какие волокна входят в состав мышечного волокна

Какие волокна входят в состав мышечного волокна

Рекомендуем:Анатомия человека:Анатомия человекаАнатомическая терминологияАнатомия костей и суставовАнатомия мышцАнатомия внутренних органовАнатомия эндокринных органовАнатомия сердца и сосудовАнатомия нервной системыАнатомия органов чувствВидео по анатомииКниги по анатомииТопографическая анатомияФорум
Оглавление темы «Общая миология»:

Строение мышцы. Мышца как орган.

Мышца состоит из пучков исчерченных (поперечнополосатых) мышечных волокон. Эти волокна, идущие параллельно друг другу, связываются рыхлой соединительной тканью (endomysium) в пучки первого порядка. Несколько таких первичных пучков соединяются, в свою очередь образуя пучки второго порядка и т. д. В целом мышечные пучки всех порядков объединяются соединительнотканной оболочкой — perimysium, составляя мышечное брюшко.

Соединительнотканные прослойки, имеющиеся между мышечными пучками, по концам мышечного брюшка, переходят в сухожильную часть мышцы.

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

Так как сокращение мышцы вызывается импульсом, идущим от центральной нервной системы, то каждая мышца связана с ней нервами: афферентным, являющимся проводником «мышечного чувства» (двигательный анализатор, по И. П. Павлову), и эфферентным, приводящим к ней нервное возбуждение. Кроме того, к мышце подходят симпатические нервы, благодаря которым мышца в живом организме всегда находится в состоянии некоторого сокращения, называемого тонусом.

В мышцах совершается очень энергичный обмен веществ, в связи с чем они весьма богато снабжены сосудами. Сосуды проникают в мышцу с ее внутренней стороны в одном или нескольких пунктах, называемых воротами мышцы. В мышечные ворота вместе с сосудами входят и нервы, вместе с которыми они разветвляются в толще мышцы соответственно мышечным пучкам (вдоль и поперек).

В мышце различают активно сокращающуюся часть — брюшко и пассивную часть, при помощи которой она прикрепляется к костям, — сухожилие. Сухожилие состоит из плотной соединительной ткани и имеет блестящий светло-золотистый цвет, резко отличающийся от красно-бурого цвета брюшка мышцы. В большинстве случаев сухожилие находится по обоим концам мышцы. Когда же оно очень короткое, то кажется, что мышца начинается от кости или прикрепляется к ней непосредственно брюшком. Сухожилие, в котором обмен веществ меньше, снабжается сосудами беднее брюшка мышцы.

Таким образом, скелетная мышца состоит не только из поперечнополосатой мышечной ткани, но также из различных видов соединительной ткани (perimysium, сухожилие), из нервной (нервы мышц), из эндотелия и гладких мышечных волокон (сосуды). Однако преобладающей является поперечнополосатая мышечная ткань, свойство которой (сократимость) и определяет функцию мускула как органа сокращения. Каждая мышца является отдельным органом, т. е. целостным образованием, имеющим свою определенную, присущую только ему форму, строение, функцию, развитие и положение в организме.

Источник

Мышечные ткани

Общими свойствами всех мышечных тканей является сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечнополосатая скелетная и поперечнополосатая сердечная мышечные ткани. Клетки мышечной ткани имеют хорошо развитый цитоскелет, содержат много митохондрий.

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

Гладкая (висцеральная) мускулатура

Эта мышечная ткань встречается в стенках внутренних органах (бронхи, кишечник, желудок, мочевой пузырь), в стенках сосудов, протоках желез. Эволюционно является наиболее древним видом мускулатуры.

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

Особо заметим, что в гладкой мышечной ткани миофиламенты собираются в миофибриллы только во время сокращения. У таких временных миофибрилл не может быть регулярной организации, а значит ни у таких миофибрилл, ни у гладких миоцитов не может быть поперечной исчерченности.

Гладкая мышечная ткань сокращается непроизвольно (неподвластна воле человека). Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой. К примеру невозможно по желанию сузить или расширить бронхи, кровеносные сосуды, зрачок.

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

Гладкая мышечная ткань называется неисчерченной, так как не обладает поперечной исчерченностью, характерной для поперечнополосатых скелетной и сердечной мышечных тканей.

Скелетная (поперечнополосатая) мышечная ткань

Скелетная мышечная ткань образует диафрагму (дыхательную мышцу), мускулатуру туловища, конечностей, головы, голосовых связок.

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

Саркомер состоит из актиновых (тонких) и миозиновых (толстых) филаментов, которые образованы главным образом белками актином и миозином. Сокращение происходит за счет взаимного перемещения миофиламентов: они тянутся навстречу друг другу, саркомер укорачивается (и мышца в целом).

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

Скелетные мышцы сокращаются произвольно: они подконтрольны нашему сознанию. К примеру, по желанию мы можем изменить скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение суставы.

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

Сердечная поперечнополосатая мышечная ткань

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

Большое число контактов между кардиомиоцитами обеспечивает высокую эффективность и надежность проведения возбуждения по миокарду. Сокращается эта ткань непроизвольно, не утомляется.

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

Ответ мышц на физическую нагрузку

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

В большинстве случае гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

Происхождение мышц

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Какие волокна входят в состав мышечного волокна

Это ткань энтомезенхимного происхождения, которая делится на два вида: висцеральную и сосудистую. В эмбриональном гистогенезе даже электронно-микроскопически трудно отличить мезенхимные предшественники фибробластов от гладких миоцитов. В малодифференцированных гладких миоцитах развиты гранулярная эндоплазматическая сеть, комплекс Гольджи. Тонкие филаменты ориентированы вдоль длинной оси клетки. По мере развития размеры клетки и число филаментов в цитоплазме возрастают. Постепенно объем цитоплазмы, занятый сократительными филаментами, увеличивается, расположение их становится все более упорядоченным. Пролиферативная активность гладких миоцитов в миогенезе постепенно снижается. Это происходит в результате увеличения продолжительности клеточного цикла, выхода клеток из цикла репродукции и перехода в дифференцированное состояние.

Однако и в дефинитивном состоянии в гладкой мышечной ткани клеточная регенерация в виде размножения миоцитов полностью не прекращается. Существуют данные о том, что пролиферация и дифференцировка в большей степени свойственна субпопуляции малых (по размерам) гладких миоцитов.

Строение гладкой мышечной ткани. Структура дефинитивных гладких миоцитов (лейомиоцитов), входящих в состав внутренних органов и стенки сосудов, имеет много общего, но в то же время характеризуется гетероморфией. Так, в стенках вен и артерий обнаруживаются овоидные, веретеновидные, отростчатые миоциты длиной 10-40 мкм, доходящие иногда до 140 мкм.

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокнаГладкая мышечная ткань

Наибольшей длины гладкие миоциты достигают в стенке матки — до 500 мкм. Диаметр миоцитов колеблется от 2 до 20 мкм. В зависимости от характера внутриклеточных биосинтетических процессов различают контрактилъные и секреторные миоциты. Первые специализированы на функции сокращения, но вместе с тем сохраняют секреторную активность. Плазмолемма расслабленной клетки имеет ровную поверхность, а при сокращении становится складчатой. В центре клетки имеется палочковидное ядро, которое при сокращении клетки спиралевидно изгибается. Практически все ядра миоцитов содержат диплоидное количество ДНК. Гладкая эндоплазматическая сеть занимает примерно 2-7% объема цитоплазмы, а гранулярная сеть в контрактильных миоцитах выражена плохо. Митохондрии мелкие, сферические или овоидные, расположены у полюсов ядра. Характерной чертой гладких миоцитов является наличие множества впячиваний (кавеол) плазмолеммы, содержащих ионы кальция.

Секреторные миоциты (синтетические) по своей ультраструктуре напоминают фибробласты, однако содержат в цитоплазме пучки тонких миофиламентов, расположенные на периферии клетки. В цитоплазме хорошо развиты комплекс Гольджи, гранулярная эндоплазматическая сеть, много митохондрий, гранул гликогена, свободных рибосом и полисом. По степени зрелости такие клетки относят к малодифференцированным.

Сократительный аппарат миоцитов представлен тонкими актиновыми филамен-тами (гладкомышечным альфа-актином), связанными с тропомиозином. Толстые нити состоят из миозина, мономеры которого располагаются вблизи филаментов актина. Соотношение актиновых и миозиновых филаментов в гладком миоците составляет 12 к 1. Важным компонентом контрактильного аппарата миоцитов являются электронно-плотные структуры — тельца прикрепления, расположенные свободно в цитоплазме (плотные тельца) или тесно связанные с плазмолеммой. Основными белковыми компонентами плотных телец являются альфа-актинин, актин (немышечный) и кальпонин, что позволяет расссматривать их как функциональный эквивалент Z-линий миофибрилл скелетной мышцы. Актиновые филаменты фиксируются на плотных тельцах. Промежуточные филаменты, включающие десмин и виментин, обеспечивают связи между плотными тельцами и плазмолеммой, образуя прикрепительные пластины.

Сократительные белки формируют решетчатую структуру, закрепленную по окружности плазмолеммы, поэтому сокращение выражается в укорочении клетки, которая приобретает складчатую форму, тогда как в состоянии покоя клетка вытянута. При возникновении нервного импульса, распространяющегося по плазмолемме миоцита, происходит повышение уровня внутриклеточного Са2+, который поступает в цитоплазму из кавеол, отшнуровывающихся в цитоплазму в виде пузырьков. Высвобождение ионов кальция приводит к каскаду реакций, в результате которого происходит полимеризация миозина и образование перекрестных связей миозина вдоль актиновых филаментов по мере развития мышечного сокращения. Расслабление мышцы возникает при восстановлении концентрации исходного уровня Са2+ внутри клетки путем его перемещения внутрь саркоплазматической сети. При этом образовавшиеся в присутствии ионов кальция связи между актином и миозином нарушаются, акто-миозиновый комплекс распадается, гладкий миоцит расслабляется.

Гладкие миоциты синтезируют протеогликаны, гликопротеиды, проколлаген, проэластин, из которых формируются коллагеновые и эластические волокна и основное вещество межклеточного матрикса.

Взаимодействие миоцитов осуществляется с помощью цитоплазматических мостиков, взаимных впячиваний, нексусов, десмосом или простых участков мембранных контактов клеточных поверхностей.

Регенерация гладкой мышечной ткани

Гладкая мышечная ткань висцерального и сосудистого видов обладает значительной чувствительностью к воздействию экстремальных факторов.

В активированных миоцитах возрастает уровень биосинтетических процессов, морфологическим выражением которых являются синтез сократительных белков, укрупнение и гиперхроматоз ядра, гипертрофия ядрышка, возрастание показателей ядерно-цитоплазменного отношения, увеличение количества свободных рибосом и полисом, активация ферментов, аэробного и анаэробного фосфорилирования, мембранного транспорта. Клеточная регенерация осуществляется как за счет дифференцированных клеток, обладающих способностью вступать в митотический цикл, так и за счет активизации камбиальных элементов (миоцитов малого объема).

При действии ряда повреждающих факторов отмечается фенотипическая трансформация контрактильных миоцитов в секреторные. Данная трансформация часто наблюдается при повреждении интимы сосудов, формировании ее гиперплазии при развитии атеросклероза.

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокнаГладкая мышечная ткань в поперечном (наверху) и продольном (внизу) разрезах. Обратите внимание на центрально расположенные ядра. Во многих клетках ядра не попали в срез.
Окраска: парарозанилин—толуидиновый синий. Среднее увеличение.

Источник

Типы мышечных волокон

Содержание

Типы волокон скелетных мышц [ править | править код ]

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

Мышечное волокно является структурной единицей мышечной ткани, которое состоит из:

У людей все волокна скелетных мышц имеют разные механические и метаболические свойства. Различные типы мышечных волокон определяют по максимальной скорости их сокращения (быстрой и медленной) и главного метаболического пути, который они используют для образования АТФ (окислительный и гликолитический). Мышечные волокна в целом делятся на:

Поскольку скорость сокращения самых быстрых мышечных волокон несколько выше, чем скорость сокращений волокон IIb типа, самые быстрые волокна называются в литературе волокнами IIх типа (Friedman, 2007).

Иногда выделяют волокна IIс типа — эти волокна не похожи на волокна ни I, ни II типа. Они проявляют как окислительную, так и гликолитическую активность и представлены лишь в небольшом количестве (около 1 %). В зависимости от типа тренировок они могут переходить в волокна I или II типа (Seidenspinner, 2005).

Мышечные волокна возбуждаемые одним мотонейроном входят в состав одной двигательной единицы (ДЕ). Ске­летные мышцы человека состоят из ДЕ всех трех типов. Одни из них включают преимущественно медленные ДЕ, другие — быстрые, третьи — и те, и другие.

Критерий разделенияI типаIIa типаIIb типа
Скорость сокращения
(определяется по миозиновой АТФазе).
Медленные (частота нервных импульсов до 25 Гц)Средняя (25-50 Гц)Быстрые (частота нервных импульсов 50-100 Гц)
Обмен веществ
(определяется по ферментам аэробных процессов, по ферментам митохондрий: сукцинатдегидрогеназе или СДГ)
Окислительный (с кислородом)СмешанныйГликолитический (без кислорода)
Цвет
(зависит от количества миоглобина)
Красные (много миоглобина и митохондрий)Светло-красный (красный)Белые (мало миоглобина и митохондрий)
Порог активацииНизкийСреднийВысокий
Диаметр50 мкм80 мкм100 мкм
Утомление (при постоянной нагрузке)Снижение силы на 50% через несколько часовСнижение силы на 50% через 10 минСнижение силы на 50% через 1,5 мин

Быстрые и медленные мышечные волокна [ править | править код ]

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокнаАктивность АТФазы наследуется и тренировки не влияют на соотношение быстрых и медленных волокон. Освобождение энергии, заключенной в АТФ, осуществляется благодаря АТФ-азе. Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок. Скорость одиночного гребка одинакова у всех мышц. Для очередного гребка требуется новая молекула АТФ. В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее и, соответственно, сильнее.

Медленные окислительные волокна содержат множество митохондрий и обладают высокой способностью к окислительному фосфорилированию. Эти волокна могут содержать значительное количество липидов, но меньшее количество гликогена. Большая часть АТФ, произведенного такими волокнами, зависит от снабжения крови кислородом и топливных молекул. Эти волокна окружают многочисленные капилляры. Они также содержат большое количество связывающего кислород миоглобина, который увеличивает поглощение кислорода тканями и способствует небольшому внутриклеточному накоплению кислорода. Миоглобин придает темно-красный цвет, поэтому окислительные волокна часто называют красными мышечными волокнами.

В быстрых волокнах, также названных гликолитическими волокнами, напротив, содержится мало митохондрий, но они обладают высокой концентрацией гликолитических ферментов и большим запасом гликогена. Из-за ограниченного использования кислорода их окружает относительно небольшое количество капилляров, и они содержат мало миоглобина. Их называют белыми мышечными волокнами вследствие их более светлого цвета по сравнению с красными окислительными волокнами.

Гликолитические, промежуточные и окислительные волокна [ править | править код ]

Гликолитические волокна, как правило, намного больше в диаметре, чем окислительные волокна. Чем больше диаметр, тем больше максимальное растяжение, которого они могут достичь (т.е. тем они сильнее).

Классифицируются по окислительному потенциалу мышцы, то есть по количеству митохондрий в мышечном волокне. Митохондрии – это клеточные органеллы, в которых глюкоза или жир расщепляется до углекислого газа и воды, ресинтезируя АТФ, необходимую для ресинтеза креатинфосфата. Креатинфосфат используется для ресинтеза миофибриллярных молекул АТФ, которые используются для мышечного сокращения. Вне митохондрий в мышцах также может происходить расщепление глюкозы до пирувата с ресинтезом АТФ, но при этом образуется молочная кислота, которая закисляет мышцу и вызывает ее утомление.

По этому признаку мышечные волокна подразделяются на три группы:

Свойства различных типов мышечных волокон. Для классификации мышечных волокон в тексте использована система 1, но также приведены и названия, используемые в других системах

какие волокна входят в состав мышечного волокна. Смотреть фото какие волокна входят в состав мышечного волокна. Смотреть картинку какие волокна входят в состав мышечного волокна. Картинка про какие волокна входят в состав мышечного волокна. Фото какие волокна входят в состав мышечного волокна

Медленные окислительные (МО) волокна

Быстрые окислительно-гликолитические (БОГ) волокна

Быстрые гликолитические (БГ) волокна

Быстро сокращающиеся А

Быстро сокращающиеся В

Основной источник образования АТФ

Тип миозиновой АТФ-азной активности

Высокое (красные мышцы)

Высокое (красные мышцы)

Низкое (белые мышцы)

Активность гликолитических ферментов

Размер моторной единицы

Сила моторной единицы

Скорость наступления усталости

Волокна скелетных мышц различаются также по их способности противостоять усталости. Утомление БГ волокон происходит быстрее, тогда как МО волокна очень устойчивы к усталости. Быстро окисляющиеся волокна обладают промежуточной способностью сопротивляться усталости. Характеристики различных типов волокон скелетных мышц отображены в табл. 1.

Все мышцы человека обладают разным процентным соотношением БГ и МО мышечных волокон. В зависимости от доли имеющихся типов волокон, мышцы могут значительно различаться по максимальной скорости сокращения, силе и утомляемости. Например, в икроножных мышцах наблюдается преобладание БГ волокон, придающее им способность к сильному и быстрому сокращению, которое используется, например, при прыжках. С другой стороны, в камбаловидной мышце больше МО мышечных волокон, и она используется при длительной активности мышц ног.

В целом, МО мышечные волокна обладают высоким уровнем аэробной выносливости. Способность поддерживать мышечную активность в течение длительного времени известна как мышечная выносливость. Так как МО волокна обладают высокой аэробной выносливостью, они чаще всего задействуются во время нагрузок на выносливость (например, в марафонском беге) и во время большинства повседневных занятий, где требования к мышечной силе невысоки (например, ходьба).

БГ мышечные волокна, с другой стороны, обладают относительно низкой аэробной выносливостью. При нормальной, малоинтенсивной деятельности БГ волокна используются довольно редко, но при «взрывных» нагрузках они преобладают. Предполагается, что они активизируются, когда во время физической нагрузки оказывается превышен анаэробный порог; тогда уровень молочной кислоты в крови и в мышечных волокнах начинает повышаться немного раньше.

БОГ двигательные единицы генерируют гораздо большую силу, чем МО двигательные единицы, но они легко устают из-за своей ограниченной выносливости. Поэтому БОГ волокна, по всей видимости, используются в основном при непродолжительной интенсивной нагрузке на выносливость, например при пробежке на 1 милю или заплыве на 400 м.

Многие люди интересуются конными скачками. Лошади также участвуют в Олимпийских играх

Таблица 2. Процентное соотношение МО и БГ волокон в четырехглавых мышцах спортсменов по сравнению с обычным человеком

Медленные окислительные волокна (%)

Быстрые гликолитические волокна (%)

Бегуны на марафонскую дистанцию

В мышечном веретене мышц также содержатся совершенно разные типы мышечных волокон. Эти структуры воспринимают напряжение мышц. Чувствительность мышечных веретен может быть отрегулирована при сокращении их особых интрафузальных мышечных волокон. Веретена расположены параллельно основной мышце или экстра-фузальным волокнам. Уровнем сокращения интрафузальных мышечных волокон в веретенах управляют гамма-мотонейроны, тогда как альфа-мотонейроны регулируют экстра-фузальные мышечные волокна, которые непосредственно отвечают за сокращение мышц.

Высокопороговые и низкопороговые волокна [ править | править код ]

Классифицируются по уровню порога возбудимости двигательных единиц. Мышца сокращается под действием нервных импульсов, которые имеют электрическую природу. Каждая двигательная единица (ДЕ) включает в себя мотонейрон, аксон и совокупность мышечных волокон. Количество ДЕ у человека остается неизменным на протяжении всей жизни. Двигательные единицы имеют свой порог возбудимости. Если нервные импульсы, посылаемые мозгом, имеют частоту ниже этого порога, ДЕ пассивна. Если нервные импульсы имеют пороговую для этой ДЕ величину или превышают ее, мышечные волокна активируются и начинают сокращаться. Низкопороговые ДЕ имеют маленькие мотонейроны, тонкий аксон и сотни иннервируемых медленных мышечных волокон. Высокопороговые ДЕ имеют крупные мотонейроны, толстый аксон и тысячи иннервируемых быстрых мышечных волокон.

Медленные окислительные волокна относятся к низкопороговым (возбуждаются при незначительной нагрузке). Быстрые волокна относятся к высокопороговым (включатся только при интенсивной нагрузке).

Эндокринология и мышечные волокна [ править | править код ]

Существование различных типов мышечных волокон обеспечивает значительную гетерогенность тканей скелетных мышц и их способность выполнять разнообразные функциональные задачи. Иммуногистохимический и биохимический анализ скелетных мышц показал, что такое структурно-функциональное разнообразие мышечных волокон обусловлено существованием широкого спектра изоформ миозина. Миозин — молекула, от которой наряду с актином зависит мышечное сокращение. Молекула миозина состоит из двух тяжелых цепей (МуНС) и четырех легких цепей (MyLC) (Schiaffino, Reggiani, 1996; Pette, Staron, 1997). Тяжелые цепи миозина представлены несколькими изоформами, от свойств которых зависят скоростно-силовые качества мышечных волокон.

В скелетных мышцах взрослого человека происходит экспрессия четырех наиболее важных изоформ МуНС: MyHCip, MyHCIIA, MyHCIIX/IID и МуНСПВ. Каждая изоформа характеризуется специфической скоростью сокращения и развиваемым усилием. Волокна, содержащие MyHCI, отличаются низкой скоростью сокращения и развивают меньшее усилие по сравнению с волокнами, содержащими MyHCIIA, ИХ и IIB. Среди волокон, состоящих из быстрых МуНС, наиболее быстрыми и сильными являются те, которые построены из МуНСПВ, за ними следуют волокна, в состав которых входят МуНСИХ и MyHCIIA (Bottineli et al., 1994a, 1994b).

Занятия физическими упражнениями могут приводить к существенным изменениям сократительных свойств скелетных мышц. Принято считать, что тренировка выносливости сопровождается увеличением количества медленных изоформ миозина (Baumann et al., 1987; Schaub et al., 1989). В то же время силовая тренировка вызывает увеличение MyHCIIA и уменьшение МуНСПХ (Staron et al., 1991; Adams et al., 1993; Andersen J.L. et al., 1994; Fry et al., 1994; Kraemer et al., 1995; Kadi, Thorncll, 1999; Andersen J.L., Aagaard, 2000). Кроме того, предполагается, что мышечные волокна, содержащие МуНСИХ, у основной массы людей очень редко вовлекаются в выполнение работы в процессе обычной ежедневной активности. Если они начинают вовлекаться в выполнение работы, например в процессе физической тренировки, то превращаются в волокна, содержащие MyHCIIA (волокна, включающие эту изоформу тяжелых цепей миозина, обладают большей выносливостью по сравнению с волокнами типа ИХ) (Goldspink G. et al., 1991; Staron et al., 1991; Kraemer et al., 1995). Во время тренировки мышечной силы или выносливости происходит значительное изменение гормонального фона скелетных мышц, которое является мощным сигналом, способным запустить процесс изменения содержания изоформ миозина в мышцах, подвергающихся физической нагрузке.

Влияние тестостерона [ править | править код ]

В некоторых экспериментах на животных после применения андрогенных анаболических стероидов наблюдали изменение соотношения изоформ тяжелых цепей миозина в сторону увеличения медленных изоформ (Fritzshe et al., 1994; Czesla ct al., 1997). Сообщалось об увеличении доли волокон, содержащих MyHCIIA, наряду с сокращением количества волокон, содержащих МуНСПВ, в ряде скелетных мышц грызунов после применения андрогенных анаболических стероидов (Eggington, 1987; Dimauro et al., 1992). Однако сообщалось также о том, что андрогенные стероиды вызывают уменьшение доли мышечных волокон, содержащих MyHCIIA, по отношению к волокнам, состоящим из МуНСПВ (Kelly et al., 1985; Lyons et al., 1986; Salmons, 1992). Эти результаты говорят о том, что характер воздействия андрогенных анаболических стероидов на сократительные способности может зависеть от типа мышц и у различных видов может быть разным. Действительно, существуют и другие данные, свидетельствующие об отсутствии какого-либо воздействия андрогенных анаболических стероидов по соотношение мышечных волокон, содержащих различные изоформы МуНС. Например, в экспериментах на животных чрезмерная нагрузка мышц вызывала увеличение содержания медленных MyHCI, и дополнительное использование андрогенных анаболических стероидов не влияло на характер содержания тяжелых цепей миозина (Boissonneault et al., 1987). Точно так прием андрогенных анаболических стероидон не вызывал изменений сдвига соотношения изоформ МуНС, вызванного экспериментами с обездвиживанием нижней конечности (Tsika et al., 1987). Наконец, не удалось обнаружить никаких различий в соотношении разных изоформ МуНС в трапециевидной мышце хорошо тренированных тяжелоатлетов, принимавших и не принимавших андрогенные анаболические стероиды (Kadi et al., 1999b).

Влияние эстрогенов [ править | править код ]

Хорошо известен тот факт, что уменьшение развиваемой силы происходит в менопаузе (Greeves et al., 1999; Dionne et al., 2000; Meeuwsen et al., 2000). Ha клеточном уровне показано, что удаление яичников сопровождается изменением соотношения изоформ тяжелых цепей миозина в сторону увеличения медленных волокон и понижением спонтанного бега у крыс (Kadi et al., 2000). В целом изменения соотношения изоформ МуНС имеют следующую тенденцию: МуНС I Влияние соматотропного гормона [ править | править код ]

Сообщается о том, что прием соматотропного гормона (СТГ) индуцирует увеличение количества МуНСИХ в латеральной широкой мышце бедра у здоровых мужчин старшего возраста (Lange et al., 2002). Изменение соотношения изоформ МуНС в сторону увеличения МуНСИХ авторы исследования рассматривали как “омоложение” состава тяжелых цепей миозина, поскольку старение обычно сопровождается уменьшением доли МуНСИХ в этой группе мышц (Lange et al., 2002). Однако доля МуНСИХ у пациентов с дефицитом СТГ была выше по сравнению с основной массой здорового населения (Daugaard et al., 1999). Более того, после лечения больных с дефицитом СТГ препаратами рекомбинантного гормона роста в течение 6 месяцев у них не было выявлено никаких изменений в соотношении различных изоформ МуНС (Daugaard et al., 1999). Аналогичным образом было показано, что применение СТГ у крыс приводит к существенному увеличению поперечного сечения мышечных волокон типа II в камбаловидной мышце, не оказывая заметного влияния на содержание различных изоформ в составе мышечных волокон (Aroniadou-Anderjaska et al., 1996). Вопрос о том, приводит ли повышение уровня СТГ к изменению соотношения изоформ МуНС в сторону увеличения быстрых изоформ миозина, требует дальнейших исследований.

Влияние гормонов щитовидной железы [ править | править код ]

Гормоны щитовидной железы, или тироидные гормоны, оказывают сильное регуляторное воздействие на соотношение различных изоформ тяжелой цепи миозина в составе скелетной мышцы (D’Albis, Butler-Browne, 1993). Показано, что регуляция соотношения МуНС в скелетных мышцах крысы является специфической для пола и типа мышц (Larsson, Yu, 1997). Применение 3.5.3’-трийодтиронина (Т3) приводит к подавлению содержания MyHCI и увеличению содержания MyHCIIA в камбаловидной мышце самцов и самок, тогда как стимуляция содержания МуНСИХ наблюдалась только в мышцах самцов крыс (Larsson, Yu, 1997). Применение Т3 не вызывало никаких изменений в длинном разгибателе пальцев стопы у самцов крыс. В то же время в аналогичной ситуации в той же мышце у самок отмечалось достоверное изменение соотношения изоформ MyHCIIA и ИВ в пользу увеличения последней (Larsson, Yu, 1997). В целом эти результаты показывают, что сократительные качества скелетных мышц находятся под контролем ряда гормонов и ростовых факторов и изменение гормонального фона в этих мышцах при выполнении физических упражнений может быть в определенной степени ответственным за изменение характеристик мышцы в соответствии с физиологическими потребностями. Становится все более очевидным, что изменения структуры и функции мышц, происходящие под влиянием изменений гормонального фона, могут зависеть от пола и типа мышц.

Заключение [ править | править код ]

Были рассмотрены лишь отдельные аспекты значения специфических гормонов и ростовых факторов в регуляции некоторых важных параметров мышц, определяющих спортивные показатели. Эта сфера мышечной физиологии только начинает развиваться и здесь еще многое предстоит открыть прежде чем станет понятно взаимоотношение различных факторов, принимающих участие в разнообразных процессах адаптации скелетных мышц к различным видам двигательной активности. Последовательное описание различных этапов адаптации мышц к двигательной активности позволит создать основу для концепции индивидуализированного выбора упражнений с целью оптимизации качества тренировочных программ как для хорошо физически подготовленных лиц, так и для тех, кто ведет малоподвижный образ жизни, а также для специальных групп населения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *