какие волны видимой части спектра наиболее длинные

Видимый свет

Узнайте определение и характеристику видимого света: длина волны, диапазон электромагнитного излучения, частота, диаграмма спектров цвета, восприятие цвета.

Видимый свет

Видимый свет – часть электромагнитного спектра, доступная человеческому глазу. Электромагнитное излучение этого диапазона просто именуют светом. Глаза реагируют на длины волн видимого света 390-750 нм. По частоте это соответствует полосе в 400-790 ТГц. Адаптированный глаз обычно достигает максимальной чувствительности в 555 нм (540 ТГц) при зеленой области оптического спектра. Но сам спектр не вмещает все цвета, улавливаемые глазами и мозгом. Например, такие красочные, как розовый и пурпурный, создаются при сочетании нескольких длин волн.

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличается, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Видимый свет формирует вибрации и вращения атомов и молекул, а также электронные транспортировки внутри них. Этими транспортировками пользуются приемники и детекторы.

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

Небольшая часть электромагнитного спектра вместе с видимым светом. Разделение между инфракрасным, видимым и ультрафиолетовым не выступает на 100% отличительным

На верхнем рисунке отображена часть спектра с цветами, которые отвечают за конкретные чистые длины волн. Красный – наиболее низкие частоты и самые длинные волны, а фиолетовый – наибольшие частоты и кратчайшие длины волн. Излучение солнечного черного тела достигает максимума в видимой части спектра, но наиболее интенсивно в красном, чем в фиолетовом, поэтому звезда кажется нам желтой.

Цвета, добытые светом узкой полосы длин волн, именуют чистыми спектральными. Не забывайте, что у каждого много оттенков, потому что спектр непрерывный. Любые снимки, предоставляющие данные с длин волн, отличаются от тех, что присутствуют в видимой части спектра.

Видимый свет и земная атмосфера

Видимый свет пробивается сквозь оптическое окно. Это «место» в электромагнитном спектре, пропускающее волны без сопротивления. В качестве примера можно вспомнить, что воздушный слой рассеивает голубой лучше красного, поэтому небеса кажутся нам синими.

Оптическое окно также именуют видимым, потому что оно перекрывает спектр, доступный человеку. Это не случайно. Наши предки развили видение, способное использовать огромное многообразие длин волн.

Благодаря наличию оптического окна мы можем наслаждаться относительно мягкими температурными условиями. Функция солнечной яркости достигает максимума в видимом диапазоне, который перемещается, не завися от оптического окна. Именно поэтому поверхность нагревается.

Фотосинтез

Эволюция сказалась не только на людях и животных, но и на растениях, которые приучились правильно реагировать на части электромагнитного спектра. Так, растительность трансформирует световую энергию в химическую. Фотосинтез использует газ и воду, создавая кислород. Это важный процесс для всей аэробной жизни на планете.

Эту часть спектра именуют фотосинтетически активной областью (400-700 нм), перекрывающейся с диапазоном человеческого зрения.

Источник

Какие волны видимой части спектра наиболее длинные

Ежедневно на протяжении всей своей жизни мы неразрывно связаны со светом, что оказывает влияние не только на наше зрительное восприятие окружающего мира, но и на здоровье, самочувствие, продуктивность и настроение.

С давних времен по своей природе человек с восходом солнца просыпается, когда солнце находится в своём пике – работает, а с наступлением ночи готовится ко сну. Это не случайно и взаимосвязано со светом. Каким образом? Для этого необходимо рассмотреть характеристики света

Световое излучение характеризуется такими параметрами, как световой поток, сила света, яркость, освещенность и др., но подробней хотелось бы остановиться на спектральных характеристиках и их взаимосвязи с природой.

Свет – это видимая область электромагнитного излучения в диапазоне длин волн от 380 нм до 780 нм. Именно в этом диапазоне оптическое излучение способно возбуждать сетчатку глаза человека и создавать зрительный образ.

Помимо видимой области излучения в светотехнике рассматривают также ультрафиолетовое (длина волны от 1 нм до 380 нм) и инфракрасное излучение (длина волны от 780 нм до 1 мк).

Видимое излучение с разной длиной волны воспринимаются глазом как разные цвета:

Таблица 1. Длины волн различных цветов

Длина волны

от 380 нм до 450 нм

от 450 нм до 480 нм

Границы цветов приблизительны – разные люди отличаются друг от друга восприятием цветовых сигналов головным мозгом. Для нас же самым наглядным примером видимого спектра в природе является радуга.

Полный видимый спектр на шкале излучений различных длин волн выглядит так:

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

Белый свет является смешением всех (или нескольких) цветов спектра в определенной пропорции. Если луч белого света пропустить через стеклянную призму, то он разложится на спектр (явление дисперсии света).

Различные цвета мы видим каждый день и не придаём значения тому, что это очень сложный процесс восприятия. Цвет предмета определяется спектральным составом света и спектральными характеристиками отражения и пропускания материалов.

Цвет – это объективная величина, которая может быть измерена и выражена конкретными параметрами. Для этого чаще всего используют колориметрическую систему координат цветности:

На рис. 3 представлено поле реальных цветов. На ограничивающей его кривой линии отмечены длины волн монохроматических излучений, воспринимаемых глазом – от 380 (фиолетовый цвет) до 700 (красный цвет) нм.

Средняя часть цветового поля – это область белых цветов. В ней проходит линия – кривая теплового излучения, то есть кривая координат цветности белого света.

Цветность белого света зависит от цветовой температуры – температуры чёрного тела, при которой оно испускает излучение того же цветового фона, что и рассматриваемое излучение. Цветовая температура измеряется в градусах Кельвина.

Цвет излучения тепловых источников света (ламп накаливания) очень точно соответствует данной кривой на графике.

На рис. 4 представлено наглядное сравнение источников света с различной цветовой температурой.

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

Многие ошибаются, полагая, что чем выше цветовая температура, тем свет «теплее», чем ниже – «холоднее». Ассоциация происходит с температурой тела и воздуха, когда при повышении температуры становится теплее.

В случае цветовой температуры света можно провести аналогию с цветом звёзд.

Цвет звезды зависит от температуры на поверхности: чем больше тепла звезда излучает, тем более голубой цвет она имеет, и наоборот, самые холодные звёзды по температуре на поверхности имеют оранжевый и красный цвет. Как видно из рис. 5, самые горячие небесные тела – голубые звёзды с температурой 30000 К, самые холодные звёзды – красные с температурой 3500 К, солнце в середине дня имеет температуру на поверхности 6000 К и желто-белый цвет.

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

2. Влияние цветовой температуры источников света на человека

В современном мире большая часть нашего активного времени суток проходит на рабочем месте, т.е. под воздействием искусственного освещения. Качество света и его достаточное количество – важная составляющая верного восприятия окружающего мира. Формы объектов, цвета, люди, предполагаемые опасности распознаются нами, если обеспечивается достаточные уровень освещенности, время воздействия света и его цветность. Наравне с визуальными эффектами, цветность влияет также и на другие сферы жизни человека.

С конца 20-го века было проведено большое количество исследований незрительного воздействия света на организм. Оказалось, что в глазах человека имеются не только известные рецепторы – колбочки и палочки, воспроизводящие изображения предметов, но и фоторецепторы, воспринимающие свет без образования изображения – меланопсин. Эти рецепторы отвечают за выработку гормона мелатонина, кортизола, регулируя циркадные ритмы человека.

Гормон мелатонин отвечает за отдых и расслабление организма и работает в партнерстве с другими гормонами (кортизол, серотонин, допамин). В течение дня кортизол обеспечивает бодрость и стрессовую реакцию организма, серотонин контролирует импульс и углеводную потребность, а допамин обеспечивает хорошее настроение, удовольствие, бдительность и координацию.

Высокий уровень мелатонина является причиной сонливости, но он может быть урегулирован воздействием на другие гормоны. Т.к. в течение рабочего дня регулировать уровень естественного освещения сложно, то оказывать влияние на эти четыре гормона, следовательно, и на циркадные ритмы, можно благодаря правильному выбору цветовой температуры источников искусственного освещения.

Воздействие на циркадные ритмы человека происходит за счет изменения уровня освещенности и цветовой температуры в определенные фазы суток. Например, синяя спектральная составляющая подавляет мелатонин и активизирует кортизол, что подходит для середины дня, обеспечивая высокую работоспособность человека, умственную и физическую активность. Излучения в желтом спектре подходят для утра и вечера, когда организм расслабляется и восполняет жизненные силы. Таким образом, изменяя цветовую температуру можно напрямую влиять на самочувствие человека, его настроение и работоспособность в течении дня, не нарушая жизненных циклов.

3. Практическое применение различной цветовой температуры в искусственном освещении

В настоящее время стало возможным применить на практике знания, что освещение в теплом спектре активизирует гормоны отдыха и действует расслабляюще на организм, освещение в нейтрально белом цвете обеспечивает комфортное выполнение текущих задач, а освещение в холодном спектре способствует умственной активности.

Для этого можно обеспечить биологически и эмоционально эффективное освещение двумя способами:

Например, для стандартного рабочего времени подходит цветовая температура источников света равная 4000 К.

Для совещаний и важных переговоров необходима цветовая температура в 5000 К. За счёт более холодной цветовой температуры активизируется выработка гормона кортизола, что приводит к улучшению мозговой деятельности и концентрации.

Но в течение рабочего дня человеку необходим ещё и отдых для восстановления сил. Для этой цели в помещениях отдыха обеспечивают цветовую температуру источников света 3000 К.

В основе данного метода лежит зависимость естественного солнечного цикла от цветовой температуры излучения и зависимость человека от солнечного цикла. Если понаблюдать за солнцем в течение дня, то можно увидеть следующую картину:

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

Как известно, человек ориентируется во времени по естественному освещению (смена дня и ночи), и что свет имеет влияние на человеческие биоритмы.

Утром, при восходе солнца (при теплой цветовой температуре) начинает снижаться выработка мелатонина, и организм пробуждается. Днём (при переходе от нейтральной цветовой температуры к холодной) при выработке кортизола повышается работоспособность. Вечером (при тёплой цветовой температуре) выработка кортизола уменьшается, мелатонина – увеличивается, организм входит в состояние покоя и готовится ко сну. Сохранить гармоничный для организма человека цикл цветовой температуры в искусственном освещении можно, организовав запрограммированное изменение цветовой температуры источников света.

Таблица 2. Зависимость организма от цветовой температуры источников света

Цветовая температура

Что происходит

Эффект

2700 – 3000 К, тёплая

Выработка гормона мелатонина, снижение выработки гормона кортизола

Утром – пробуждение, днём – отдых, расслабление, вечером – подготовка ко сну

4000 – 5000 К, нейтральная

Выработка гормона кортизола, снижение выработки гормона мелатонина

Основное рабочее время – увеличение концентрации

5000 – 6500 К, холодная

Выработка гормона кортизола

Пик активности мозга, концентрации, внимания и продуктивности

Таким образом, обеспечив один из подходов управления освещением на рабочем месте, можно грамотно положительно влиять на самочувствие и продуктивность сотрудников.

4. Торговое освещение

Где ещё можно наблюдать влияние цветовой температуры источников света на человека? В магазине. Да, это влияние не меняет настроения покупателя, но помогает сделать выбор. При правильном освещении булочки будут выглядеть вкуснее, а рыба и мясо – свежее.

В настоящее время вопрос, какой товар и в каком магазине выбрать, возникает каждый день. Современного потребителя, т.е. каждого из нас, окружает множество магазинов, конкурирующих между собой, но мы всегда пойдём в тот, где товар лучше. А товар лучше там, где его правильно презентуют.

В чём состоит взаимосвязь презентации товара и спектральных характеристик света?

Для торгового освещения важным требованием является качественная передача визуальной информации о товаре потребителю, что можно обеспечить с помощью качественного освещения. За это отвечают такие параметры как высокий уровень освещенности, высокий индекс цветопередачи, правильно подобранная цветовая температура источника и использование специальных спектров.

Различные группы товаров требуют различного освещения: существуют специальные спектры излучения источников, подчеркивающие натуральные оттенки предметов.

К примеру, мясо подсвечивают спектром со смещением в красный цвет, чтобы оно выглядело аппетитно.

Замороженные продукты и рыбу подсвечивают светом с холодной цветовой температурой (5000-6500 К), что подчеркивает свежесть, блеск и охлажденность.

Хлебобулочные изделия подсвечивают теплым светом (2700-3000 К). Как правило, хлеб выложен на натуральных материалах теплых оттенков (дереве), что усиливает гармоничный вид.

Фрукты и овощи освещают направленным светом с высокой цветопередачей, чтобы товар выглядел ярким, свежим и привлекательным.

В табл. 3 приведены дополнительные виды товаров, которые также можно выгодно подчеркнуть:

Таблица 3. Виды товарного ассортимента и необходимые им цветовая температура и смещение спектра

Товарный ассортимент

Цветовая температура, К;

Смещение спектра в цвет

Источник

Какие волны видимой части спектра наиболее длинные

Свет − это видимая часть электромагнитного спектра. Свет характеризуется тем, что имеет волновую природу [1]. Каждая волна описывается своей длиной − расстоянием между двумя соседними гребнями (рис. 1.4). Длина волны измеряется в нанометрах (нм). Нанометр − это одна миллионная часть миллиметра [3].

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

Рис. 1.4. Характеристики волны

Область электромагнитного спектра, видимая человеческим глазом, занимает диапазон примерно от 400 до 700 нм. Этот диапазон составляет всего лишь малую часть огромного спектра электромагнитных волн. Помимо видимых волн человек использует и многие другие невидимые волны: начиная с самых коротких волн − рентгеновских лучей − и кончая длинными волнами, которые улавливаются нашими теле- и радиоприемниками (рис. 1.5).

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

Внутри человеческого глаза имеются сенсоры света, чувствительные к электромагнитным волнам (палочки и колбочки) (раздел 1.2), длина которых попадает в видимый спектр.

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

Рис. 1.6. Спектральный состав видимого цвета

Когда на эти сенсоры попадают световые волны, они посылают сигнал нашему мозгу. Затем этот сигнал интерпретируется мозгом как определенный цвет. Какой именно цвет получится в результате этой интерпретации, зависит от сочетания в свете волн различной длины. Например, если сенсоры зарегистрируют волны сразу всех длин из видимого спектра, то мозг будет воспринимать этот свет как белый. Если не будет зафиксировано никаких волн с длиной волны из видимого спектра, то это значит, что никакого света нет, и мозг будет интерпретировать эту информацию как черный цвет.

Пропустив луч белого света через призму (рис. 1.6), можно разбить его на составляющие и таким образом понять, как наши глаза реагируют на каждую отдельную длину волны. Этот эксперимент показывает, что волны разной длины интерпретируются нами как разные цвета. Можно выделить основные области видимого спектра: красную, оранжевую, желтую, зеленую, голубую, синюю и фиолетовую. Цвета плавно и непрерывно переходят друг в друга, образуя «радугу». Когда наша зрительная система регистрирует волны с длиной около 700 нм, мы видим «красный» цвет, а когда длина волны находится в диапазоне 450-500 нм, − «голубой»; длина волны 400 нм соответствует «фиолетовому» и так далее. Такая реакция глаза является основой для образования миллионов различных цветов, которые каждый день регистрирует наша зрительная система.

Источник

Длины световых волн

Свет играет важную роль в фотографии. Привычный всем солнечный свет имеет достаточно сложный спектральный состав.

Спектральный состав видимой части солнечного света характеризуется наличием монохроматических излучений, длина волны которых находится в пределах 400-720 нм, по другим данным 380-780 нм.

Иными словами солнечный свет может быть разложен на монохроматические составляющие. В тоже время монохроматические (или одноцветные) составляющие дневного света не могут быть выделены однозначно, а, ввиду непрерывности спектра, плавно переходят от одного цвета в другой.

Считается, что определённые цвета находятся в определённых пределах длин волн. Это иллюстрирует Таблица 1.

Длины световых волн

Название цвета

Длина волны, нм

Для фотографов представляет определённый интерес распределение длин волн по зонам спектра.

Всего выделяют три зоны спектра: Синюю (Blue), Зелёную (Green) и Красную (Red).

По первым буквам английских слов Red (красный), Green (зелёный), Blue (синий) получила название система представления цвета – RGB.

В RGB-системе работает множество устройств, связанных графической информацией, например, цифровые фотокамеры, дисплеи и т.п.

Длины волн монохроматических излучений, распределённых по зонам спектра, представлены в Таблице 2.

При работе с таблицами важно учесть непрерывный характер спектра. Именно непрерывный характер спектра приводит к расхождению, как ширины спектра видимого излучения, так и положение границ спектральных цветов.

Длины волн монохроматических излучений, распределённых по зонам спектра

Обозначение

Зона видимого спектра

Спектральные цвета

Длина волны, нм

Длина волны, нм

Сине-фиолетовый
Синий
Сине-зелёный

400-430
430-480
480-500

380-440
440-485
485-500

Зелёный
Жёлто-зелёный
Жёлтый

500-540
540-560
560-580

500-540
540-565
565-590

Что касается монохроматических цветов, то разные исследователи выделяют разное их количество! Принято считать от шести до восьми различных цветов спектра.

Шесть цветов спектра

Монохроматические цвета спектра

Длина волны, нм

При выделении семи цветов спектра предлагается из диапазона синего 436-495 нм см.Таблицу 3 выделить две составляющие, одна из которых имеет синий (440-485 нм), другая – голубой (485-500 нм) цвет.

Семь цветов спектра

Монохроматические цвета спектра

Источник

Видимое излучение

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

В спектре содержатся не все цвета, которые различает человеческий мозг. Таких оттенков, как розовый или маджента, нет в спектре видимого излучения, они образуются от смешения других цветов.

Видимое излучение также попадает в «оптическое окно», область спектра электромагнитного излучения, практически не поглощаемая земной атмосферой. Чистый воздух рассеивает голубой свет несколько сильнее, чем свет с большими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым.

Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящему в видимый диапазон. Например, пчёлы и многие другие насекомые видят свет в ультрафиолетовом диапазоне, что помогает им находить нектар на цветах. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300—400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете. [5] [6]

Содержание

История

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

какие волны видимой части спектра наиболее длинные. Смотреть фото какие волны видимой части спектра наиболее длинные. Смотреть картинку какие волны видимой части спектра наиболее длинные. Картинка про какие волны видимой части спектра наиболее длинные. Фото какие волны видимой части спектра наиболее длинные

Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах. [7]

Ньютон первый использовал слово спектр (лат. spectrum — видение, появление) в печати в 1671 году, описывая свои оптические опыты. Он сделал наблюдение, что когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся с различной скоростью в прозрачной среде. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, индиго и фиолетовый. Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели. [8] [9] Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетого цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Гёте, в отличие от Ньютона, считал, что спектр возникает при наложении разных составных частей света. Наблюдая за широкими лучами света, он обнаружил, что при проходе через призму, на краях луча проявляются красно-желтые и голубые края, между которыми свет остаётся белым, а спектр появляется, если приблизить эти края достаточно близко друг к другу.

В XIX веке, после открытия ультрафиолетового и инфракрасного излучений, понимание видимого спектра стало более точным.

В начале XIX века Томас Юнг и Герман фон Гельмгольц также исследовали взаимосвязь между спектром видимого излучения и цветным зрением. Их теория цветного зрения верно предполагала, что для определения цвета глаз использует три различных вида рецепторов.

Характеристики границ видимого излучения

Длина волны, нм740380
Энергия фотонов, Дж2,61·10 −194,97·10 −19
Энергия фотонов, эВ1,63,1
Частота, Гц3,94·10 147,49·10 14
Волновое число, см −11,32·10 42,50·10 4

Спектр видимого излучения

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разным углом. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены световыми волнами одной длины (или очень узким диапазоном), называются спектральными цветами. [10] Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *