Какие виды синапсов выделяют по механизму передачи возбуждения
Синaпс – специализированный контакт между нервными клетками (или нервными и другими возбудимыми клетками), обеспечивающий передачу возбуждения с сохранением его информационной значимости. С помощью синапсов нервные клетки объединяются в нервные сети, которые осуществляют обработку информации. Взаимосвязь между нервной системой и периферическими органами и тканями также осуществляется при помощи синапсов.
Классификация синапсов
По морфологическому принципу синапсы подразделяют на:
нейро-мышечные (аксон нейрона контактирует с мышечной клеткой);
нейро-секреторные (аксон нейрона контактирует с секреторной клеткой);
нейро-нейрональные (аксон нейрона контактирует с другим нейроном):
аксо-соматические (с телом другого нейрона), аксо-аксональные (с аксоном другого нейрона), аксо-дендритические (с дендритом другого нейрон).
По способу передачи возбуждения синапсы подразделяют на:
электрические (возбуждение передается при помощи электрического тока);
химические (возбуждение передается при помощи химического вещества):
По физиологическому эффекту синапсы подразделяют на:
возбуждающие (деполяризуют постсинаптическую мембрану и вызывают возбуждение постсинаптической клетки);
тормозные (гиперполяризуют постсинаптическую мембрану и вызывают торможение постсинаптической клетки).
Ультраструктура синапсов
Все синапсы имеют общий план строения (рис. 1).
Конечная часть аксона (синаптическое окончание), подходя к иннервируемой клетке, теряет миелиновую оболочку и образует на конце небольшое утолщение (синаптическую бляшку). Ту часть мембраны аксона, которая контактирует с иннервируемой клеткой, называют пресинаптической мембраной. Синаптическая щель – узкое пространство между пресинаптической мембраной и мембраной иннервируемой клетки, которое является непосредственным продолжением межклеточного пространства. Постсинаптическая мембрана – участок мембраны иннервируемой клетки, контактирующий с пресинаптической мембраной через синаптическую щель.
Рис. 1. Ультраструктура химического и электрического синапса.
Особенности ультраструктуры электрического синапса (см. рис. 1):
узкая (около 5 нм) синаптическая щель; наличие поперечных канальцев, соединяющих пресинаптическую и постсинаптическую мембрану.
Особенности ультраструктуры химического синапса (см. рис. 1):
Механизм передачи возбужденияв электрическом синапсе
Механизм проведения возбуждения аналогичен механизму проведения возбуждения в нервном волокне. Во время развития ПД происходит реверсия заряда пресинаптической мембраны. Электрический ток, возникающий между пресинаптической и постсинаптической мембраной, раздражает постсинаптическую мембрану и вызывает генерацию в ней ПД (рис. 2).
Рис. 2. Передача возбуждения в электрическом синапсе.
Этапы и механизмы передачи возбуждения в возбуждающем химическом синапсе
Передача возбуждения в химическом синапсе – сложный физиологический процесс, протекающий в несколько этапов. На пресинаптической мембране осуществляется трансформация электрического сигнала в химический, который на постсинаптической мембране снова трансформируется в электрический сигнал.
Синтез медиатора
Медиатором (посредником) называют химическое вещество, которое обеспечивает одностороннюю передачу возбуждения в химическом синапсе. Некоторые медиаторы (например, ацетилхолин) синтезируются в цитоплазме синаптического окончания, и там же молекулы медиатора депонируются в синаптических пузырьках. Ферменты, необходимые для синтеза медиатора, образуются в теле нейрона и доставляются в синаптическое окончание путем медленного (1–3 мм/сут) аксонного транспорта. Другие медиаторы (пептиды и др.) синтезируются и упаковываются в везикулы в теле нейрона, готовые синаптические пузырьки доставляются в синаптичекую бляшку за счет быстрого (400 мм/сут) аксонного транспорта. Синтез медиатора и образование синаптических пузырьков осуществляется непрерывно.
Секреция медиатора
Содержимое синаптических пузырьков может выбрасываться в синаптическую щель путем экзоцитоза. При опорожнении одного синаптического пузырька в синаптичекую щель выбрасывается порция (квант) медиатора, которая включает около 10000 молекул.
Взаимодействие медиатора с рецепторами постсинаптической мембраны
Инактивация медиатора
Генерация ПД
В нейро-мышечном синапсе амплитуда единичного ВПСП достаточно велика. Поэтому для генерации ПД в мышечной клетке достаточно прихода одного нервного импульса. Генерация ПД в мышечной клетке происходит в области, окружающей постсинаптическую мембрану.
Особенности работы тормозного химического синапса
Свойства синапсов
Сравнительная характеристика свойств электрических и химических синапсов приведена в табл. 1.
Одностороннее проведение возбуждения в химическом синапсе связано с его функциональной асимметрией: молекулы медиатора выделяются только на пресинаптической мембране, а рецепторы медиатора расположены только на постсинаптической мембране.
Высокая утомляемость химического синапса объясняется истощением запасов медиатора. Утомляемость электрического синапса соответствует утомляемости нервного волокна.
Низкая лабильность химического синапса определяется главным образом периодом рефрактерности хемочувствительных каналов на постсинаптической мембране.
Синаптическая задержка – время от момента возникновения возбуждения в пресинаптической мембране до момента возникновения возбуждения в постсинаптической мембране. Относительно длительное время синаптической задержки в химическом синапсе (0,2–0,7 мс) затрачивается на вход Са++ в синаптическое окончание, экзоцитоз, диффузию медиатора.
Чувствительность синапса к внешним воздействиям определяется характером процессов, протекающих в синапсе при передаче возбуждения. Химические синапсы чувствительны к действию химических веществ, влияющих на синтез и секрецию медиатора, взаимодействие медиатора с рецептором.
Таблица 1.Свойства электрических и химических синапсов
Какие виды синапсов выделяют по механизму передачи возбуждения
Механизм химической передачи нервных импульсов через синапс сводится к тому, что содержимое синаптических пузырьков (медиатор) поступает в виде небольших порций (квантов) в синаптическую щель и взаимодействует затем с рецепторными белками постсинаптической мембраны. Это вызывает деполяризацию мембраны и возбуждение следующего нейрона. Ультраструктурные особенности синапса и механизм передачи импульсов определяют строгую однонаправленность передачи импульсов, что лежит в основе проведения импульсов по рефлекторным дугам.
В зависимости от того, какое вещество выполняет роль нейромедиатора, синапсы подразделяются на холинергические (медиатор — ацетилхолин), адренергические (адреналин и норадреналин), дофаминергические (дофамин), серотонинергические (серотонин), пептидергические (медиаторы — пептиды и аминокислоты, например, мет-энкефалин, гамма-аминомасляная кислота, глицин и др.).
Нейрохимические синапсы подразделяются в функциональном отношении на две противоположные по своему значению группы — возбуждающие и тормозные. Свойства этих синапсов зависят как от медиаторов, так и от ультраструктурных особенностей синапсов. Так, некоторые медиаторы (например, глутамат) характерны для возбуждающих синапсов, а в тормозных синапсах медиатором является гамма-аминомасляная кислота. Предполагают, что в возбуждающих синапсах к постсинаптической мембране прилежит электронно-плотное вещество, в связи с чем синапс приобретает асимметричное строение.
В пресинаптических частях таких соединений содержатся круглые синаптические пузырьки. Тормозные синапсы имеют симметричное строение. Синаптическая щель у них сужена и в пресинаптической части содержатся уплощенные синаптические пузырьки.
Кроме нейрохимических синапсов между нервными клетками (преимущественно между дендритами или телами нейронов) возникают электротонические синапсы. Последние у млекопитающих встречаются редко и по строению соответствуют щелевым контактам. Они проводят возбуждение благодаря формированию трансмембранных каналов — коннексонов.
Каждый нейрон на своей поверхности имеет огромное количество (до 10000) синапсов. Интеграция импульсов в пределах отдельного нейрона происходит так: от синапсов, расположенных на дендритах и теле, по его плазмолемме передается импульс к аксонному холмику (генераторному пункту нейрона), где путем суммирования всех возбуждающих и тормозных импульсов возникает результирующий потенциал действия.
Синаптические структуры обладают высокой чувствительностью к действию токсических факторов, в том числе психотропных отравляющих веществ. Их изменения играют важную роль в механизмах реактивности нервных тканей.
Рецепторные нервные окончания подразделяются на две группы: экстерорецепторы, воспринимающие раздражения из внешней среды, и интерорецепторы, служащие для восприятия раздражений из внутренней среды организма. В зависимости от специфичности раздражения, воспринимаемого рецептором, различают следующие чувствительные нервные окончания: механорецепторы, барорецепторы, хеморецепторы, терморецепторы, болевые рецепторы (ноцицепторы). Все рецепторы по особенностям их строения подразделяют на свободные и несвободные нервные окончания.
Первые из них состоят только из конечных разветвлений периферического отростка чувствительного нейрона; вторые — имеют в составе рецептора кроме нервного отростка глиальный компонент, а нередко и соединительнотканную капсулу. В последнем случае несвободные рецепторные окончания называют инкапсулированными. К числу таких рецепторов относятся пластинчатые, осязательные тельца, концевые колбы, мышечные веретена и др.
Эффекторные нервные окончания подразделяются на двигательные и секреторные. Двигательный, или моторный, эффектор передает нервные импульсы на рабочие органы и ткани. В скелетных мышцах они называются нервно-мышечными (аксомышечными) окончаниями. Терминальное разветвление аксона двигательного нейрона заканчивается булавовидным расширением. Оно соответствует пресинаптической части нервно-мышечного синапса, содержит скопление синаптических пузырьков и митохондрий, ограничено пресинаптической мембраной характерного строения.
Плазмолемма мышечного волокна в этой области образует многочисленные складки и углубления. В постсинаптической части волокна находится зернистая саркоплазма с большим количеством митохондрий и овальных ядер. Синаптическая щель имеет ширину 50-100 нм. У человека медиатором в нервно-мышечных синапсах является ацетилхолин. Моторные окончания в гладкой мышечной ткани, а также секреторные эффекторы имеют вид тонких пучков аксонов или их одиночных терминалей, прилежащих к клеткам иннервируемых тканей.
Возрастные изменения нервных тканей связаны с постепенным уменьшением запаса нервных клеток, особенно — чувствительных нейронов, а также снижением уровня метаболических процессов, что выражается в закономерном накоплении включений липофусцина («пигмент изнашивания») в нейроплазме.
Какие виды синапсов выделяют по механизму передачи возбуждения
Нейроны в ЦНС объединены между собой в сложнейшие нейронные цепи посредством синапсов. Синапс – область (зона) контакта нейронов или нейрона и рабочего органа. Синапсы классифицируются по нескольким признакам:
по местоположению и принадлежности соответствующим клеткам – центральные (аксосоматические, аксодендритические,
аксоаксональныеи) и периферические (нервно-мышечные, нейросекреторные)
по функциональному значению – возбуждающие и тормозящие;
по способу передачи информации – химические, электрические, смешанные.
3.6.1. Строение синапса. Проведение возбуждения через синапс
Аксон, подходя к другим нейронам или клеткам рабочего органа, теряет миелиновую оболочку, разветвляется, истончается. Каждое разветвление аксона заканчивается утолщением, которое контактирует с телами, дендритами, аксонами соседних нейронов,клетками органов (1 аксон может образовать до 10000 синапсов). В пресинаптическом отделе находится большое количество везикул (пузырьков), в которых содержатся медиаторы – химические вещества (посредники), оказывающие возбуждающий или тормозящий эффекты в зависимости от своего химического строения. Мембрана, покрывающая пресинаптическое окончание в области контакта несколько утолщена и называется пресинаптической мембраной (рис. 8, 8.1).
Мембрана тела, аксона, дендрита, клеток рабочих органов называется постсинаптической мембраной. Она содержит рецепторы, обладающие высокой чувствительностью и специфичностью к медиаторам (образно, медиатор – ключ, рецептор – замок). В различных синапсах находятся различные медиаторы – ацетилхолин, норадреналин, дофамин, серотонин и др.) В нервномышечных синапсах постсинаптическая мембрана имеет складчатое строение, что увеличивает ее поверхность.
Между пресинаптической и постсинаптической мембранами находится синаптическая щель (размером от 20 до 50 нанометров), заполненная внеклеточной жидкостью.
Таким образом, синапс включает в себя 3 части:
Проведение возбуждения через синапс. Проведение возбуждения через химический синапс – сложный физиологический процесс, протекающий поэтапно с участием медиаторов. Во многих центральных синапсах, нервномышечных и синапсах парасимпатической нервной системы медиатором является ацетилхолин. Потенциал действия по аксону доходит до бляшки и вызывает изменение проницаемости пресинаптической мембраны для ионов кальция, которые из синаптической щели входят внутрь бляшки, что приводит к разрыву пузырьков и выходу из них ацетилхолина в синаптическую щель. Он диффундирует к постсинаптической мембране, взаимодействует с рецепторами мембраны, что повышает ее возбудимость, изменяет проницаемость для ионов натрия, в результате на мембране возникает возбуждение, которое распространяется на другой нейрон или клетки рабочего органа. Медиатор выделяется в синаптическую щель в большем количестве, чем это необходимо для проведения нервных импульсов (проявление принципа биологической надежности). Избыток медиаторов гидролизуется ферментами, находящимися во внеклеточной жидкости синаптической щели.
Электрические синапсы обнаружены в незначительных количествах в ЦНС и гладких мышцах. В этих синапсах пресинаптическая и постсинаптическая мембраны близко прилегают друг к другу, синаптическая щель очень узкая (5 нанометров), через нее проходят поперечные (из клетки в клетку) каналы, образованные белковыми молекулами. Через этот щелевой контакт потенциал действия легко переходит с пресинаптического окончания на постсинаптическую мембрану.
Иногда встречаются смешанные синапсы: в одной части – химический, в другой – электрический механизмы передачи нервных импульсов.
Физиологические свойства синапсов
Все синапсы характеризуются рядом общих свойств:
1) одностороннее проведение возбуждения;
2) замедленное (задержка) проведение возбуждения (в электрических синапсах задержка короче);
3) низкая возбудимость и лабильность;
4) способность в суммации возбуждений;
5) склонность к утомлению.
3.6.2. Особенности функционирования синапсов у детей
Синаптическая задержка проведения нервных импульсов у детей более длительна, чем у взрослых (у новорожденных через синапс проходит около 20 импульсов в секунду, у взрослых – 100–150 имп/сек). У детей в пресинаптическом отделе синапса содержится меньшее количество медиаторов, медленнее происходит их синтез, поэтому быстрее наступает утомление в синапсах и нервных центрах при длительном возбуждении, чем меньше возраст ребенка, тем в большей степени это выражено. В процессе роста у детей происходит образование большого количества новых синапсов, что способствует развитию мозга, процессов научения, памяти.
1. По виду выделяемого медиатора выделяют химические синапсы двух видов:
а) адренергические (медиатором является адреналин).
б) холинергические (медиатором является ацетилхолин).
2. Электрические синапсы. Передают возбуждение без участия медиатора с большой скоростью и обладают двухсторонним проведением возбуждения. Структурной основой электрического синапса является нексус. Встречаются эти синапсы в железах внутренней секреции, эпителиальной ткани, ЦНС, сердце. В некоторых органах возбуждение может передаваться и через химические и через электрические синапсы.
3. По эффекту действия:
4. По месту расположения:
Механизм передачи возбуждения в нервно-мышечном синапсе.
ПД достигая нервного окончания (пресинаптической мембраны) вызывает его деполяризацию. В результате этого внутрь окончания поступают ионы кальция. Увеличение концентрации кальция в нервном окончании способствует освобождению ацетилхолина, который выходит в синаптическую щель. Медиатор достигает постсинаптической мембраны и связывается там с рецепторами. В результате внутрь постсинаптической мембраны поступают ионы натрия и эта мембрана деполяризуется.
Если исходный уровень МПП составлял 85 мВ, то он может снижаться до 10 мВ, т.е. происходит частичная деполяризация, т.е. возбуждение пока еще не распространяется дальше, а находится в синапсе. В результате этих механизмов развивается синаптическая задержка, которая составляет от 0,2 до 1 мВ. частичная деполяризация постсинаптической мембраны называется возбуждающим постсинаптическим потенциалом (ВПСП).
Под влиянием ВПСП в соседнем чувствительном участке мембраны мышечного волокна возникает распространяющийся ПД, который и вызывает сокращение мышцы.
Ацетилхолин из пресинаптического окончания выделяется постоянно, но его концентрация невысока, что необходимо для поддержания тонуса мышцы в покое.
На наружной поверхности постсинаптической мембраны содержится фермент ацетилхолинэстераза, который расщепляет ацетилхолин и инактивирует его.
Принципы и особенности передачи возбуждения
в межнейральных синапсах.
Основной принцип передачи возбуждения в межнейральных синапсах такой же как и в нейромышечном синапсе. Однако существуют свои особенности:
1. Многие синапсы являются тормозными.
2. ВПСП при деполяризации одного синапса недостаточно для вызова распространяющегося потенциала действия, т.е. необходимо поступление импульсов к нервной клетке от многих синапсов.
1. По местоположению и принадлежности соответствующим структурам:
Синапсы – виды, свойства, механизм передачи возбуждения.
Синапс– структурное образование, передающее возбуждение между нервными клетками или нервными и эффекторными клетками. С помощью синапсов нервные клетки объединяются в нервные сети, которые осуществляют обработку информации.
I. По морфологическому принципу:
нейро-мышечные (аксон нейрона контактирует с мышечной клеткой);
нейро-секреторные (аксон нейрона контактирует с секреторной клеткой);
нейро-нейральные (аксон нейрона контактирует с другим нейроном):
аксо-соматические (с телом другого нейрона),
аксо-аксональные (с аксоном другого нейрона),
аксо-дендритические (с дендритом другого нейрона).
II. По способу передачи возбуждения:
электрические (возбуждение передается при помощи электрического тока);
химические (возбуждение передается при помощи химического вещества):
адренергические (возбуждение передается при помощи норадреналина),
холинергические (возбуждение передается при помощи ацетилхолина),
пептидергические, NO-ергические, пуринергические и т. п.
III. По физиологическому эффекту:
возбуждающие (деполяризуют постсинаптическую мембрану и вызывают возбуждение постсинаптической клетки);
тормозные (гиперполяризуют постсинаптическую мембрану и вызывают торможение постсинаптической клетки).
Ультраструктура синапсов. Все синапсы имеют общий план строения (рисунок 11). Конечная часть аксона (синаптическое окончание), подходя к иннервируемой клетке, теряет миелиновую оболочку и образует на конце небольшое утолщение (синаптическую бляшку).
Рисунок 11. Ультраструктура химического (А) и электрического (Б) синапса
Ту часть мембраны аксона, которая контактирует с иннервируемой клеткой, называют пресинаптической мембраной.Синаптическая щель – узкое пространство между пресинаптической мембраной и мембраной иннервируемой клетки, которое является непосредственным продолжением межклеточного пространства. Постсинаптическая мембрана – участок мембраны иннервируемой клетки, контактирующий с пресинаптической мембраной через синаптическую щель.
Этапы и механизмы передачи возбуждения в возбуждающем химическом синапсе. Передача возбуждения в химическом синапсе – сложный физиологический процесс, протекающий в несколько этапов. На пресинаптической мембране осуществляется трансформация электрического сигнала в химический, который на постсинаптической мембране снова трансформируется в электрический сигнал.
1. Синтез медиатора. Медиатором(посредником) называют химическое вещество, которое обеспечивает одностороннюю передачу возбуждения в химическом синапсе. Некоторые медиаторы (например, ацетилхолин) синтезируются в цитоплазме синаптического окончания, и там же молекулы медиатора депонируются в синаптических пузырьках. Ферменты, необходимые для синтеза медиатора, образуются в теле нейрона и доставляются в синаптическое окончание путем медленного (1–3 мм/сут) аксонного транспорта. Другие медиаторы (пептиды и др.) синтезируются и упаковываются в везикулы в теле нейрона, готовые синаптические пузырьки доставляются в синаптичекую бляшку за счет быстрого (400 мм/сут) аксонного транспорта. Синтез медиатора и образование синаптических пузырьков осуществляется непрерывно.
Рисунок 12. Передача сигнала в возбуждающем химическом синапсе:
5. Генерация потенциала действия. В нейро-мышечном синапсе амплитуда единичного ВПСП достаточно велика. Поэтому для генерации потенциала действия в мышечной клетке достаточно прихода одного нервного импульса. Генерация потенциала действия в мышечной клетке происходит в области, окружающей постсинаптическую мембрану.
1. Одностороннее проведение возбуждения (от пре- к постсинаптической мембране), обусловленное наличием чувствительных к медиатору рецепторов только в постсинаптической мембране.
2. Синаптическая задержка проведения возбуждения – время между приходом импульса в пресинаптическое окончание и началом постсинаптического ответа, связанное с малой скоростью диффузии медиатора в синаптическую щель по сравнению со скоростью прохождения импульса по нервному волокну.
3. Низкая лабильность и высокая утомляемость синапса, обусловленная временем распространения предыдущего импульса и наличием у него периода абсолютной рефрактерности.
4. Высокая избирательная чувствительность синапса к химическим веществам, обусловленная специфичностью хеморецепторов постсинаптической мембраны.