какие вы знаете примеры применения лазеров
8 самых необычных в мире примеров применения лазера
Получайте на почту один раз в сутки одну самую читаемую статью. Присоединяйтесь к нам в Facebook и ВКонтакте.
Уборка опавших листьев перед поездом
В Нидерландах уверены, что листья, опавшие осенью на железнодорожные пути, негативно влияют на сам процесс перевозок. Ведь они, прилипнув к колесам локомотивов, заметно увеличивают тормозной путь, а это может привести к потенциальным катастрофам. Раньше в этой стране для очистки колес от листьев использовалась вода и песок, но сейчас принято решение исправлять, вернее, предотвращать проблему при помощи лазеров.
Система, которую собираются внедрить на железных дорогах в Голландии, подразумевает установку на локомотивах поездов лазерных излучателей, которые смогут избавлять пути от листьев и другого мусора прямо во время движения. Тестовые испытания технологии показали, что она вполне эффективно работает, когда поезд движется со скоростью до 80 километров в час.
Виртуальная лазерная клавиатура
Все больше и больше появляется мобильных устройств без собственной физической клавиатуры. Ее функцию в большинстве случаев заменяют виртуальные экранные клавиши. Но бывают люди, которым этого не хватает. Они и покупают многочисленные модели внешних клавиатур, в том числе, и созданные на основе лазерных технологий.
В качестве примера последних можно привести устройство с названием Magic Cube, которое умеет проецировать при помощи лазера виртуальную клавиатуру прямо на рабочий стол или любую другую доступную в данный момент поверхность.
Magic Cube создана для владельцев планшетов и смартфонов, которым надоело сосредоточенно тыкать пальцами в экраны своих мобильных девайсов, боясь промахнуться мимо нужной виртуальной клавиши. Это устройство возвращает нам внешние клавиатуры без, собственно, самих этих клавиатур как таковых.
Лазерная велосипедная дорожка
Каждый производитель по-своему понимает термин «умный» велосипед, а потому транспортные средства с таким названием могут разительно отличаться друг от друга функциональностью. Одной из самых необычных возможностей, которая появилась в последнее время в «умных» байках, является их способность самим создавать себе дорожки во время движения.
Ведь велосипедными дорожками оснащены далеко не все улицы, по которым ездят велосипедисты. А в темное время суток даже та редкая разметка, что уже существует, совершенно не видна автомобилистам. Но эту проблему решают лазерные установки на велосипедах.
Они проецируют велосипедную дорожку впереди и сзади едущего по темной улице велосипеда. Это, во-первых, весьма положительно влияет на психологическую уверенность в себе велосипедиста, а во-вторых, делает его видимым издалека для других участников дорожного движения.
Guardian – лазерные лучи для безопасности пешеходов
Система Guardian подразумевает установку специальных излучателей на столбах возле светофоров. В то время, когда горит красный свет для пешеходов, проход на дорогу для них закрыт лазерным лучом. Он пропадает, как только загорается зеленый, зато тут же появляется поперек улицы для автомобилистов.
Конечно, этот маломощный лазер не может причинить никаких повреждений ни людям, ни автомобилистам и их транспортным средствам. Зато он будет весьма эффективным психологическим сдерживающим фактором для них.
Лазерная футбольная площадка от NIKE
Эта установка может превратить в футбольную площадку любой ровный участок поверхности, будь то покрытый землей пустырь, парковка супермаркета или выложенная брусчаткой центральная площадь.
NIKE предлагает любителям футбола собираться в группы желающих поиграть в эту игру и отправлять SMS на специальный номер с указанием времени и места, куда должна приехать лазерная спортивная площадка. Первая такая установка появилась пару лет назад в Мадриде.
Global Rainbows – 35-километровый лазерный луч в небо
Лазерными шоу в последние годы стало очень сложно удивить людей. Подобные развлечения есть во многих уголках мира, в том числе, в дорогих отелях, крупных торговых центрах и на центральных площадях некоторых городов. А в Нью-Йорке в ноябре 2012 года появилась кратковременная лазерная инсталляция с названием Global Rainbows.
Global Rainbows представляет собой пучок из семи мощных лазерных лучей всех цветов радуги, которые могут быть направлены как в одном направлении, так и в разных. Мощность установки позволяла достигать этим лучам длины в тридцать пять километров.
Инсталляция Global Rainbows посвящена последствиям знаменитого урагана Сэнди, обрушившегося на Нью-Йорк в октябре 2012 года. Эта гигантская радуга, появившаяся в небе над мегаполисом, показывает, что город готов к дальнейшей жизни, что он пережил катастрофу и продолжает свое развитие.
Лазерный костюм для вечеринок
Тайваньский дизайнер по имени Wei-Chieh Shih создал очень необычный костюм для вечеринок, который может удивить даже самых больших завсегдатаев ночных клубов. Ведь это даже не одежда, это мощная лазерная установка, освещающая своим красным сиянием все вокруг.
Wei-Chieh Shih прикрепил к своему костюму двести маломощных лазерных установок, которые могут генерировать лучи в разные стороны. Так что автор этого необычного наряда на вечернике выглядит лазерным ежиком или непричесанным дикобразом.
Лазерные пушки против беспилотников
Такое вооружение представила недавно Китайская Народная Республика. Инновационная система противовоздушной обороны может за пять секунд обнаружить подлетающий беспилотник, вычислить максимально точно его расположение и сбить при помощи мощного лазерного луча.
Правда, данная система безукоризненно работает лишь в тех случаях, когда беспилотники находятся не более чем в двух километрах от пушки и летят со скоростью, не превышающей 180 км/ч. Впрочем, сами размеры цели могут быть даже менее одного метра.
Понравилась статья? Тогда поддержи нас, жми:
Практическое применение лазеров
Изобретение лазера можно по праву считать одним из самых значимых открытий 20 столетия. Еще в самом начале разработки данной технологии ей уже пророчили совершенно разностороннюю применимость, с самого начала была видна перспектива решения самых разных задач, несмотря на то, что некоторые задачи даже не виднелись на горизонте в то время.
Лазерная спектроскопия
Монохроматическое излучение лазера можно получить в принципе с любой длиной волны, причем как в форме непрерывной волны определенной частоты, так и в форме коротких импульсов, длительностью вплоть до долей фемтосекунд. Будучи сфокусирован на исследуемом образце, лазерный луч подвергается нелинейным оптическим влияниям, что позволяет исследователям осуществлять спектроскопию изменяя частоту света, а также проводить когерентный анализ процессов, управляя поляризацией лазерного луча.
Измерение расстояний до объектов
Луч лазера очень удобно направлять на исследуемый объект, даже если этот объект находится очень далеко, ведь расхождение луча лазера очень незначительно. Так, в 2018 году, в рамках эксперимента, из Китайской обсерватории Юньнань лазерный луч был направлен на Луну. Светоотражатели «Апполон-15», которые уже были установлены на поверхности Луны, отразили луч обратно на Землю, где он был принят обсерваторией.
Известно, что свет лазера, как и любая электромагнитная волна, движется с постоянной скоростью — со скоростью света. Измерения времени прохождения луча показали, что расстояние от обсерватории до Луны, в промежутке времени с 21:25 до 22:31 по пекинскому времени 22 января 2018 года, составляло от 385823,433 до 387119,600 километров.
Лазерный дальномер, для не столь больших расстояний как расстояние от Земли до Луны, работает на аналогичном принципе. Импульсный лазер посылает луч на объект, от которого луч отражается. Детектор излучения принимает отраженный луч. Приняв в расчет время между началом излучения и тем моментом когда детектор поймал отраженный луч, а также скорость света, электроника прибора рассчитывает расстояние до объекта.
Адаптивная оптика и компенсация атмосферных искажений
Если наблюдать с земли в телескоп за каким-нибудь далеким астрономическим объектом, то окажется, что атмосфера вносит определенные оптические искажения в получаемое изображение этого объекта. Чтобы данные искажения убрать, применяют методы так называемой адаптивной оптики — искажения измеряются и компенсируются.
Чтобы данной цели достичь, в сторону наблюдаемого объекта направляют мощный луч лазера, который, как и простой свет, испытывает в атмосфере рассеивание, формируя «искусственную звезду», свет от которой, на обратном пути к наблюдателю, испытывает точно такие же оптические искажения в верхних слоях атмосферы, как и изображение наблюдаемого астрономического объекта.
Информация об искажениях обрабатывается, и используется для компенсации оптических искажений путем соответствующей корректировки изображения наблюдаемого астрономического объекта. В результате изображение объекта получается более «чистым».
Био и фотохимия
В биохимических исследованиях на тему образования и работы белков, полезны сверхкороткие лазерные импульсы фемтосекундной длительности. Данные импульсы позволяют инициировать и изучать химические реакции с высоким временным разрешением, чтобы находить и исследовать даже маложивущие химические соединения.
Изменяя поляризацию светового импульса, ученые могут задать необходимое направление химической реакции, выбрав из нескольких возможных сценариев развития событий в ходе реакции строго определенный.
Намагничивание лазерным импульсом
Сегодня ведутся исследования о возможности сверхбыстрого изменения намагниченности сред при помощи сверхкоротких лазерных импульсов длительностью в несколько фемтосекунд. Уже сейчас достигнуто сверхбыстрое размагничивание лазером за 0,2 пикосекунды, а также оптическое управление намагниченностью путем поляризации света.
Охлаждение сред лазером
Ранние эксперименты по охлаждению при помощи лазера проводились с ионами. Ионы удерживались электромагнитным полем в ионной ловушке, где освещались пучком лазерного света. В процессе неупругих соударений с фотонами, ионы теряли энергию, и таким образом были достигнуты сверхнизкие температуры.
Уже после был найден более практичный метод лазерного охлаждения твердых тел — антистоксово охлаждение, который заключается в следующем. Атом среды, находясь в состоянии чуть выше основного состояния (на колебательном уровне), возбуждался до энергии чуть ниже возбужденного состояния (на колебательном уровне), и, поглощая фонон, атом переходил в возбужденное состояние. Затем атом испускал фотон, энергия которого выше, чем энергия накачки, переходя в основное состояние.
Лазеры в установках термоядерного синтеза
Проблема удержания разогретой плазмы внутри термоядерного реактора может быть также решена при помощи лазера. Небольшой объем термоядерного топлива облучают со всех сторон в течение нескольких наносекунд мощным лазером.
Поверхность мишени испаряется, что приводит к огромному давлению на внутренние слои топлива, таким образом мишень испытывает сверхсильное сжатие и уплотнение, и при определенной температуре в такой уплотненной мишени уже могут протекать термоядерные реакции синтеза. Нагрев также возможен при помощи сверхмощных лазерных импульсов фемтосекундной длительности.
Оптический пинцет на основе лазера
Лазерный пинцет позволяет при помощи света от лазерного диода манипулировать микроскопическими диэлектрическими объектами: к объектам прикладываются силы в пределах нескольких наноньютон, также измеряются крошечные расстояния от нескольких нанометров. Данные оптические приборы применяются сегодня в исследовании белков, их структуры и работы.
Боевое и оборонительное лазерное оружие
Лазерный прицел
Небольшой источник лазерного света жестко прикрепляется к стволу винтовки или пистолета так, чтобы его луч был направлен параллельно стволу. При прицеливании стрелок видит на мишени маленькое пятнышко, благодаря малой расходимости лазерного луча.
В основном для таких прицелов используются красные лазерные диоды либо инфракрасные лазерные диоды (чтобы пятнышко можно было разглядеть лишь в прибор ночного видения). Для большей контрастности в условиях дневного света применяются лазерные прицелы с зелеными лазерными светодиодами.
Обман военного противника
Лазерное наведение снаряда
Закалка металла лазером
Участок поверхности металла нагревают лазером до критической температуры, при этом тепло проникает вглубь изделия благодаря его теплопроводности. Как только действие лазера прекращается, происходит быстрое остывание изделия за счет проникновения тепла вовнутрь, где начинают формироваться закалочные структуры, препятствующие быстрому износу при будущей эксплуатации изделия.
Лазерные отжиг и отпуск
Отжиг — это такой вид термической обработки, при котором сначала осуществляют нагрев изделия до определённой температуры, затем выдерживают в течение определенного времени при этой температуре, далее медленно охлаждают до комнатной температуры.
Так снижают твердость металла, облегчая дальнейшую механическую его обработку, при этом улучшается микроструктура и достигается большая однородность металла, снимаются внутренние напряжения. Отжиг лазером позволяет обрабатывать таким образом мелкие детали из металлов.
Отпуск проводят с целью получения более высокой пластичности и снижения хрупкости материала при сохранении приемлемого уровня его прочности в местах соединения деталей. Для этого изделие подвергается нагреву лазером до температуры от 150—260 °C до 370—650 °C с последующим медленным охлаждением (остыванием).
Лазерная очистка и дезактивация поверхностей
Данный способ очистки применяют для удаления поверхностных загрязнений с предметов, памятников, произведений искусства. Для очистки изделий от радиоактивных загрязнений и для очистки микроэлектроники. Такой способ очистки лишен недостатков, свойственных механическому шлифованию, абразивной обработке, виброобработке и т. д.
Лазерное оплавление и аморфизация
Скоростная аморфизация подготовленной поверхности сплава сканирующим лучом или коротким импульсом достигается благодаря быстрому теплоотводу, при котором происходит как-бы замораживание расплава, образуется подобие металлического стекла с высокой твердостью, стойкостью к коррозии, улучшением магнитных характеристик. Материал предварительного покрытия подбирается так, чтобы вместе с основным материалом образовывать состав, склонный к аморфизации под действием лазера.
Лазерное легирование и наплавка
Легирование поверхности металла лазером повышает его микротвердость и износостойкость.
Метод лазерной наплавки позволяет наносить износостойкие поверхностные слои. Применяется в восстановлении высокоточных деталей, используемых в условиях повышенного износа, например таких как клапаны ДВС и другие детали двигателей. Данный метод по качеству превосходит напыление, поскольку здесь формируется монолитный слой связанный с основой.
Вакуумно-лазерное напыление
В вакууме лазером испаряется участок материала, затем данные испарения конденсируются на специальной подложке, где с другими продуктами образуют материал с необходимым новым химическим составом.
Лазерная сварка
Перспективный метод промышленной сварки с использованием мощных лазеров, дающих очень ровный, узкий и глубокий сварной шов. В отличие от обычных методов сварки, мощность лазера регулируется более прецизионно, что позволяет очень точно регулировать глубину и другие параметры сварного шва. Сварочный лазер способен сваривать толстые детали на высокой скорости, достаточно лишь добавить мощности, причем тепловое воздействие на прилегающие зоны минимально. Сварной шов получается более качественным, как и любое соединение, полученное данным способом.
Лазерная резка
Высокая концентрация энергии в сфокусированном лазерном луче дает возможности для разрезания почти любого известного материала, при этом рез получается узким, а зона термического воздействия минимальной. Соответственно отсутствуют и значимые остаточные деформации.
Лазерное скрайбирование
Для последующего разделения на более мелкие элементы, пластины полупроводника скрайбируют — наносят лазером глубокие канавки. Здесь достигается более высокая точность, чем при использовании алмазного резца.
Глубина канавки — от 40 до 125 мкм, ширина от 20 до 40 мкм, при толщине обрабатываемой пластинки от 150 до 300 мкм. Изготовление канавки происходит со скоростью до 250 мм в секунду. Выход готовой продукции больше, брака — меньше.
Лазерная гравировка и маркировка
Лазер в медицине
Невозможно переоценить применимость лазеров в современной медицине. Хирургические лазеры применяются для коагуляции отслоившейся сетчатки глаза, лазерные скальпели позволяют резать плоть, лазерами сваривают кости. Углекислотным лазером сваривают биологические ткани.
Безусловно, что касается медицины, то в данном направлении ученым приходится каждый год улучшать и уточнять, совершенствовать технологии использования тех или иных лазеров, дабы избежать вредных побочных действий на ткани, которые расположены рядом. Бывает так, что одно место лазер лечит, но тут же оказывает разрушительное действие на соседний орган или случайно попавшую под него клетку.
Дополнительные наборы инструментов, специально созданные для работы совместно с хирургическим лазером, позволили медикам добиться успехов в желудочно-кишечной хирургии, хирургии желчных путей, селезенки, легких и печени.
Удаление татуировок, коррекция зрения, гинекология, урология, лапароскопия, стоматология, удаление опухолей головного и спинного мозга — все это возможно сегодня только благодаря современной лазерной технике.
Информационные технологии, дизайн, быт и лазер
CD, DVD, BD, голография, лазерные принтеры, считыватели штрих-кодов, системы безопасности (защитные барьеры), световые шоу, мультимедийные презентации, указки и т. д. Только представьте, как бы стал выглядеть наш мир, если бы из него исчез лазер…
Применение лазеров
С самого момента разработки лазер называли устройством, которое само ищет решаемые задачи. Лазеры нашли применение в самых различных областях — от коррекции зрения до управления транспортными средствами, от космических полётов до термоядерного синтеза. Лазер стал одним из самых значимых изобретений XX века. [источник не указан 657 дней]
Содержание
Наука
Спектроскопия
Современные источники лазерного излучения дают в руки экспериментаторов монохроматический свет с практически любой желаемой длиной волны. В зависимости от поставленной задачи это может быть как непрерывное излучение с чрезвычайно узким спектром, так и ультракороткие импульсы длительностью вплоть до сотен аттосекунд (1 ас = 10 −18 секунды). Высокая энергия, запасенная в этих импульсах, может быть сфокусирована на исследуемый образец в пятно, сравнимое по размерам с длиной волны, что дает возможность исследовать различные нелинейные оптические эффекты. С помощью перестройки по частоте осуществляются спектроскопические исследования этих эффектов, а управление поляризацией лазерного излучения позволяет проводить когерентный контроль исследуемых процессов.
Измерение расстояния до Луны
Во время полётов на Луну пилотируемыми и беспилотными аппаратами, на её поверхность было доставлено несколько специальных уголковых отражателей. С Земли при помощи телескопа посылали специально сфокусированный лазерный луч и измеряли время, которое он затрачивает на путь до лунной поверхности и обратно. Основываясь на значении скорости света (которое, кстати, специально для этих исследований пришлось отдельно измерять с большой точностью), стало возможным рассчитать расстояние до Луны. Сегодня параметры орбиты Луны известны с точностью до нескольких сантиметров.
Создание искусственных опорных звезд
Применение методов адаптивной оптики в наземных телескопах позволяет существенно повысить качество изображения астрономических объектов путем измерения и компенсации оптических искажений атмосферы. Для этого, в сторону наблюдения направляется мощный луч лазера. Излучение лазера рассеивается в верхних слоях атмосферы, создавая видимый с поверхности земли опорный источник света — искусственную звезду. Свет от нее, прошедший на обратном пути к земле через слои атмосферы, содержит информацию об оптических искажениях, имеющих место в данный момент времени. Измеренные таким образом атмосферные искажения компенсируются специальным корректором. Например, деформируемым зеркалом.
Фотохимия
Некоторые типы лазеров могут производить сверхкороткие световые импульсы, измеряемые пико- и фемтосекундами (10 −12 — 10 −15 с). Такие импульсы можно применять для запуска и анализа химических реакций. Сверхкороткие импульсы могут использоваться для исследования химических реакций с высокой разрешающей способностью по времени, позволяя достоверно выделять короткоживущие соединения. Манипуляция поляризацией импульса позволяет селективно выбирать направление химической реакции из нескольких возможных (когерентный контроль). Такие методы находят своё применение в биохимии, где с их помощью исследуют образование и работу белков.
Лазерное намагничивание
Сверхкороткие лазерные импульсы используются для сверхбыстрого управления магнитным состоянием среды, что является в настоящее время предметом интенсивных исследований. Уже открыто множество оптико-магнитных явлений, таких, как сверхбыстрое размагничивание за 200 фемтосекунд (2·10 −13 с), тепловое перемагничивание светом и нетепловое оптическое управление намагниченностью с помощью поляризации света.
Лазерное охлаждение
Первые опыты по лазерному охлаждению были проведены с ионами в ионных ловушках, ионы удерживались в пространстве ловушки с помощью электрического поля и/или магнитного поля. Эти ионы освещались лазерным пучком, и благодаря неупругому взаимодействию с фотонами теряли энергию после каждого соударения. Этот эффект используется для достижения сверхнизких температур.
В дальнейшем, в процессе совершенствования лазеров, нашли и другие методы, такие как антистоксово охлаждение твёрдых тел — наиболее практичный метод лазерного охлаждения на сегодня. Этот метод основан на том, что возбуждается атом не с основного электронного состояния, а с колебательных уровней этого состояния (с чуть большей энергией чем энергия основного состояния) на колебательные уровни возбуждённого состояния (с энергией чуть меньше чем энергия этого возбуждённого состояния). Далее атом безызлучательным образом переходит на возбуждённый уровень (поглощая фононы) и испускает фотон при переходе с возбуждённого электронного уровня на основной (этот фотон обладает большей энергией чем фотон накачки). Атом поглощает фонон и цикл повторяется.
Уже существуют системы, способные охлаждать кристалл от азотных до гелиевых температур. Этот метод охлаждения идеален для космических аппаратов, где нет возможности ставить традиционную систему охлаждения.
Термоядерный синтез
Один из способов решить проблему удержания нагретой плазмы в ядерном реакторе может заключаться в использовании лазеров. При этом небольшой объём топлива облучается мощным лазерным излучением (иногда лазерное излучение предварительно трансформируется в рентгеновское) со всех сторон в течение небольшого (порядка нескольких наносекунд) промежутка времени. В результате облучения поверхность мишени испаряется, оказывая огромное давление на внутренние слои. Это давление сжимает мишень до сверхвысоких плотностей. В сжатой мишени могут протекать термоядерные реакции при достижении определённой температуры. Нагрев возможен как непосредственно силами давления, так и с использование дополнительного сверхмощного и сверхкороткого (порядка нескольких фемтосекунд) лазерного импульса.
Оптический (лазерный) пинцет
Оптический пинцет — прибор, который позволяет манипулировать микроскопическими объектами с помощью лазерного света (обычно испускаемого лазерным диодом). Он позволяет прикладывать к диэлектрическим объектам силы от фемтоньютонов до наноньютонов и измерять расстояния от нескольких нанометров. В последние годы оптические пинцеты начали использоваться для изучения структуры и принципа работы белков.
Вооружения
Лазерное оружие
В середине марта 2009 года американская корпорация Northrop Grumman объявила о создании твердотельного электрического лазера мощностью около 100 квт. Разработка данного устройства была произведена в рамках программы по созданию эффективного мобильного лазерного комплекса, предназначенного для борьбы с наземными и воздушными целями. [1]
«Звездные войны»
Целеуказатели
Лазерный прицел
Системы обнаружения снайперов
Принцип данных систем основывается на том, что луч, проходя через линзы, будет отражаться от какого-либо светочувствительного объекта (оптические преобразователи, сетчатка глаза и т. д.).
Как преимущество — подобные системы являются активными, то есть обнаруживают снайперов до выстрела, а не после. С другой стороны эти системы демаскируют себя, так как являются излучателями.
Постановка помех снайперам
Возможна постановка помех путем «сканирования» лазерным лучом местности, не позволяя вражеским снайперам вести прицельную стрельбу или даже наблюдение в оптические приборы. [4]
Введение противника в заблуждение
Дальномеры
Лазерное наведение
Остаётся только возможность использования лазера для ослепления противника, потому что для этой цели нужны лазеры совсем небольшой мощности, которые можно сделать портативными. В настоящее время использование таких устройств запрещено международными правилами ведения войн. [источник не указан 1221 день] Тем не менее, лазеры малой мощности, в том числе лазерные указки, ограниченно используются для ослепления снайперов противника и выявления скрытых огневых точек.
Промышленность
Медицина
В 1960-х годах были выполнены первые исследования в отношении использования лазеров в медицине. Они проходили в клиниках ММА им. И. М. Сеченова, ЦИТО, ЦНИИ курортологии и физиотерапии, разработчиком первых в СССР лазерных медицинских установок было Научно-производственное предприятие «Исток» (Фрязино, Московская область). Изучались возможности применения в клинической практике гелий-неоновых лазеров с длиной волны 0,63 мкм. Была доказана целесообразность применения гелий-неоновых лазеров в лечебных целях и в 1972 году было получено разрешение Минздрава СССР на применение излучения гелий-неонового лазера малой мощности в терапии. [7]
Работы по применению лазеров в хирургии в СССР начались в 1965 году в МНИОИ им. П. А. Герцена (рук. работ профессор С. Д. Плетнёв) совместно с НПП «Исток» (рук. работ академик АН СССР Н. Д. Девятков и В. П. Беляев). Использовался высокоэнергетические С02 лазеры с длинной волны 10,6 мкм. По результатам этих работ в НПП «Исток» было создано несколько модификаций лазерных хирургических установок, которые были переданы в клиники и использовались при проведении хирургических операций. [7]
С появлением промышленных лазеров наступила новая эра в хирургии. При этом пригодился опыт специалистов по лазерной обработке металла. Приваривание лазером отслоившейся сетчатки глаза — это точечная контактная сварка; лазерный скальпель — автогенная резка; сваривание костей — стыковая сварка плавлением; соединение мышечной ткани — тоже контактная сварка.
Для того чтобы лазерное излучение оказало какое-либо действие, надо, чтобы ткань его поглощала. Самый популярный лазер в хирургии — углекислотный. Другие лазеры монохроматичны, то есть нагревают, разрушают или сваривают только некоторые биологические ткани с вполне определенной окраской. Например, луч аргонового лазера свободно проходит через матовое стекловидное тело и отдает свою энергию сетчатке, цвет которой близок к красному.
Углекислотный лазер пригоден в большинстве случаев, например когда нужно рассечь или приварить друг к другу ткани разного цвета. Однако при этом возникает другая проблема. Ткани насыщены кровью и лимфой, содержат много воды, а излучение лазера в воде теряет энергию. Увеличить энергию лазерного луча можно, но это может привести к прожигу тканей. Создателям хирургических лазеров приходится прибегать к всевозможным уловкам, что сильно удорожает аппаратуру.
Специалистам по сварке металлов давно известно, что при резке пакета тонких металлических листов необходимо, чтобы они плотно прилегали друг к другу, а при точечной контактной сварке для тесного контакта свариваемых деталей необходимо дополнительное давление.
Этот метод был использован и в хирургии: профессор О. И. Скобелкин и его соавторы предложили при сварке тканей слегка их сдавливать, чтобы вытеснить кровь. Для осуществления нового способа был создан целый набор инструментов, который применяется сегодня в желудочно-кишечной хирургии, при операциях на желчных путях, селезенке, печени, легких.










































