какое магнитное поле называется неоднородным
Какое магнитное поле называется неоднородным
1. Какое магнитное поле называется однородным? и где оно существует?
Однородное магнитное поле существует:
а) внутри соленоида, т. е. проволочной цилиндрической катушки с током, если длина соленоида значительно больше его диаметра.
б) внутри постоянного полосового магнита в центральной его части.
2. Какое магнитное поле называется неоднородным? и где оно существует?
Неоднородное магнитное поле существует:
а) снаружи полосового магнита,
б) снаружи соленоида (катушки с током),
в) вокруг прямого проводника с током.
3. Что вы знаете о направлении и форме линий поля полосового магнита?
Магнитное поле постоянного полосового магнита:
Магнитные линии выходят из северного полюса магнита и входят в южный.
Внутри магнита они направлены от южного полюса к северному.
Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, как средняя линия на рисунке, идут из бесконечности в бесконечность.
Вне магнита магнитные линии расположены наиболее густо у его полюсов.
Это значит, что возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает.
Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на нее поле магнита.
Поскольку магнитные линии искривлены, то направление силы, с которой поле действует на стрелку, тоже меняется от точки к точке.
Сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку. в разных точках поля может быть различной как по модулю, так и по направлению.
Поле постоянного полосового магнита является неоднородным снаружи магнита и однородным внутри его центральной части..
4. Что вы знаете о магнитном поле прямого проводника с током?
Магнитное поле может прямолинейного проводника с током:
Проводник с током расположен перпендикулярно к плоскости чертежа.
Кружочком обозначено сечение проводника.
Точка означает, что ток направлен из-за чертежа к нам.
Магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника.
Магнитное поле прямого проводника с током неоднородно.
5. Что вы знаете о магнитном поле соленоида (катушки с током)?
Магнитное поле соленоида (катушки с током):
6. Какое магнитное поле — однородное или неоднородное — образуется вокруг полосового магнита? вокруг прямолинейного проводника с током? внутри соленоида, длина которого значительно больше его диаметра?
Вокруг полосового магнита образуется неоднородное магнитное поле.
Вокруг прямолинейного проводника с током образуется неоднородное магнитное поле.
Внутри соленоида, если длина его больше его диаметра, образуется однородное магнитное поле.
7. Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в разных точках неоднородного магнитного поля? однородного магнитного поля?
Сила, с которой манитное поле полосового магнита действует на помещенную в его неоднородное поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.
Сила, с которой манитное поле катушки с током действует на помещенную внутри катушки (в однородное поле) магнитную стрелку, в разных точках поля должна быть одинаковой как по модулю, так и по направлению.
8. Сравните картины расположения линий в неоднородном и однородном магнитных полях.
Магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.
Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.
9. Как изображают линии магнитного поля, направленные перпендикулярно к плоскости чертежа?
Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертеж, то их изображают крестиками.
Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены из-за чертежа к нам, то их изображают точками.
Как и в случае с током, каждый крестик — это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка — острие стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с н45аправлением магнитных линий).
Магнитное поле. Однородное и неоднородное магнитное поле
Урок 33. Физика 9 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Магнитное поле. Однородное и неоднородное магнитное поле»
«…Камень притягивать может железо,
камень же этот по имени месторождения
магнитом назван был греками,
так как он найден в пределах магнетов».
Магнитные явления известны людям с глубокой древности. Еще древние греки знали, что существует особый минерал, способный притягивать железные предметы. Это был один из минералов железной руды, который сейчас известен как магнетит. Его залежи находились возле города Магнесии на севере Турции. Слово «магнит» в переводе с греческого означает «камень из Магнесии».
Впервые свойства магнитных материалов использовали в Китае. Именно там более 4000 лет назад был сконструирован первый компас, и толькок XII веку он стал известен в Европе.
Известные с древних времен явления притяжения разноименных и отталкивания одноименных полюсов магнита напоминают явление взаимодействия разноименных и одноименных электрических зарядов. Однако многочисленные попытки ученых установить связь между электрическими и магнитными явлениями на протяжении многих столетий оставались безрезультатными.
Первыми экспериментами, показавшими, что между электрическими и магнитными явлениями имеется связь, были опыты датского физика Ханса Кристиана Эрстеда. В своём знаменитом опыте, описываемом ныне во всех школьных учебниках физики и проведённом в 1820 году, он обнаружил, что провод, по которому идёт ток, действует на магнитную стрелку.
Эрстед не только провёл свой опыт, но и сделал правильный вывод: «электрический конфликт не ограничен проводящей проволокой, а имеет довольно обширную сферу активности вокруг этой проволоки». Переводя на современный язык, это можно понимать так: «действие тока есть не только внутри провода (его нагревание), но и вокруг (магнитное поле)».
Открытие Эрстеда вызвало необычайный интерес его современников-физиков и послужило началом ряда исследований, показавших сходство магнитного действия тока и действия постоянного магнита.
У многих возникал вопрос: а существует ли обратное действие, то есть постоянного магнита на проводник с током? Для поиска ответа проделаем опыт.
Положим на стол полосовой магнит, а над ним подвесим прямой жёсткий проводник на гибких проводах, подводящих ток, но дающих вместе с тем возможность проводнику поворачиваться. Как только мы подключим источник тока, проводник развернётся перпендикулярно к магниту. Другой вариант этого же опыта. Гибкий провод подвешен рядом с вертикально закреплённым магнитом. Когда по проводу идёт ток, то на каждый участок провода действует сила, разворачивающая его перпендикулярно к магниту. Поэтому провод и обвивается вокруг магнита, указывая на «круговой» характер магнитного поля.
Французский физик Доминик Франсуа Жан Араго провёл серию своих опытов. Он обмотал медной проволокой стеклянную трубку, в которую вставил железный стержень. Как только был включён ток, стержень сильно намагнитился и к его концу крепко прилипли железные ключи; когда выключили ток, ключи отпали. Так был изобретён электромагнит — устройство, создающее сильное магнитное поле.
Открытие АрагО заинтересовало его соотечественника Андре-Мари Ампера, и он провёл опыты с параллельными проводниками с токами и обнаружил их взаимодействие. Ампер показал, что если в проводниках идут токи одинаковых направлений, то такие проводники притягиваются друг к другу. В случае же токов противоположных направлений, их проводники отталкиваются.
Напомним, что согласно гипотезе Ампера в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи. На рисунке показано, что в магнитах эти элементарные кольцевые токи ориентированы одинаково. Поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления. Эти поля усиливают друг друга, создавая поле внутри и вокруг магнита.
Для наглядного представления магнитного поля пользуются магнитными линиями (их называют также линиями магнитного поля). Магнитные линии — это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле.
Магнитные линии являются замкнутыми. Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику.
Замкнутость линий магнитного поля представляет собой фундаментальное свойство магнитного поля. Оно свидетельствует о том, что магнитных зарядов, подобных электрическим, в природе нет. Источником магнитного поля являются движущиеся заряды и переменные электрические поля.
За направление магнитной линии в какой-либо ее точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещенной в эту точку.
В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг к другу, т.е. гуще, чем в тех местах, где поле слабее. Например, поле, изображенное на рисунке, слева сильнее, чем справа.
Рассмотрим картину линий магнитного поля постоянного полосового магнита. Из курса физики 8 класса известно, что магнитные линии выходят из северного полюса магнита и входят в южный. Внутри магнита они направлены от южного полюса к северному. Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, как средняя линия на рисунке, идут из бесконечности в бесконечность.
Вне магнита магнитные линии расположены наиболее густо у его полюсов. Значит, возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает. Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на нее поле магнита. Поскольку магнитные линии искривлены, то направление силы, с которой поле действует на стрелку, тоже меняется от точки к точке.
Таким образом, сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.
Такое поле называется неоднородным. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.
Для изображения магнитного поля пользуются следующим приемом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертеж, то их изображают крестиками, а если из-за чертежа к нам — то точками. Как и в случае с током, каждый крестик — это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка — острие стрелы, летящей к нам.
Из этого рисунка видно, что магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника.
В некоторой ограниченной области пространства можно создать однородное магнитное поле, т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.
На рисунке показано однородное поле, возникающее внутри так называемого соленоида, т. е. проволочной цилиндрической катушки с током. Поле внутри соленоида можно считать однородным, если длина соленоида значительно больше его диаметра (вне соленоида поле неоднородно, его магнитные линии расположены примерно так же, как у полосового магнита). Из этого рисунка видно, что магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.
Однородным является также поле внутри постоянного полосового магнита в центральной его части.
– Магнитное поле — это силовое поле, действующее на движущиеся электрические заряды.
– Для наглядного представления магнитного поля пользуются магнитными линиями. Магнитные линии — это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле.
– Замкнутость линий магнитного поля представляет собой фундаментальное свойство магнитного поля. Оно свидетельствует о том, что магнитных зарядов, подобных электрическим, в природе нет.
– За направление магнитной линии в какой-либо ее точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещенной в эту точку.
– Сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению. Такое поле называется неоднородным.
– Магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.
Вопросы.
1. Что вы знаете о направлении и форме линий поля полосового магнита?
Неоднородное магнитное поле: вокруг полосового магнита и прямолинейного проводника с током. Однородное магнитное поле: внутри соляноида.
3. Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в разных точках неоднородного магнитного поля? однородного магнитного поля?
Сила, действующая на магнитную стрелку в однородном поле, в разных точках имеет одинаковый модуль и направление. В неоднородном поле они различны.
4. Сравните картины расположения линий в неоднородном и однородном магнитных полях.
В однородном поле магнитные линии расположены параллельно друг другу и с одинаковой густотой. В неоднородном магнитном поле их густота и их направления могут отличаться, однако они никогда не пересекаются.
5. Как изображают линии магнитного поля, направленные перпендикулярно к плоскости чертежа?
Точкой, если линия идет из-за чертежа к нам и крестиком, если от нас за чертеж.
а) поле действует с одинаковой силой в точках С и D; б) с наибольшей силой поле действует в точке А.
2. Рассмотрите рис. 94 и определите, можно ли в неоднородном магнитном поле, созданном витком с током, найти такие точки, в которых сила действия поля на магнитную стрелку была бы одинакова как по модулю, так и по направлению. Если да, то сделайте в тетради рисунок, аналогичный рисунку 94, и укажите на нем хотя бы две пары таких точек.
Однородное и неоднородное магнитные поля
Если линии располагаются параллельно друг другу, их густота одинакова, то в этом случае говорят, что магнитное поле однородно. Если, наоборот, этого не выполняется, т.е. густота разная, линии искривлены, то такое поле будет называться неоднородным. В заключение урока хотелось бы обратить ваше внимание на следующие рисунки.
Рис. 6. Неоднородное магнитное поле
Во-первых, теперь мы уже знаем, чтомагнитные линии можно изображать стрелками. И рисунок представляет именно неоднородное магнитное поле. Густота в разных местах разная, значит, силовое воздействие этого поля на магнитную стрелку будет разным.
На следующем рисунке представлено уже однородное поле. Линии направлены в одну сторону, и их густота одинакова.
Рис. 7. Однородное магнитное поле
Однородное магнитное поле – это поле, которое встречается внутри катушки с большим числом витков или внутри прямолинейного, полосового магнита. Магнитное поле вне полосового магнита или то, что мы сегодня наблюдали на уроке, это поле неоднородное. Чтобы все это до конца усвоить, давайте посмотрим на таблицу.
Неоднородное магнитное поле | Однородное Магнитное поле | |
Сила, действующая в разных точках | Различна | Одинакова (как по модулю, так и по направлению) |
Линии магнитного поля | Искривлены, их густота различна | Параллельны, их густота одинакова |
Примеры | Поле магнита вне его Поле прямолинейного проводника с током | Поле внутри длинной катушки с большим числом витков. Поле внутри магнита |
Список дополнительной литературы:
Белкин И.К. Электрическое и магнитное поля // Квант. — 1984. — № 3. — С. 28-31. Кикоин А.К. Откуда берется магнетизм? // Квант. — 1992. — № 3. — С. 37-39,42 Леенсон И. Загадки магнитной стрелки // Квант. — 2009. — № 3. — С. 39-40. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 2. – М., 1974
Тема: Электромагнитные явления
Урок 40. Направление тока и направление линий его магнитного поля
Ерюткин Евгений Сергеевич
Опыт Эрстеда
В ходе урока мы определим взаимосвязь электрического тока и направления его магнитных линий. Для поиска закономерностей необходимо обратиться к опыту, который впервые был проведен в 1820 году датским ученым Эрстедом.
Рис. 1. Схема опыта Эрстеда
Обратимся к схеме опыта. В двух штативах был укреплен прямой проводник, подключенный к источнику тока. Под проводником располагалась магнитная стрелка, когда протекал электрический ток, магнитная стрелка располагалась перпендикулярно проводнику с током. Следующий эксперимент с изменением полярности. Электрический ток протекает в противоположную сторону. В результате направление тока в проводнике изменилось. Что произошло с магнитной стрелкой? Магнитная стрелка развернулась на 180 °. Обратите внимание, теперь южный полюс стрелки указывал туда, куда указывал северный, а северный – в противоположном направлении.
О чем этот эксперимент говорит? О том, что, когда изменяется направление электрического тока, изменяется направление магнитных линий.
« Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле»
Новые аудиокурсы повышения квалификации для педагогов
Слушайте учебный материал в удобное для Вас время в любом месте
откроется в новом окне
Выдаем Удостоверение установленного образца:
« Магнитное поле и его графическое изображение.
Неоднородное и однородное магнитное поле»
Образовательные : установить связь между направлением магнитных линий магнитного поля тока и направлением тока в проводнике. Ввести понятие неоднородного и однородного магнитных полей. На практике получить картину силовых линий магнитного поля постоянного магнита, соленоида, проводника по которому течет электрический ток. Систематизировать знания по основным вопросам темы “Электромагнитное поле”.
Развивающие : активизировать познавательную деятельность обучающихся на уроках физики. Развивать познавательную активность учащихся.
Воспитательные : содействовать формированию идеи познаваемости мира. Воспитывать трудолюбие, взаимопонимание между учениками и учителем.
Образовательная : углубление и расширение знаний о магнитном поле, обосновать связь между направлением магнитных линий магнитного поля тока и направлением тока в проводнике.
Воспитательная : показать причинно – следственные связи при изучении магнитного поля прямого тока и магнитных линий, что беспричинных явлений не существует, что опыт- критерий истинности знаний.
Развивающая : продолжить работу над формированием умений анализировать и обобщать знания о магнитном поле и его характеристиках. Вовлечение учащихся в активную практическую деятельность при выполнении экспериментов.
Универсальные учебны действия:
развитие действий по организации и планированию учебного сотрудничества с учителем и сверстниками;
умение работать в группе и приобретение опыта такой работы;
развитие речевой деятельности, приобретение опыта использования речевых средств для регуляции умственной деятельности;
освоение обучающимися основных понятий электомагнитного поля;
развитие стратегий смыслового чтения и работе с информацией ;
практическое освоение методов познания
ценностно-смысловая ориентация учащихся;
знания моральных норм, умения выделить нравственный аспект поведения
организация учащимися своей учебной деятельности;
целеполагание, как постановка учебной задачи на основе соотнесения того, что уже известно и усвоено учащимися, и того, что еще неизвестно;
планирование – определение последовательности промежуточных целей с учетом конечного результата; составление плана и последовательности действий;
прогнозирование – предвосхищение результата и уровня усвоения, его временных характеристик;
контроль в форме сравнения способа действия и его результата с заданным эталоном с целью обнаружения отклонений и отличий от эталона;
Учебно-методическое обеспечение: Физика. 9 класс :А.В Перышкин, Е.М. Гутник
Организационный момент.(1-2 мин)
Мотивация и целеполагание (1-2 мин)
Изучение новой темы(15-30 мин)
Приветствие. Проверка готовности класса к уроку.
Каждый из вас наблюдал, как в конце лета, в начале осени многие птицы улетают в теплые края. Перелетные птицы преодолевают огромные расстояния, опасаясь зимних холодов, а весной они возвращаются обратно. Птицы ориентируются по магнитному полю Земли. Так вот сего дня мы поговорим о магнитах, рассмотрим свойства магнита. Вспомним что такое магнитное поле, какие бывают магнитные поля.
История магнита насчитывает свыше двух с половиной тысяч лет.
Старинная легенда рассказывает о пастухе по имени Магнус. Он однажды обнаружил, что железный наконечник его палки и гвозди сапог притягиваются к черному камню. Этот камень стали называть камнем «Магнуса» или просто «магнитом». Но известно и другое предание о том, что слово «магнит» произошло от названия местности, где добывали железную руду (холмы Магнезии в Малой Азии)
Таким образом, за много веков до н.э. было известно, что некоторые каменные породы обладают свойством притягивать куски железа. Об этом упоминал в VI в до н.э. греческий физик Фалес. В те времена свойства магнитов казались волшебными. в той же древней Греции их странное действие связывали напрямую с деятельностью Богов.
Вот как описывал свойство этого камня древнегреческий мудрец Сократ: « Этот камень не только притягивает железное кольцо- он одаряет своей силой и кольцо, так что оно в свою очередь может притягивать другое кольцо, и таким образом может висеть друг на друге множество колец и кусков железа! Это происходит благодаря силе магнитного камня»
Каковы же свойства магнитов и чем определяются свойства магнитов?
А если взять 2 магнита и поднести их друг к другу одноименными полюсами? как они будут себя вести? А если разноименными полюсами?
Почему куски, железные опилки притягиваются к магниту? Подобно тому как стеклянная палочка притягивает к себе куски бумаги, подобно этому магнит притягивает к себе железные опилки Вокруг магнита существует магнитное поле.
Из курса физики 8 класса вы узнали, что магнитное поле порождается электрическим током. Оно существует, например, вокруг металлического проводника с током. При этом ток создается электронами, направленно движущимися вдоль проводника.
Поскольку электрический ток — это направленное движение заряженных частиц, то можно сказать, что магнитное поле создается движущимися заряженными частицами, как положительными, так и отрицательными.
Итак запишем определение:
Магнитное поле-это особый вид материи, который создается вокруг магнитов движущимися заряженными частицами, как положительными, так и отрицательными.
Для обнаружения м.п. используются магнитные стрелки.
Для наглядного представления магнитного поля мы пользуемся магнитными линиями (их называют также линиями магнитного поля).
Берем лист бумаги, магнит и железные опилки. Что мы наблюдаем?
Магнитную линию можно провести через любую точку пространства, в котором существует магнитное поле.
Магнитные линии являются замкнутыми. Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику.
В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг к другу, т. е. гуще, чем в тех местах, где поле слабее. Например, поле, изображенное на рисунке 87, слева сильнее, чем справа.
Таким образом, по картине магнитных линии можно судить не только о направлении, но и о величине магнитного поля (т. е. о том, в каких точках пространства поле действует на магнитную стрелку с большей силой, а в каких — с меньшей).
Магнитное поле бывает 2х видов: однородное и неоднородное. Давайте рассмотрим эти виды магнитных полей .
Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, идут из бесконечности в бесконечность. Рис. 89
Вне магнита магнитные линии расположены наиболее густо у его полюсов. Значит, возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает.
Таким образом, сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку в разных точках поля может быть различной как по модулю, так и по направлению.
Такое поле называется неоднородным. Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке.
Одним из примеров неоднородного магнитного поля может служить поле вокруг прямолинейного проводника с током. На рисунке 90 изображен участок такого проводника, расположенный перпендикулярно к плоскости чертежа. Кружочком обозначено сечение проводника. Из этого рисунка видно, что магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника.
В некоторой ограниченной области пространства можно создать однородное магнитное поле, т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.
На рисунке 91 показано однородное поле, возникающее внутри так называемого соленоида, т. е. проволочной цилиндрической катушки с током. Поле внутри соленоида можно считать однородным, если длина соленоида значительно больше его диаметра (вне соленоида поле неоднородно, его магнитные линии расположены примерно так же, как у полосового магнита). Из этого рисунка мы видим, что магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой. Однородным является также поле внутри постоянного полосового магнита в центральной его части (см. рис. 89).
Для изображения магнитного поля пользуются следующим приемом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертеж, то их изображают крестиками (рис. 92), а если из-за чертежа к нам — то точками (рис. 93). Как и в случае с током, каждый крестик — это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка — острие стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с направлением магнитных линий).
Параграф 42, 43. упр 34.
Приготовить сообщения на тему: « М.п. Земли», «М.п. в живых организмах».