какое электрическое поле называется ускоряющим

УСКОРЯЮЩЕЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

-электрич. поле (постоянное, высокочастотное, вихревое), используемое для увеличения энергии (ускорения) движущихся за-ряж. частиц. Обычно вектор скорости частиц направлен вдоль вектора напряжённости У. э. п. или под небольшим углом к нему. Подробнее см. Ускорители заряженных частиц.

Смотреть что такое “УСКОРЯЮЩЕЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ” в других словарях:

ускоряющее устройство — Устройство ускорителя заряженных частиц, в котором формируется электрическое поле, ускоряющее заряженные частицы. [ГОСТ Р 52103 2003] Тематики ускорители заряженных частиц EN accelerating unit … Справочник технического переводчика

Напряжение луча ускоряющее — Ускоряющее напряжение луча (высокое напряжение) разность потенциалов между катодом и анодом, генерирующая электрическое поле для ускорения электронов. Источник: ГОСТ Р 50014.7 92 (МЭК 519 7 83). Государственный стандарт Российской Федерации.… … Официальная терминология

Ускорители заряженных частиц — устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического поля, способного изменять энергию частиц, обладающих электрическим зарядом. Магнитное… … Большая советская энциклопедия

Закон степени трёх вторых — Графическое представление закона степени трёх вторых Закон степени трёх вторых (закон Чайлда … Википедия

индуктор ускорителя — Ускоряющее устройство линейного индукционного ускорителя, переменное магнитное поле которого возбуждает на оси ускорителя продольное ускоряющее электрическое поле. [ГОСТ Р 52103 2003] Тематики ускорители заряженных частиц EN accelerator inductor … Справочник технического переводчика

ускоряющий волновод — Ускоряющее устройство в виде волновода, в котором ускоряющее электрическое поле образуется бегущими и/или стоячими электромагнитными волнами. [ГОСТ Р 52103 2003] Тематики ускорители заряженных частиц EN accelerating waveguide … Справочник технического переводчика

ускоряющий резонатор — Ускоряющее устройство в виде единичного резонатора, в котором ускоряющее электрическое поле образуется стоячими электромагнитными волнами. [ГОСТ Р 52103 2003] Тематики ускорители заряженных частиц EN accelerating cavityaccelerating resonator … Справочник технического переводчика

Транзистор — (от англ. transfer переносить и resistor сопротивление) электронный прибор на основе полупроводникового кристалла, имеющий три (или более) вывода, предназначенный для генерирования и преобразования электрических колебаний. Изобретён в… … Большая советская энциклопедия

диафрагмированный ускоряющий волновод — Ускоряющий волновод, нагруженный по длине дисками с отверстиями, в котором ускоряющее электрическое поле образуется бегущими или стоячими электромагнитными волнами. [ГОСТ Р 52103 2003] Тематики ускорители заряженных частиц EN corrugated… … Справочник технического переводчика

УСКОРИТЕЛЬ ЧАСТИЦ — установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости… … Энциклопедия Кольера

Источник

Понятие об электрическом поле. Взаимодействие электрических зарядов

Прежде чем давать определение электрического поля, проделаем простой опыт, показывающий, как взаимодействуют электрические заряды.

Для опыта потребуется очень несложная «аппаратура»: эбонитовая палочка, кусочек сукна и два маленьких пробковых шарика, подвешенных на шелковых нитках.

Эбонитовую палочку потрем о сукно и коснемся ею левого шарика. Так как эбонитовая палочка при трении о сукно заряжается отрицательно, то и шарик зарядится отрицательно. Кусочек сукна, которым мы натирали палочку, заряжается положительно (при рассмотрении электронного строения атома указывалось, что появление отрицательного заряда всегда сопровождается появлением положительного заряда). Этим кусочком сукна коснемся правого шарика. Часть электронов с шарика перейдет на сукно, и он зарядится положительно. Если после этого внести эбонитовую палочку между шариками, то левый шарик будет от нее отталкиваться, а правый — притягиваться (рис. 1).

какое электрическое поле называется ускоряющим. Смотреть фото какое электрическое поле называется ускоряющим. Смотреть картинку какое электрическое поле называется ускоряющим. Картинка про какое электрическое поле называется ускоряющим. Фото какое электрическое поле называется ускоряющим

Рисунок 1. Взаимодействипе электрических зарядов

Этот опыт позволяет сделать следующий вывод:

Одноименные электрические заряды отталкиваются, а разноименные притягиваются

Проделанный опыт убедительно показывает, что электрический заряд (в данном случае отрицательно заряженная эбонитовая палочка) вызывает определенные изменения в окружающем пространстве, создавая вокруг себя электрическое поле.

Определение Электрическое поле — это особый, отличный от вещества вид материи, через которую, в частности, передается действие одних заряженных тел на другие.

Электрическое поле проявляется прежде всего в том, что на находящиеся в нем заряженные тела действуют электрические силы.

Всякое электрическое поле обладает определенным запасом электрической энергии. Проявления этой энергии могут быть различными. Например, под влиянием электрического поля может двигаться электрический заряд; при этом электрическая энергия поля тратится на перемещение заряда, и скорость перемещения заряда увеличивается. Электрическое поле, воздействующее на заряд так, что скорость движения последнего увеличивается, называется ускоряющим электрическим полем.

Если заставить электрический заряд двигаться навстречу действию сил поля, то энергия электрического ноля будет возрастать, а скорость движения заряда уменьшаться. Такое поле называется тормозящим электрическим полем.

Одним из существенных вопросов электротехники является вопрос о движении электрона в электрическом поле. Электрон имеет отрицательный электрический заряд, и к нему применимы все те рассуждения, которые приводились выше.

Если электрон движется в ускоряющем поле, то энергия поля уменьшается. При движении электрона в тормозящем электрическом поле энергия последнего возрастает. На этом явлении основана работа ряда важнейших приборов (клистронов, магнетронов и т. д.), применяемых в современной радио аппаратуре.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Какое электрическое поле называется ускоряющим

Ольга Александровна Косарева

Шпаргалка по общей электротехники и электроники

1. ИСТОРИЯ ЭЛЕКТРОНИКИ

Фундамент для возникновения и развития электроники был заложен работами физиков в XVIII и XIX вв. Первые в мире исследования электрических разрядов в воздухе были осуществлены в XVIII в. в России академиками Ломоносовым и Рихманом и независимо от них американским ученым Франклином. Важным событием явилось открытие электрической дуги академиком Петровым в 1802 г. Исследования процессов прохождения электрического тока в разреженных газах проводили в прошлом веке в Англии Крукс, Томсон, Тоунсенд, Астон, в Германии Гейслер, Гитторф, Плюккер и др. В 1873 г. Лодыгин изобрел первый в мире электровакуумный прибор – лампу накаливания. Независимо от него несколько позже такую же лампу создал и усовершенствовал американский изобретатель Эдисон. Электрическая дуга впервые была применена для целей освещения Яблочковым в 1876 г. В 1887 г. немецкий физик Герц открыл фотоэлектрический эффект.

Термоэлектронная эмиссии была открыта в 1884 г. Эдисоном. В 1901 г. Ричардсон провел детальное исследование термоэлектронной эмиссии. Первая электронно-лучевая трубка с холодным катодом была создана в 1897 г. Брауном (Германия). Использование электронных приборов в радиотехнике началось с того, что в 1904 г. английский ученый Флеминг применил двухэлектродную лампу с накаленным катодом для выпрямления высокочастотных колебаний в радиоприемнике. В 1907 г. американский инженер Ли-де-Форест ввел в лампу управления сетку, т. е. создал первый триод. В том же году профессор Петербургского технологического института Розинг предложил применить электронно-лучевую трубку для приема телевизионных изображений и в последующие годы осуществил экспериментальное подтверждение своих идей. В 1909-191 1 гг. в России Коваленков создал первые триоды для усиления дальней телефонной связи. Важное значение имело изобретение подогревного катода Чернышевым в 1921 г. В 1926 г. Хелл в США усовершенствовал лампы с экранирующей сеткой, а в 1930 г. он предложил пентод, ставший одной из наиболее распространенных ламп. В 1930 г. Кубецкий изобрел фотоэлектронные умножители, в конструкции которых значительный вклад внесли Векшин-ский и Тимофеев. Первое предложение о специальных передающих телевизионных трубках сделали независимо друг от друга в 1930–1931 гг. Константинов и Катаев. Подобные же трубки, названные иконоскопами, построил в США Зворыкин.

Изобретение таких трубок открыло новые широкие возможности для развития телевидения. Несколько позднее в 1933 г. Шмаков и Тимофеев предложили новые более чувствительные передающие трубки (супериконоскопы или суперэмитроны), позволившие вести телевизионные передачи без сильного искусственного освещения. Русский радиофизик Рожановский в 1932 г. предложил создать новые приборы с модуляцией электронного потока по скорости. По его идеям Арсеньева и Хейль в 1939 г. построили первые такие приборы для усиления и генерации колебаний СВЧ, названные пролетными клистронами. В 1940 г. Коваленко изобрел более простой отражательный клистрон, который широко используется для генерирования колебаний СВЧ.

Большое значение для техники дециметровых волн имели работы Девяткова, Данильцева, Хохлова и Гуревича, которые в 1938–1941 гг. сконструировали специальные триоды с плосковыми дисковыми электродами. По этому принципу в Германии были выпущены металлокерамические и в США ма-ячковые лампы.

2. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ

По сравнению с электронными лампами у полупроводниковых приборов имеются существенные достоинства:

1) малый вес и малые размеры;

2) отсутствие затрат энергии на накал;

3) более высокая надежность в работе и большой срок службы (до десятка тысяч часов);

4) большая механическая прочность (стойкость к тряске, ударам и другим видам механических перегрузок);

5) различные устройства (выпрямители, усилители, генераторы) с полупроводниковыми приборами имеют высокий КПД, так как потери энергии в самих приборах незначительны;

6) маломощные устройства с транзисторами могут работать при очень низких питающих напряжениях;

7) принципы устройства и работы полупроводниковых приборов использованы для создания нового важного направления развития электроники – полупроводниковой микроэлектроники.

Вместе с тем полупроводниковые приборы в настоящее время обладают следующими недостатками:

1) параметры и характеристики отдельных экземпляров приборов данного типа имеют значительный разброс;

2) свойства и параметры приборов сильно зависят от температуры;

3) наблюдается изменение свойств приборов с течением времени (старение);

4) их собственные шумы в ряде случаев больше, нежели у электронных приборов;

5) большинство типов транзисторов непригодно для работы на частотах выше десятков мегагерц;

6) входное сопротивление у большинства транзисторов значительно меньше, чем у электронных ламп;

7) транзисторы пока еще не изготавливают для таких больших мощностей, как электровакуумные приборы;

8) работа большинства полупроводниковых приборов резко ухудшается под действием радиоактивного излучения.

Транзисторы успешно применяются в усилителях, приемниках, передатчиках, генераторах, телевизорах, измерительных приборах, импульсных схемах, электронных счетных машинах и др. Использование полупроводниковых приборов дает огромную экономию в расходовании электрической энергии источников питания и позволяет во много раз уменьшить размеры аппаратуры.

Ведутся исследования по улучшению полупроводниковых приборов по применению для них новых материалов. Созданы полупроводниковые выпрямители на токи в тысячи ампер. Применение кремния вместо германия позволяет эксплуатировать приборы при температуре до 125″ С и выше. Созданы транзисторы для частот до сотен мегагерц и более, а также новые типы полупроводниковых приборов для сверхвысоких частот. Замена электронных ламп полупроводниковыми приборами успешно осуществлена во многих радиотехнических устройствах. Промышленность выпускает большое количество полупроводниковых диодов и транзисторов различных типов.

3. ДВИЖЕНИЕ ЭЛЕКТРОНОВ В ОДНОРОДНОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Взаимодействие электронов с электрическим полем является основным процессом в электровакуумных и полупроводниковых приборах.

Если разность потенциалов между электродами U, а расстояние между ними d, то напряженность поля равна: Е= U/d. Для однородного электрического поля величина Е является постоянной.

Пусть из электрода, имеющего более низкий потенциал, например из катода, вылетает электрон с кинетической энергией W0 и начальной скоростью v0, направленной вдоль силовых линий поля. Поле действует на электрон и ускоряет его движение к электроду, имеющему более высокий потенциал, например к аноду. То есть электрон притягивается к электроду с более высоким потенциалом. В данном случае поле называется ускоряющим.

В ускоряющем поле происходит увеличение кинетической энергии электрона за счет работы поля по перемещению электрона. В соответствии с законом сохранения энергии увеличение кинетической энергии электрона W-W0 равно работе поля, которая определяется произведением перемещаемого заряда е на пройденную им разность потенциалов U: W-W! = mv 2 /2 – mv 2 0/2 = eU. Если начальная скорость электрона равна нулю, то W0 = mv 2 0/2 = 0 и W=mv 2 /2 = eU, т. е. кинетическая энергия электрона равна работе поля. Скорость электрона в ускоряющем поле зависит от пройденной разности по’тенциалов.

Источник

Электрическое поле и его характеристики

теория по физике 🧲 электростатика

Вокруг заряженных тел существует особая среда — электрическое поле. Именно это поле является посредником в передаче электрического взаимодействия.

Свойства электрического поля

Характеристики электрического поля

Напряженность численно равна электрической силе, действующей на единичный положительный заряд:

q 0 — пробный заряд.

Пример №1. Сила, действующая в поле на заряд в 20 мкКл, равна 4Н. Вычислить напряженность поля в этой точке.

20 мкКл = 20∙10 –6 Кл

Силовые линии — линии, касательные к которым совпадают с вектором напряженности.

Потенциальная энергия взаимодействия двух зарядов W (Дж) в вакууме:

Потенциальная энергия взаимодействия двух зарядов W (Дж) в среде:

Знак потенциальной энергии зависит от знаков заряженных тел:

Потенциал — энергетическая характеристика электрического поля. Обозначается как ϕ. Единица измерения — Вольт (В).

Численно потенциал равен отношению потенциальной энергии взаимодействия двух зарядов к единичному положительному заряду:

q 0 — пробный заряд.

Потенциал — скалярная физическая величина. Знак потенциала зависит от знака заряда, создающего поле. Отрицательный заряд создает отрицательный потенциал, и наоборот.

Значение потенциала зависит от выбора нулевого уровня для отсчета потенциальной энергии, а разность потенциалов — от выбора нулевого уровня не зависит.

Напряжение — разность потенциалов. Обозначается как U. Единица измерения — Вольт (В). Численно напряжение равно отношению работы электрических сил по перемещению заряда из точки 1 в точку 2:

Эквипотенциальные поверхности — поверхности, имеющие одинаковый потенциал. Они равноудалены от заряженных тел и обычно повторяют их форму. Эквипотенциальные поверхности перпендикулярны силовым линиям.

Пылинка, имеющая массу 10 −6 кг, влетела в однородное электрическое поле в направлении против его силовых линий с начальной скоростью 0,3 м/с и переместилась на расстояние 4 см. Каков заряд пылинки, если её скорость уменьшилась при этом на 0,2 м/с, а напряжённость поля 105 В/м?

Источник

Электрическое поле

какое электрическое поле называется ускоряющим. Смотреть фото какое электрическое поле называется ускоряющим. Смотреть картинку какое электрическое поле называется ускоряющим. Картинка про какое электрическое поле называется ускоряющим. Фото какое электрическое поле называется ускоряющим Классическая электродинамика
какое электрическое поле называется ускоряющим. Смотреть фото какое электрическое поле называется ускоряющим. Смотреть картинку какое электрическое поле называется ускоряющим. Картинка про какое электрическое поле называется ускоряющим. Фото какое электрическое поле называется ускоряющим
Электричество · Магнетизм
Электростатика
Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал
Магнитостатика
Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Электродинамика
Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле
Электрическая цепь
Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс
Ковариантная формулировка
Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток
Известные учёные
Генри Кавендиш
Майкл Фарадей
Никола Тесла
Андре-Мари Ампер
Густав Роберт Кирхгоф
Джеймс Клерк (Кларк) Максвелл
Генри Рудольф Герц
Альберт Абрахам Майкельсон
Роберт Эндрюс Милликен
См. также: Портал:Физика

Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика — напряжённость электрического поля — векторная физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора напряженности совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

В классической физике, применимой при рассмотрении крупномасштабных (больше размера атома) взаимодействий, электрическое поле рассматривается как одна из составляющих единого электромагнитного поля и проявление электромагнитного взаимодействия. В квантовой электродинамике — это компонент электрослабого взаимодействия.

В классической физике система уравнений Максвелла описывает взаимодействие электрического поля, магнитного поля и воздействие зарядов на эту систему полей.

Сила Лоренца описывает воздействие электромагнитного поля на частицу.

Эффект поля заключается в том, что при воздействии электрического поля на поверхность электропроводящей среды в её приповерхностном слое изменяется концентрация свободных носителей заряда. Этот эффект лежит в основе работы полевых транзисторов.

Основным действием электрического поля является силовое воздействие на неподвижные (относительно наблюдателя) электрически заряженные тела или частицы. Если заряженное тело фиксировано в пространстве, то оно под действием силы не ускоряется. На движущиеся заряды силовое воздействие оказывает и магнитное поле (вторая составляющая силы Лоренца).

Содержание

Энергия электрического поля

Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

какое электрическое поле называется ускоряющим. Смотреть фото какое электрическое поле называется ускоряющим. Смотреть картинку какое электрическое поле называется ускоряющим. Картинка про какое электрическое поле называется ускоряющим. Фото какое электрическое поле называется ускоряющим

Классификация

Однородное поле

какое электрическое поле называется ускоряющим. Смотреть фото какое электрическое поле называется ускоряющим. Смотреть картинку какое электрическое поле называется ускоряющим. Картинка про какое электрическое поле называется ускоряющим. Фото какое электрическое поле называется ускоряющим

какое электрическое поле называется ускоряющим. Смотреть фото какое электрическое поле называется ускоряющим. Смотреть картинку какое электрическое поле называется ускоряющим. Картинка про какое электрическое поле называется ускоряющим. Фото какое электрическое поле называется ускоряющим

Однородное поле — это электрическое поле, в котором напряжённость одинакова по модулю и направлению во всех точках пространства. Приблизительно однородным является поле между двумя разноимённо заряженными плоскими металлическими пластинами. В однородном электрическом поле линии напряжённости направлены параллельно друг другу.

Наблюдение электрического поля в быту

Для того, чтобы создать электрическое поле, необходимо создать электрический заряд. Натрите какой-нибудь диэлектрик о шерсть или что-нибудь подобное, например, пластиковую ручку о собственные чистые волосы. На ручке создастся заряд, а вокруг — электрическое поле. Заряженная ручка будет притягивать к себе мелкие обрывки бумаги. Если натирать о шерсть предмет большей ширины, например, резиновую ленту, то в темноте можно будет видеть мелкие искры, возникающие вследствие электрических разрядов.

Электрическое поле часто возникает возле телевизионного экрана (относится к телевизорам с ЭЛТ) при включении или выключении телеприёмника. Это поле можно почувствовать по его действию на волоски на руках или лице.

Электрическое поле внутри проводников с избыточными зарядами

Из опытов, приводимых в электростатике, известно, что избыточные заряды привнесённые в проводник извне, перемещаются к поверхности проводника и остаются у поверхности проводника. Само перемещение избыточных зарядов к поверхности проводника свидетельствует о наличии электрического поля внутри проводника в период перемещения к поверхности проводника.

Электрическое поле внутри проводников с недостатком собственных электронов

При недостатке собственных электронов тело получает положительный заряд «дырочной» природы. Дырки при этом ведут себя подобно электронам и также распределяются по поверхности тела.

Источник

Leave a Reply

Your email address will not be published. Required fields are marked *