какие встроенные функции для сортировки массивов в python вы знаете
6 примеров сортировки в Python с помощью функции sorted
Общей идиомой в программировании является сортировка списка. Python делает эту задачу очень простой благодаря встроенной функции sorted() которая принимает итерируемый тип и возвращает отсортированный список:
1. Стандартная сортировка
Обратите внимание на то, что функция sorted() возвращает список каждый раз, несмотря на то, какой тип был передан. В случае со словарями, она возвращает отсортированный список словарных ключей.
2. Сортировка сложных структур с использованием ключа
Это нормально работать с вещами, у которых по природе есть определенный порядок, вроде чисел или строк, но что делать с более сложными структурами? Здесь функция sorted() демонстрирует свое великолепие. Функция sorted() принимает ключ в качестве опционально названного параметра. Этот ключ должен быть, сам по себе, функцией, которая принимает один параметр, которая затем используется функцией sorted(), для определения значения в целях дальнейшей сортировки. Давайте взглянем на пример. Скажем, у нас есть класс Person с такими атрибутами как имя и возраст:
(Функция __repr__ является специальной функцией, которая используется для переопределения того, как объект будет представлен в интерпретаторе Python)
Причина, по которой я определил функцию – это выделение порядка сортировки. По умолчанию, представление определенных пользователем объектов выглядит примерно так: “ ”. Если оставить все как есть, то отличать различные экземпляры в будущих примерах будет несколько затруднительно для нас.
Давайте сделаем список людей:
Сама по себе функция sorted() не знает, что делать со списком людей:
Однако, мы можем указать функции sorted(), какой атрибут сортировать, указав используемый ключ. Давайте определим это в следующем примере:
Функция ключа должна принять один аргумент и выдать значение, на котором базируется сортировка. Функция sorted() должна вызвать функцию key в каждом элементе используемой итерируемой, и использовать значение выдачи при сортировке списка.
Обратите внимание на то, что мы передаем ссылку на саму функцию, не вызывая ее и передаем ссылку к её возвращаемому значению. Это очень важный момент. Помните, sorted() будет использовать функцию key, вызывая её в каждом элементе итерируемой.
Давайте взглянем на еще один код, на этот раз определяем возраст как значение для сортировки:
3. Обратная сортировка
Функция sorted() намного упрощает сортировку в обратном порядке. Функция принимает опциональный параметр под названием reverse, который действует по строгой логике.
4. Сортировка с использованием функции attrgetter
В этот раз, возвращаемый список отсортирован по возрасту, как мы и ожидали. Фактически, сортировка по определенному атрибуту объекта это простая задача Python, которую может выполнить стандартная библиотека, благодаря функции, которая может генерировать функции ключей для вас:
Результат вызова attrgetter() – это функция, схожая с предыдущими двумя, которые мы только что рассмотрели. Мы определяем имя атрибута для выборки, после чего attrgetter генерирует функцию, которая принимает объект и возвращает определенный атрибут из этого объекта.
Таким образом, attrgetter(name) возвращает функцию, которая ведет себя также как и определенная раннее нашей функцией byName_key():
Функция attrgetter(age) возвращает функцию, которая ведет себя также как и определенная раннее нашей функцией byAge_key():
5. Предварительное использование key в функции сортировки
До сих пор нашими ключевыми функциями были простые считыватели атрибутов, но они также могут вычислять значения для сортировки. Давайте взглянем на еще один пример. На этот раз мы определим класс Snake:
У нашей змеи есть имя, toxicity (токсичность, мерило того, насколько токсичен её яд) и agression (представленная в виде числа от 0 до 1, которое указывает на вероятность того, что змея нападет).
Надежный сайт по продвижению doctorsmm предлагает купить подписчиков на свой Телеграмм канал по очень выгодным и притягательным ценам от 51 рубля за сотню аккаунтов. Кроме того, Вы сможете подобрать наиболее оптимальную для Вашего сообщества скорость поступления, которая доходит до 1000 единиц в сутки.
Теперь предположим, что мы можем подсчитать, насколько опасная змея, основываясь на показателях токсичности и агрессивности, и можем отсортировать список змей по степени их опасности:
Змеи отсортированы в ожидаемом нами порядке (несмотря на то, что гремучая змея (rattlesnake) более ядовита, чем кобра (kingCobra), уровень агрессивности кобры делает её более опасной).
6. Случайная сортировка
Ключи не обязаны иметь какую-либо связь с сортируемыми элементами (однако, это не самый продуктивный способ сортировать что-либо). Мы можем создать случайный порядок со следующим ключом:
Функция random() – это часть стандартной библиотеки random, которая выдает числа в случайном порядке от 0 до 1. Сортировка с использованием данного ключа выдает, кто бы мог подумать, случайный порядок:
В данной статье мы рассмотрели то, как Python создает отсортированные списки (и другие итерируемые) и то, насколько это просто. По умолчанию, функция sorted() возвращает список, содержимое которого упорядоченно в естественном порядке (что, в общем, именно то что мы ожидаем от чисел и строк). Желающие углубиться в то, как работает функция sorted() могут обратиться к документации Python.
Топ-5 алгоритмов сортировки на Python
Сортировка — это навык, которым должен обладать каждый программист. Не только для прохождения собеседований, но и для понимания дисциплины в целом. Разные алгоритмы сортировки — отличная демонстрация того, как внутренняя логика может влиять на сложность, скорость и эффективность программы.
Разберем 5 самых распространенных алгоритмов и реализуем их в Python.
Bubble Sort (пузырьковая сортировка)
Этот вид сортировки изучают в начале знакомства с дисциплиной Computer Science, поскольку он максимально просто демонстрирует саму концепцию сортировки.
При этом подходе осуществляется перебор по списку и сравнение соседних элементов. Они меняются местами в том случае, если порядок неправильный. Так продолжается до тех пор, пока все элементы не расположатся в нужном порядке. Из-за большого количества повторений у пузырьковой сортировки его сложность в худшем случае — O(n^2).
Selection Sort (сортировка выбором)
Сортировка выбором — также простой алгоритм, но более эффективный по сравнению с пузырьковой сортировкой. В большинстве случаев сортировка выбором будет более удачным выбором из двух.
В этом алгоритме список (или массив) делится на две части: список с отсортированными элементами и список с элементами, которые только нужно сортировать. Сначала ищется самый маленький элемент во втором. Он добавляется в конце первого. Таким образом алгоритм постепенно формирует список от меньшего к большему. Так происходит до тех пор, пока не будет готовый отсортированный массив.
Insertion Sort (сортировка вставками)
Сортировка вставками быстрее и проще двух предыдущих. Именно так большинство людей тасует карты любой игре. На каждой итерации программа берет один из элементов и подыскивает для него место в уже отсортированном списке. Так происходит до тех пор, пока не останется ни одного неиспользованного элемента.
Merge Sort (сортировка слиянием)
Сортировка слиянием — элегантный пример использования подхода «Разделяй и властвуй». Он состоит из двух этапов:
Quick Sort (быстрая сортировка)
Как и сортировка слиянием, быстрая сортировка использует подход «Разделяй и властвуй». Алгоритм чуть сложнее, но в стандартных реализациях он работает быстрее сортировки слиянием, а его сложность в худшем случае редко достигает O(n^2). Он состоит из трех этапов:
Алгоритмы сортировки на Python
В этой статье мы вкратце расскажем, какие есть основные алгоритмы сортировки и каковы их главные характеристики. Также по каждому алгоритму покажем реализацию на Python.
Искусство наведения порядка
Сортировка означает размещение элементов в определенном порядке. Этот конкретный порядок определяется свойством сравнения элементов. В случае целых чисел мы говорим, что сначала идет меньшее число, а потом — большее.
Расположение элементов в определенном порядке улучшает поиск элемента. Следовательно, сортировка широко используется в информатике.
В данной статье мы рассмотрим обычные алгоритмы сортировки и их реализации на Python. Для сравнения их производительности мы будем рассматривать задачу с сайта Leetcode о сортировке массива. Размеры данных этой задачи ограничены следующим образом:
Мы решили эту задачу при помощи всех известных алгоритмов сортировки. Вот какие у нас получились результаты:
Сортировка методом пузырька
Это самый простой алгоритм сортировки. В процессе его выполнения мы перебираем наш список и на каждой итерации сравниваем элементы попарно. При необходимости элементы меняются местами, чтобы больший элемент отправлялся в конец списка.
Сортировка выбором
В этом алгоритме мы создаем два сегмента нашего списка: один отсортированный, а другой несортированный.
В процессе выполнения алгоритма мы каждый раз удаляем самый маленький элемент из несортированного сегмента списка и добавляем его в отсортированный сегмент. Мы не меняем местами промежуточные элементы. Следовательно, этот алгоритм сортирует массив с минимальным количеством перестановок.
Сортировка вставками
Подобно алгоритму сортировки выбором, мы делим наш список на две части. Далее мы перебираем неотсортированную часть и вставляем каждый элемент из данного сегмента на его правильное место в отсортированной части списка.
Марк Лутц «Изучаем Python»
Скачивайте книгу у нас в телеграм
Сортировка Шелла
Сортировка Шелла является оптимизированным вариантом сортировки вставками.
Оптимизация достигается путем сравнения не только соседних элементов, но и элементов на определенном расстоянии, которое в течении работы алгоритма уменьшается. На последней итерации это расстояние равно 1. После этого алгоритм становится обычным алгоритмом сортировки вставками, что гарантирует правильный результат сортировки.
Но следует отметить один момент: к тому времени, когда это произойдет, наш массив будет почти отсортирован, поэтому итерации будут выполнятся очень быстро.
Пирамидальная сортировка («сортировка кучей»)
Как и в двух предыдущих алгоритмах, мы создаем два сегмента списка: отсортированный и несортированный.
В данном алгоритме для эффективного нахождения максимального элемента в неотсортированной части списка мы используем структуру данных «куча».
Метод heapify в примере кода использует рекурсию для получения элемента с максимальным значением на вершине.
Сортировка слиянием
Этот алгоритм работает по принципу «разделяй и властвуй».
Здесь мы делим список ровно пополам и продолжаем это делать, пока в нем не останется только один элемент. Затем мы объединяем уже упорядоченные части нашего списка. Мы продолжаем это делать, пока не получим отсортированный список со всеми элементами несортированного входного списка.
Быстрая сортировка
В этом алгоритме мы разбиваем список при помощи опорного элемента, сортируя значения вокруг него.
В нашей реализации мы выбрали опорным элементом последний элемент массива. Наилучшая производительность достигается тогда, когда опорный элемент делит список примерно пополам.
Сортировка подсчетом
Этот алгоритм не производит сравнение элементов. Для сортировки используются математические свойства целых чисел. Мы подсчитываем вхождения числа в массиве и сохраняем результат во вспомогательном массиве, где индексу соответствует значение ключа.
Следует также упомянуть поразрядную сортировку, которая использует сортировку подсчетом либо блочную (корзинную) сортировку в качестве подпрограммы. Этот метод сортировки заслуживает отдельной статьи для разбора.
Для удобства соберем весь наш код вместе:
Мы нашли потрясающий плейлист, в котором алгоритмы сортировки демонстрируются при помощи народного танца. Посмотрите это видео, оно того стоит!
В нашем небольшом исследовании мы изучили различные алгоритмы сортировки и определили время их выполнения, а также их потребности в памяти. Теперь мы понимаем, что значит время выполнения, стабильность алгоритма и используемая память. Чтобы выбрать подходящий алгоритм, мы должны оценивать эти параметры. Также, для создания более эффективных решений, типа Timsort, мы можем комбинировать наши базовые алгоритмы.
Объяснение алгоритмов сортировки с примерами на Python
Авторизуйтесь
Объяснение алгоритмов сортировки с примерами на Python
В этой статье будут рассмотрены популярные алгоритмы, принципы их работы и реализация на Python. А ещё сравним, как быстро они сортируют элементы в списке.
В качестве общего примера возьмём сортировку чисел в порядке возрастания. Но эти методы можно легко адаптировать под ваши потребности.
Пузырьковая сортировка
Этот простой алгоритм выполняет итерации по списку, сравнивая элементы попарно и меняя их местами, пока более крупные элементы не «всплывут» в начало списка, а более мелкие не останутся на «дне».
Алгоритм
Сначала сравниваются первые два элемента списка. Если первый элемент больше, они меняются местами. Если они уже в нужном порядке, оставляем их как есть. Затем переходим к следующей паре элементов, сравниваем их значения и меняем местами при необходимости. Этот процесс продолжается до последней пары элементов в списке.
При достижении конца списка процесс повторяется заново для каждого элемента. Это крайне неэффективно, если в массиве нужно сделать, например, только один обмен. Алгоритм повторяется n² раз, даже если список уже отсортирован.
Для оптимизации алгоритма нужно знать, когда его остановить, то есть когда список отсортирован.
Реализация
Время сортировки
Если взять самый худший случай (изначально список отсортирован по убыванию), затраты времени будут равны O(n²), где n — количество элементов списка.
Сортировка выборкой
Этот алгоритм сегментирует список на две части: отсортированную и неотсортированную. Наименьший элемент удаляется из второго списка и добавляется в первый.
Алгоритм
На практике не нужно создавать новый список для отсортированных элементов. В качестве него используется крайняя левая часть списка. Находится наименьший элемент и меняется с первым местами.
Теперь, когда нам известно, что первый элемент списка отсортирован, находим наименьший элемент из оставшихся и меняем местами со вторым. Повторяем это до тех пор, пока не останется последний элемент в списке.
Реализация
По мере увеличения значения i нужно проверять меньше элементов.
Время сортировки
Затраты времени на сортировку выборкой в среднем составляют O(n²), где n — количество элементов списка.
Сортировка вставками
Как и сортировка выборкой, этот алгоритм сегментирует список на две части: отсортированную и неотсортированную. Алгоритм перебирает второй сегмент и вставляет текущий элемент в правильную позицию первого сегмента.
Алгоритм
Переходя к другим элементам несортированного сегмента, перемещаем более крупные элементы в отсортированном сегменте вверх по списку, пока не встретим элемент меньше x или не дойдём до конца списка. В первом случае x помещается на правильную позицию.
Реализация
Время сортировки
Время сортировки вставками в среднем равно O(n²), где n — количество элементов списка.
Пирамидальная сортировка
Также известна как сортировка кучей. Этот популярный алгоритм, как и сортировки вставками или выборкой, сегментирует список на две части: отсортированную и неотсортированную. Алгоритм преобразует второй сегмент списка в структуру данных «куча» (heap), чтобы можно было эффективно определить самый большой элемент.
Алгоритм
Сначала преобразуем список в Max Heap — бинарное дерево, где самый большой элемент является вершиной дерева. Затем помещаем этот элемент в конец списка. После перестраиваем Max Heap и снова помещаем новый наибольший элемент уже перед последним элементом в списке.
Этот процесс построения кучи повторяется, пока все вершины дерева не будут удалены.
Реализация
Создадим вспомогательную функцию heapify() для реализации этого алгоритма:
Время сортировки
В среднем время сортировки кучей составляет O(n log n), что уже значительно быстрее предыдущих алгоритмов.
Сортировка слиянием
Этот алгоритм относится к алгоритмам «разделяй и властвуй». Он разбивает список на две части, каждую из них он разбивает ещё на две и т. д. Список разбивается пополам, пока не останутся единичные элементы.
Соседние элементы становятся отсортированными парами. Затем эти пары объединяются и сортируются с другими парами. Этот процесс продолжается до тех пор, пока не отсортируются все элементы.
Алгоритм
Список рекурсивно разделяется пополам, пока в итоге не получатся списки размером в один элемент. Массив из одного элемента считается упорядоченным. Соседние элементы сравниваются и соединяются вместе. Это происходит до тех пор, пока не получится полный отсортированный список.
Сортировка осуществляется путём сравнения наименьших элементов каждого подмассива. Первые элементы каждого подмассива сравниваются первыми. Наименьший элемент перемещается в результирующий массив. Счётчики результирующего массива и подмассива, откуда был взят элемент, увеличиваются на 1.
Реализация
Время сортировки
В среднем время сортировки слиянием составляет O(n log n).
Быстрая сортировка
Этот алгоритм также относится к алгоритмам «разделяй и властвуй». Его используют чаще других алгоритмов, описанных в этой статье. При правильной конфигурации он чрезвычайно эффективен и не требует дополнительной памяти, в отличие от сортировки слиянием. Массив разделяется на две части по разные стороны от опорного элемента. В процессе сортировки элементы меньше опорного помещаются перед ним, а равные или большие — позади.
Алгоритм
Быстрая сортировка начинается с разбиения списка и выбора одного из элементов в качестве опорного. А всё остальное передвигаем так, чтобы этот элемент встал на своё место. Все элементы меньше него перемещаются влево, а равные и большие элементы перемещаются вправо.
Реализация
Существует много вариаций данного метода. Способ разбиения массива, рассмотренный здесь, соответствует схеме Хоара (создателя данного алгоритма).
Время выполнения
В среднем время выполнения быстрой сортировки составляет O(n log n).
Обратите внимание, что алгоритм быстрой сортировки будет работать медленно, если опорный элемент равен наименьшему или наибольшему элементам списка. При таких условиях, в отличие от сортировок кучей и слиянием, обе из которых имеют в худшем случае время сортировки O(n log n), быстрая сортировка в худшем случае будет выполняться O(n²).
Встроенные функции сортировки на Python
Иногда полезно знать перечисленные выше алгоритмы, но в большинстве случаев разработчик, скорее всего, будет использовать функции сортировки, уже предоставленные в языке программирования.
Отсортировать содержимое списка можно с помощью стандартного метода sort() :
Или можно использовать функцию sorted() для создания нового отсортированного списка, оставив входной список нетронутым:
Оба эти метода сортируют в порядке возрастания, но можно изменить порядок, установив для флага reverse значение True :
В отличие от других алгоритмов, обе функции в Python могут сортировать также списки кортежей и классов. Функция sorted() может сортировать любую последовательность, которая включает списки, строки, кортежи, словари, наборы и пользовательские итераторы, которые вы можете создать.
Функции в Python реализуют алгоритм Tim Sort, основанный на сортировке слиянием и сортировке вставкой.
Сравнение скоростей сортировок
Для сравнения сгенерируем массив из 5000 чисел от 0 до 1000. Затем определим время, необходимое для завершения каждого алгоритма. Повторим каждый метод 10 раз, чтобы можно было более точно установить, насколько каждый из них производителен.
Пузырьковая сортировка — самый медленный из всех алгоритмов. Возможно, он будет полезен как введение в тему алгоритмов сортировки, но не подходит для практического использования.
Быстрая сортировка хорошо оправдывает своё название, почти в два раза быстрее, чем сортировка слиянием, и не требуется дополнительное место для результирующего массива.
Сортировка вставками выполняет меньше сравнений, чем сортировка выборкой и в реальности должна быть производительнее, но в данном эксперименте она выполняется немного медленней. Сортировка вставками делает гораздо больше обменов элементами. Если эти обмены занимают намного больше времени, чем сравнение самих элементов, то такой результат вполне закономерен.
Вы познакомились с шестью различными алгоритмами сортировок и их реализациями на Python. Масштаб сравнения и количество перестановок, которые выполняет алгоритм вместе со средой выполнения кода, будут определяющими факторами в производительности. В реальных приложениях Python рекомендуется использовать встроенные функции сортировки, поскольку они реализованы именно для удобства разработчика.
Лучше понять эти алгоритмы вам поможет их визуализация.
Хинт для программистов: если зарегистрируетесь на соревнования Huawei Cup, то бесплатно получите доступ к онлайн-школе для участников. Можно прокачаться по разным навыкам и выиграть призы в самом соревновании.
Перейти к регистрации
Всё о сортировке в Python: исчерпывающий гайд
Авторизуйтесь
Всё о сортировке в Python: исчерпывающий гайд
Примечание Вы читаете улучшенную версию некогда выпущенной нами статьи.
Основы сортировки
Прим.перев. В Python вернуть None и не вернуть ничего — одно и то же.
Ещё одно отличие заключается в том, что метод list.sort() определён только для списков, в то время как sorted() работает со всеми итерируемыми объектами:
Прим.перев. При итерировании по словарю Python возвращает его ключи. Если вам нужны их значения или пары «ключ-значение», используйте методы dict.values() и dict.items() соответственно.
Рассмотрим основные функции сортировки Python.
Функции-ключи
С версии Python 2.4 у list.sort() и sorted() появился параметр key для указания функции, которая будет вызываться на каждом элементе до сравнения. Вот регистронезависимое сравнение строк:
Значение key должно быть функцией, принимающей один аргумент и возвращающей ключ для сортировки. Работает быстро, потому что функция-ключ вызывается один раз для каждого элемента.
Часто можно встретить код, где сложный объект сортируется по одному из его индексов. Например:
Тот же метод работает для объектов с именованными атрибутами:
Функции модуля operator
Функции operator дают возможность использовать множественные уровни сортировки в Python. Отсортируем учеников сначала по оценке, а затем по возрасту:
Используем функцию methodcaller() для сортировки учеников по взвешенной оценке:
Сортировка по возрастанию и сортировка по убыванию в Python
Стабильность сортировки и сложные сортировки в Python
Начиная с версии Python 2.2, сортировки гарантированно стабильны: если у нескольких записей есть одинаковые ключи, их порядок останется прежним. Пример:
Обратите внимание, что две записи с ‘blue’ сохранили начальный порядок. Это свойство позволяет составлять сложные сортировки путём постепенных сортировок. Далее мы сортируем данные учеников сначала по возрасту в порядке возрастания, а затем по оценкам в убывающем порядке, чтобы получить данные, отсортированные в первую очередь по оценке и во вторую — по возрасту:
Алгоритмы сортировки Python вроде Timsort проводят множественные сортировки так эффективно, потому что может извлечь пользу из любого порядка, уже присутствующего в наборе данных.
Декорируем-сортируем-раздекорируем
Вот так можно отсортировать данные учеников по оценке:
Это работает из-за того, что кортежи сравниваются лексикографически, сравниваются первые элементы, а если они совпадают, то сравниваются вторые и так далее.
Не всегда обязательно включать индекс в декорируемый список, но у него есть преимущества:
Ещё эта идиома называется преобразованием Шварца в честь Рэндела Шварца, который популяризировал её среди Perl-программистов.
Для больших списков и версий Python ниже 2.4, «декорируем-сортируем-раздекорируем» будет оптимальным способом сортировки. Для версий 2.4+ ту же функциональность предоставляют функции-ключи.
Использование параметра cmp
Все версии Python 2.x поддерживали параметр cmp для обработки пользовательских функций сравнения. В Python 3.0 от этого параметра полностью избавились. В Python 2.x в sort() можно было передать функцию, которая использовалась бы для сравнения элементов. Она должна принимать два аргумента и возвращать отрицательное значение для случая «меньше чем», положительное — для «больше чем» и ноль, если они равны:
Можно сравнивать в обратном порядке:
При портировании кода с версии 2.x на 3.x может возникнуть ситуация, когда нужно преобразовать пользовательскую функцию для сравнения в функцию-ключ. Следующая обёртка упрощает эту задачу:
Чтобы произвести преобразование, оберните старую функцию:
В Python 2.7 функция cmp_to_key() была добавлена в модуль functools.
Поддержание порядка сортировки
Прочее
Для сортировки с учётом языка используйте locale.strxfrm() в качестве ключевой функции или locale.strcoll() в качестве функции сравнения. Параметр reverse всё ещё сохраняет стабильность сортировки. Этот эффект можно сымитировать без параметра, использовав встроенную функцию reversed() дважды:
Чтобы создать стандартный порядок сортировки для класса, просто добавьте реализацию соответствующих методов сравнения:
Для типов, сравнение которых работает обычным образом, рекомендуется определять все 6 операторов. Декоратор классов functools.total_ordering упрощает их реализацию. Функциям-ключам не нужен доступ к внутренним данным сортируемых объектов. Они также могут осуществлять доступ к внешним ресурсам. Например, если оценки ученика хранятся в словаре, их можно использовать для сортировки отдельного списка с именами учеников:
Вас также может заинтересовать статьи:
Хинт для программистов: если зарегистрируетесь на соревнования Huawei Cup, то бесплатно получите доступ к онлайн-школе для участников. Можно прокачаться по разным навыкам и выиграть призы в самом соревновании.
Перейти к регистрации