3.20): а — катодное темное пространство, б — тлеющее (отрицательное) свечение, в — фарадеево темное пространство, г — положительный столб разряда. Первые три области находятся вблизи катода и образуют катодную часть разряда.
Если впаять по длине трубки ряд платиновых проволочек, то, присоединяя электрометр к различным проволочкам (рис. 3.21), можно измерить напряжение между различными точками разряда и катодом. Откладывая на графике по оси ординат это напряжение U, а по оси абсцисс — расстояние l рассматриваемой точки от катода, получим кривую, изображенную на рисунке 3.20 сверху.
Из графика видно, что вблизи катода на небольшом расстоянии происходит резкое падение потенциала — катодное падение потенциала. Здесь электрическое поле имеет большую напряженность; в остальной части трубки напряженность поля невелика.
Катодное падение потенциала обусловливает эмиссию электронов из металла катода. Положительные ионы, образующиеся в результате ионизации электронными ударами (в тлеющем свечении и в положительном столбе), движутся к катоду и, проходя через область катодного падения потенциала, приобретают значительную энергию. Ударяясь o катод, быстрые положительные ионы выбивают из него электроны (вторичная электронная эмиссия). Эти электроны в области катодного падения потенциала сильно ускоряются и при последующих соударениях с атомами газа ионизуют их. В результате опять появляются положительные ионы, которые снова, устремляясь на катод, порождают новые электроны, и т. д. Таким образом, основными процессами, поддерживающими разряд, являются ионизация электронными ударами в объеме и вторичная электронная эмиссия на катоде. Все это происходит благодаря существованию катодного падения потенциала. Следовательно, катодное падение потенциала есть наиболее характерный признак тлеющего разряда, отличающий эту форму газового разряда от всех других форм.
Существование катодного темного пространства объясняется тем, что электроны начинают сталкиваться с атомами газа не сразу, а лишь на некотором расстоянии от катода. Ширина катодного темного пространства приблизительно равна средней длине свободного пробега электронов: она увеличивается с уменьшением давления газа. В катодном темном пространстве электроны, следовательно, движутся практически без соударений.
Распределение концентраций положительных ионов и электронов в различных частях разряда неодинаково. Так как положительные ионы движутся гораздо медленнее, чем электроны, то у катода концентрация ионов значительно больше, чем концентрация электронов. Поэтому вблизи катода возникает сильный пространственный положительный заряд, который и вызывает появление катодного падения потенциала.
В области положительного столба концентрации положительных ионов и электронов почти одинаковы, и здесь пространственного заряда нет. Благодаря большой концентрации электронов положительный столб обладает хорошей электропроводностью, и поэтому падение потенциала на нем мало (см. рис. 3.20). Так как в положительном столбе имеются и положительные ионы, и электроны, то здесь происходит интенсивная рекомбинация ионов, чем и объясняется свечение положительного столба.
Тлеющий разряд используют в трубках для рекламы. Оранжево-красное свечение возникает при наполнении трубки неоном. Положительный столб в аргоне имеет синевато-зеленоватый цвет. В лампах дневного света используют разряд в парах ртути. Важнейшее применение тлеющий разряд получил в газовых лазерах.
Коронный разряд
При атмосферном давлении в газе, находящемся в сильно неоднородном электрическом поле (около остриев, проводов линий высокого напряжения и т. д.), наблюдается разряд, светящаяся область которого часто напоминает корону. Поэтому его и назвали коронным.
Плотность заряда на поверхности проводника тем больше, чем больше его кривизна. На острие плотность заряда максимальна. Поэтому возле острия возникает сильное электрическое поле. Когда его напряженность превысит 3 • 10 6 В/м, наступает разряд. При такой большой напряженности ионизация посредством электронного удара происходит при атмосферном давлении. По мере удаления от поверхности проводника напряженность быстро убывает. Поэтому ионизация и связанное с ней свечение газа наблюдается в ограниченной области пространства.
При повышенном напряжении коронный заряд на острие имеет вид светящейся кисти — системы тонких светящихся линий, которые выходят из острия, имеют изгибы и изломы, изменяющиеся с течением времени. Такая разновидность коронного разряда называется кистевым разрядом.
Заряженное грозовое облако индуцирует на поверхности Земли под собой электрические заряды противоположного знака. Особенно большой заряд скапливается на остриях. Поэтому перед грозой илй во время грозы нередко на остриях и острых углах высоко поднятых предметов вспыхивают похожие на кисточки конусы света. С давних времен это свечение называют огнями святого Эльма (рис. 3.22).
Особенно часто свидетелями этого явления становятся альпинисты. Иногда даже не только металлические предметы, но и кончики волос на голове украшаются маленькими светящимися кисточками. Нередко ледорубы начинают гудеть подобно большому шмелю.
С коронным разрядом приходится считаться, имея дело с высоким напряжением. При наличии выступающих частей или очень тонких проводов может начаться коронный разряд. Это приводит к утечке электроэнергии. Чем выше напряжение высоковольтной линии, тем толще должны быть провода.
Виды самостоятельного разряда и их техническое использование
В зависимости от давления газа, напряжения, приложенного к электродам, формы и характера расположения электродов различают следующие типы самостоятельного разряда: тлеющий, коронный, дуговой и искровой.
Тлеющий разряд наблюдается при пониженных давлениях газа (порядка 0,1 мм рт. ст.). Если к электродам, впаянным в стеклянную трубку, приложить постоянное напряжение в несколько сот вольт и затем постепенно откачивать воздух из трубки, то наблюдается следующее явление: при уменьшении давления газа в некоторый момент в трубке возникает разряд, имеющий вид светящегося шнура, соединяющего анод и катод трубки (рис. 1). При дальнейшем уменьшении давления этот шнур расширяется и заполняет все сечение трубки, а свечение вблизи катода ослабевает. Около катода образуется первое темное пространство 1, к которому прилегает ионный светящийся слой 2 (тлеющее свечение), который имеет резкую границу со стороны катода и постепенно исчезает со стороны анода. За тлеющим свечением наблюдается опять темный промежуток 3, называемый фарадеевым или вторым темным пространством. За ним лежит светящаяся область 4, простирающаяся до анода, или положительный столб.
Особое значение в тлеющем разряде имеют только две его части — катодное темное пространство и тлеющее свечение, в которых происходят основные процессы, поддерживающие разряд. Электроны, ионизирующие газ, возникают в результате фотоэмиссии с катода и столкновений положительных ионов с катодом трубки.
В настоящее время тлеющий разряд широко используется в качестве источника света в различных газовых трубках В источниках дневного света разряд обычно происходит в парах ртути. Газовые трубки применяются также для рекламных и декоративных целей.
Тлеющий разряд используют для катодного распыления металлов, так как вещество катода в тлеющем разряде постепенно переходит в газообразное состояние и оседает в виде металлической пыли на стенках трубки. Помещая в тлеющий разряд различные предметы, покрывают их равномерными и прочными слоями металла. Этим способом пользуются для изготовления металлических зеркал высокого качества.
Искровой разряд, часто наблюдаемый в природе, — молния. Молния — это разряд между двумя заряженными облаками или между облаком и землей. Носителями зарядов в облаках являются заряженные капельки воды или снежинки.
В лабораторных условиях искровой разряд можно получить, если постепенно увеличивать напряжение между двумя электродами, находящимися в атмосферном воздухе и имеющими такую форму, что электрическое поле между ними мало отличается от однородного. При некотором напряжении возникает электрическая искра. При этом искровой разряд с огромной быстротой пронизывает разрядный промежуток, гаснет и вновь возникает. Ярко светящийся изогнутый канал искры соединяет оба электрода и имеет сложное разветвление (рис. 2). Свечение в искре — результат интенсивных процессов ионизации. Звуковые эффекты, сопровождающие искру, порождаются повышением давления (до сотен атмосфер) вследствие нагревания газа (до 10 5 °С) в местах прохождения разряда. Искра возникает в том случае, если напряженность электрического поля в газе достигает некоторой определенной величины, которая зависит от рода газа и его состояния.
Если, оставляя напряжение постоянным, уменьшить расстояние между электродами, то напряженность поля в газовом промежутке будет увеличиваться. При некотором ее значении произойдет искровой разряд. Чем выше будет приложенное напряжение, тем больше будет расстояние между электродами, при котором произойдет искровой разряд. Принцип действия искрового вольтметра — прибора для измерения очень высоких напряжений — основан как раз на этом явлении.
Дуговой разряд можно наблюдать при следующих условиях: если после зажигания искрового разряда постепенно уменьшать сопротивление цепи, то сила тока в искре будет увеличиваться. Когда сопротивление цепи станет достаточно малым, возникнет новая форма газового разряда, называемого дуговым. При этом сила тока резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке уменьшается до нескольких десятков вольт. Это показывает, что в разряде возникают новые процессы, сообщающие газу очень большую электропроводность.
В настоящее время электрическую дугу, горящую при атмосферном давлении, чаще всего получают между специальными угольными электродами. Наиболее горячим местом дуги является углубление, образующееся на положительном электроде и называемое кратером дуги. Его температура при атмосферном давлении около 4000 °С.
Электрическая дуга является мощным источником света и широко применяется в проекционных, прожекторных и других осветительных установках. Вследствие высокой температуры дуга широко применяется для сварки и резки металлов. Высокую температуру дуги используют также при устройстве дуговых электрических печей, играющих важную роль в современной электрометаллургии.
Коронный разряд наблюдается при сравнительно высоких давлениях газа (например, при атмосферном давлении) в резко неоднородном электрическом поле. Для получения значительной неоднородности поля электроды должны иметь резко различающиеся поверхности, т.е. один электрод — очень большую поверхность, а другой — очень малую. Так, например, коронный разряд можно легко получить, располагая тонкую проволоку внутри металлического цилиндра, радиус которого значительно больше радиуса проволоки.
Напряженность поля вблизи проволоки имеет наибольшее значение. Когда напряженность поля достигает значения 3 МВ/м, между проволокой и цилиндром зажигается разряд, и в цепи появляется ток. При этом возле проволоки наблюдается свечение, имеющее вид оболочки или короны, окружающей проволоку, откуда и произошло название разряда.
Коронный разряд возникает как при отрицательном потенциале на проволоке (отрицательная корона), так и при положительном (положительная корона), а также при переменном напряжении между проволокой и цилиндром.
Коронный разряд используется в технике для устройства электрофильтров, предназначенных для очистки промышленных газов от твердых и жидких примесей.
В природе коронный разряд возникает иногда под действием атмосферного электрического поля на ветках деревьев, верхушках мачт (так называемые огни святого Эльма). Коронный разряд может возникнуть на тонких проводах, находящихся под напряжением. Возникновением коронного разряда на остриях проводников объясняется действие громоотвода, защищающего здания и линии передач от ударов молнии.
Элементарная физика
5.5 Виды самостоятельных разрядов и их применение
В зависимости от давления газа, конфигурации электродов, параметров внешней цепи можно говорить о четырех типах самостоятельного разряда: тлеющем, искровом, дуговом и коронном.
1. Тлеющий разряд возникает при низких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30 – 50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно откачивая из трубки воздух, то при давлении кПа возникает разряд в виде светящегося извилистого шнура красноватого цвета, идущего от катода к аноду. При дальнейшем понижении давления шнур утолщается, и при давлении
Па разряд имеет вид, схематически изображенный на рис. 40.1.