Полупроводники, которые состоят только из атомов германия или кремния, называют чистыми, или собственными.
Полупроводники, в которых свободных электронов значительно больше, чем дырок, называют полупроводниками n–типа. Примеси в таких полупроводниках называют донорами. Основными носителями заряда являются электроны, а неосновными — дырки.
Полупроводники, в которых свободных дырок значительно больше, чем электронов, называют полупроводниками p–типа. Примеси называют акцепторами. Дырки — основные носители, а электроны — неосновные.
Устройство полупроводникового диода
Полупроводниковым диодом называют полупроводниковый прибор с одним электронно-дырочным (р-n) переходом (основная часть) и двумя выводами. Вывод из р-области называется – анодом, из n-области – катодом.
К металлическому основанию плоскостного диода, называемому кристаллодержателем, припаивается пластинка полупроводника n-типа. Сверху в нее вплавляется капля металла, обычно индия. Атомы индия диффундируют (проникают) в полупроводниковую пластинку и образуют у ее поверхности слой р-типа. К кристаллодержателю и индию привариваются проводники, которые служат выводами диода.
Точечный полупроводниковый диод состоит из пластинки полупроводника n-типа и заостренной пружинки из вольфрама или фосфористой бронзы диаметром 0,1 мм. Через прижатую к полупроводниковой пластинке пружинку пропускают электрический ток большой силы. Металлическая пружинка сваривается с полупроводниковой пластинкой, образуя под острием р-область.
Чем больше площадь р-n-перехода, тем больший ток может через него протекать и тем больше его емкость. Плоскостные полупроводниковые диоды применяются в электрических цепях, в которых протекают большие токи и когда емкостные свойства не оказывают заметного влияния на работу диода. Точечные диоды применяются в цепях с малыми токами и в высокочастотных устройствах.
Для защиты от механических повреждений, попадания на полупроводник света, пыли и влаги его помещают в герметический корпус.
Условные графические обозначения полупроводниковых диодов
Условные графические обозначения полупроводниковых диодов
Диод полупроводниковый выпрямительный, общее обозначение
Стабилитрон и стабистор
Стабилитрон с двусторонней проводимостью
Варикап
Диод Шоттки
Светодиод
Фотодиод
Способы включения диода
Если к диоду подключить внешний источник напряжения плюсом к аноду (р-области), а минусом к катоду (n-области), такое подключение называется прямым включением (рис. 3), а протекающий через него ток — прямым током.
Если источник внешнего напряжения переключить плюсом к катоду и минусом к аноду, такое включение диода называют обратным включением(рис. 4), а протекающий через него ток — обратным током. При большом значении обратного напряжения происходит пробой р-n-перехода.
Пробой может быть тепловым или электрическим. При тепловом пробое разрушается кристалл и свойства р-n-перехода теряются. Электрический пробой, не перешедший в тепловой, является обратимым, т. е. свойства р-n-перехода восстанавливаются при снятии обратного напряжения.
Вольтамперная характеристика диода
График, приведенный на рис. 7, называется вольтамперной характеристикой (ВАХ) диода. Из ВАХ диода видно, что сила протекающего через него тока зависит от полярности приложенного напряжения. При прямом напряжении ток большой (мА, А), а при обратном напряжении — в сотни и даже тысячи раз меньше (мкА, мА).
Основные параметры диодов
К этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.
В большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы 1 будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.
Классификация диодов
Признак классификации
Наименование диода
Принцип работы полупроводникового диода
Если внешнее напряжение приложено к выводам диода таким образом, что анод (А) имеет положительный потенциал по отношению к катоду (К), то будет наблюдаться уменьшение толщины обедненного слоя. Потенциальный барьер при этом снижается, что способствует протеканию тока через переход. С увеличением внешнего напряжения ток через переход возрастает по экспоненциальному закону до тех пор, пока внешнее напряжение не станет равным величине потенциального барьера, т. е. результирующее напряжение на переходе станет равным нулю. Дальнейшее возрастание тока через переход ограничивается только сопротивлением полупроводникового материала. Если полярность внешнего напряжения изменить на обратную, то величина потенциального барьера возрастет, и основные носители не смогут преодолеть потенциальный барьер. В этих условиях, однако, через переход будет протекать незначительный ток, называемый обратным током. При возрастании внешнего обратного напряжения этот ток остается постоянным, пока напряжение не достигнет точки пробоя. В этой точке при постоянном напряжении ток быстро возрастает (рис. 6, б).
Таким образом, при смещении перехода в прямом направлении через него будет протекать достаточно большой ток, а при обратном смещении, меньшем пробивного, ток, протекающий через переход, крайне мал. Иными словами, такое устройство действует, как выпрямитель.
Выпрямительные диоды
Основное предназначение выпрямительных диодов – преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д.
В качестве основы р-n перехода используются кристаллы кремния или германия. Кремниевые диоды применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.
Мощность выпрямительных диодов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:
Что такое полупроводниковый диод, виды диодов и график вольт-амперной характеристики
Полупроводниковый диод получил широкое распространение в электротехнике и в электронике. Обладая невысокой стоимостью и хорошим соотношением мощности и габаритов, он быстро вытеснил вакуумные приборы аналогичного назначения.
Устройство и принцип работы полупроводникового диода
Полупроводниковый диод состоит из двух областей (слоев), изготовленных из полупроводника (кремния, германия и т.п.). Одна область имеет избыток свободных электронов (n-полупроводник), другая – недостаток (p-полупроводник) – это достигается легированием основного материала. Между ними находится небольшая по размерам зона, в которой избыток свободных электронов из n-участка «закрывает» дырки из p-участка (происходит рекомбинация за счет диффузии), и свободных носителей заряда в этой области нет. При приложении прямого напряжения область рекомбинации невелика, её сопротивление мало, и диод проводит ток в этом направлении. При обратном напряжении зона без носителей увеличится, сопротивление диода возрастет. В этом направлении ток не пойдет.
Виды, классификация и графическое обозначение на электрических схемах
В общем случае диод на схеме обозначается в виде стилизованной стрелки, указывающей направление тока. Условно-графическое изображение (УГО) прибора содержит два вывода – анод и катод, которые в прямом подключении соединяются с плюсом электрической цепи и с минусом соответственно.
Существует большое количество разновидностей этого двухполюсного полупроводникового устройства, которые в зависимости от назначения могут иметь несколько отличающееся УГО.
Стабилитроны (диоды Зенера)
Стабилитрон – это полупроводниковый прибор, работающий при обратном напряжении в зоне лавинного пробоя. В этой области напряжение на диоде Зенера стабильно в широком диапазоне изменения тока через прибор. Это свойство используется для стабилизации напряжения на нагрузке.
Стабисторы
Стабилитроны хорошо выполняют свою работу по стабилизации напряжений от 2 В и выше. Чтобы получить неизменное напряжение ниже этого предела, используются стабисторы. Легированием материала, из которого изготовлены данные приборы (кремний, селен) добиваются наибольшей вертикальности прямой ветви характеристики. В этом режиме и работают стабисторы, выдавая образцовое напряжение в пределах 0,5…2 В на прямой ветви вольт-амперной характеристики при прямом напряжении.
Диоды Шоттки
Диод Шоттки построен по схеме полупроводник-металл, и не имеет обычного перехода. За счет этого удалось получить два важных свойства:
К недостаткам относят увеличенные значения обратных токов и пониженную толерантность к уровню обратного напряжения.
Варикапы
Каждый диод имеет электрическую емкость. Обкладками конденсатора служат два объёмных заряда (области p и n полупроводников), а диэлектриком – запирающий слой. При приложении обратного напряжения этот слой расширяется, и ёмкость уменьшается. Это свойство присуще всем диодам, но у варикапов ёмкость нормирована и известна при заданных пределах напряжения. Это позволяет использовать такие приборы в качестве конденсаторов переменной ёмкости и применять для настройки или точной подстройки контуров с помощью подачи обратного напряжения различного уровня.
Туннельные диоды
Эти приборы имеют на прямом участке характеристики прогиб, при котором увеличение напряжения вызывает уменьшение тока. В этой области дифференциальное сопротивление отрицательно. Данное свойство позволяет применять туннельные диоды в качестве усилителей слабых сигналов и генераторов на частотах свыше 30 ГГц.
Динисторы
Динистор — диодный тиристор – имеет структуру p-n-p-n и S-образную ВАХ, не проводит ток, пока приложенное напряжение не достигнет порогового уровня. После этого открывается и ведет себя как обычный диод, пока ток не упадет ниже уровня удержания. Используются динисторы в силовой электронике в качестве ключей.
Фотодиоды
Фотодиод выполняется в корпусе с доступом видимого света к кристаллу. При облучении p-n перехода в нём возникает ЭДС. Это позволяет использовать фотодиод как источник тока (в составе солнечных батарей) или как датчик освещенности.
Светодиоды
Основное свойство светодиода – способность излучать свет при прохождении тока через p-n переход. Это свечение не связано с интенсивностью нагрева, как у лампы накаливания, поэтому прибор экономичен. Иногда используется непосредственное свечение перехода, но чаще оно применяется в качестве инициатора зажигания люминофора. Это позволило получить ранее недостижимые цвета светодиодов, например, синий и белый.
Диоды Ганна
Хотя диод Ганна имеет обычное условно-графическое обозначение, в полном смысле диодом он не является. Потому что у него отсутствует p-n переход. Этот прибор состоит из пластины из арсенида галлия на металлической подложке.
Не вдаваясь в тонкости процессов: при приложении электрического поля определенной величины в устройстве, возникают электрические колебания, период которых зависит от размеров полупроводниковой пластины (но в определенных пределах частоту можно корректировать внешними элементами).
Диоды Ганна используются в качестве генераторов на частотах 1 ГГц и выше. Плюсом прибора является высокая стабильность частоты, а недостатком – небольшая амплитуда электрических колебаний.
Магнитодиоды
Обычные диоды слабо подвержены влиянию внешних магнитных полей. Магнитодиоды имеют особую конструкцию, увеличивающую чувствительность к данному воздействию. Их делают по технологии p-i-n с удлиненной базой. Под действием магнитного поля сопротивление прибора в прямом направлении растёт, и это можно использовать для создания бесконтактных элементов переключения, преобразователей магнитных полей и т.п.
Лазерные диоды
Принцип действия лазерного диода основан на свойстве пары «электрон-дырка» во время рекомбинации при определенных условиях испускать монохроматическое и когерентное видимое излучение. Способы создания этих условий различны, для пользователя необходимо лишь знать длину излучаемой диодом волны и её мощность.
Лавинно-пролетные диоды
Эти приборы используются на СВЧ. При определенных условиях в режиме лавинного пробоя на характеристике диода возникает участок с отрицательным дифференциальным сопротивлением. Это свойство ЛПД позволяет использовать их в качестве генераторов, работающих на длинах волн до миллиметрового диапазона. Там возможно получить мощность не менее 1 Вт. На более низких частотах с таких диодов снимают до нескольких киловатт.
PIN-диоды
Эти диоды изготовлены по p-i-n технологии. Между легированными слоями полупроводников находится слой из нелегированного материала. По этой причине этого выпрямительные свойства диода ухудшены (при обратном напряжении снижена рекомбинация за счёт отсутствия прямого контакта между p- и n-зонами). Зато за счет разнесения областей объемного заряда паразитная емкость становится очень маленькой, в закрытом состоянии практически исключено просачивание сигнала на высоких частотах, и pin-диоды можно использовать на ВЧ и СВЧ в качестве переключающих элементов.
Основные характеристики и параметры диодов
К основным характеристикам полупроводниковых диодов (кроме узкоспециализированных) следует отнести:
Остальные важные характеристики лучше рассмотреть на примере ВАХ диода – так нагляднее.
Вольт-амперная характеристика полупроводникового диода состоит из прямой и обратной ветви. Расположены они в I и в III квадрантах, так как направление тока и напряжения через диод всегда совпадают. По вольт-амперной характеристике можно определить некоторые параметры, а также наглядно увидеть, на что влияют характеристики прибора.
Напряжение порога проводимости
Если к диоду приложить прямое напряжение и начать его увеличивать, то в первый момент ничего не произойдет – ток расти не будет. Но при определенном значении диод откроется, и ток будет увеличиваться в соответствии с напряжением. Это напряжение называется напряжением порога проводимости и на ВАХ отмечено, как Uпорога. Оно зависит от материала, из которого изготовлен диод. Для самых распространенных полупроводников этот параметр составляет:
Свойство германиевых полупроводниковых приборов открываться при малом напряжении используется при работе в низковольтных схемах и в других ситуациях.
Максимальный ток через диод при прямом включении
После того, как диод открылся, его ток растет вместе с увеличением прямого напряжения. Для идеального диода этот график уходит в бесконечность. На практике этот параметр ограничен способностью полупроводникового прибора рассеивать тепло. При достижении определенного предела диод перегреется и выйдет из строя. Чтобы этого избежать, производители указывают наибольший допустимый ток (на ВАХ – Imax). Его можно приблизительно определить по размеру диода и его корпусу. В порядке убывания:
Металлические приборы можно устанавливать на радиаторах – это увеличит мощность рассеяния.
Обратный ток утечки
Если приложить к диоду обратное напряжение, то малочувствительный амперметр ничего не покажет. На самом деле только идеальный диод не пропускает никакого тока. У реального прибора ток будет, но он очень мал, и называется обратным током утечки (на ВАХ – Iобр). Он составляет десятки микроампер или десятые доли миллиампер и намного меньше прямого тока. Определить его можно по справочнику.
Напряжение пробоя
При определенном значении обратного напряжения возникает резкий рост тока, называемый пробоем. Он носит туннельный или лавинный характер и является обратимым. Этот режим используется для стабилизации напряжения (лавинный) или для генерации импульсов (туннельный). При дальнейшем увеличении напряжения пробой становится тепловым. Этот режим необратим и диод выходит из строя.
Паразитическая ёмкость pn-перехода
Уже упоминалось, что p-n переход обладает электрической ёмкостью. И если в варикапах это свойство полезно и используется, то в обычных диодах оно может быть вредным. Хотя ёмкость составляет единицы или десятки пФ и на постоянном токе или низких частотах незаметна, с повышением частоты её влияние возрастает. Несколько пикофарад на ВЧ создадут достаточно низкое сопротивление для паразитных утечек сигнала, сложатся с существующей ёмкостью и изменят параметры цепи, а совместно с индуктивностью вывода или печатного проводника образуют контур с паразитным резонансом. Поэтому при производстве высокочастотных приборов принимают меры для снижения ёмкости перехода.
Маркировка диодов
Проще всего маркируются диоды в металлическом корпусе. В большинстве случаев на них наносится обозначение прибора и его цоколевка. Диоды в пластиковом корпусе маркируются кольцевой меткой со стороны катода. Но нет гарантии, что производитель строго соблюдает это правило, поэтому лучше обратиться к справочнику. Ещё лучше прозвонить прибор мультиметром.
Отечественные стабилитроны малой мощности и некоторые другие приборы могут иметь метки из двух колец или точек разного цвета на противоположных сторонах корпуса. Чтобы определить тип подобного диода и его цоколевку, надо взять справочник или найти в интернете онлайн-определитель маркировки.
Области применения диодов
Несмотря на простое устройство, полупроводниковые диоды широко используются в электронике:
Это только краткое описание возможностей полупроводниковых приборов с двумя выводами. При глубоком изучении свойств и характеристик с помощью диодов можно решать многие задачи, поставленные перед разработчиками электронной аппаратуры.
Вначале будем полагать (см. рис. 1.25), что обратное напряжение (u u /φr- 1)
Тепловой ток is обусловлен генерацией неосновных носителей в областях, прилегающих к области p-n-перехода. Однако часто это идеализированное описание дает неприемлемую погрешность. Особенно большая погрешность возникает при вычислении тока диода, включенного в обратном направлении (U > (φт)) для кремниевых диодов оказывается на несколько порядков меньше реального. В то же время стоит отметить, что в некоторых расчетах обратным током вообще можно пренебречь.
Укажем причины отличия характеристик реальных диодов от идеализированных. Обратимся к прямой ветви вольт-амперной характеристики диода (u> 0,i> 0). Она отличается от идеализированной из-за того, что в реальном случае на нее влияют:
Важно отметить, что сопротивление базы может существенно зависеть от уровня инжекции (уровень инжекции показывает, как соотносится концентрация инжектированных неосновных носителей в базе на границе перехода с концентрацией основных носителей в базе). Влияние указанных сопротивлений приводит к тому, что напряжение на реальном диоде при заданном токе несколько больше (обычно на доли вольта), чем это следует из формулы.
Обратимся к обратной ветви (u
Обратимся к режиму пробоя полупроводникового диода и соответствующему участку обратной ветви вольт-амперной характеристики (на рис. 1.27 этот участок не показан).
Диоды многих конкретных типономиналов не предназначены для работы в режиме пробоя. Для них этот режим работы — аварийный. Если при пробое ток в цепи не ограничивается (например, внешним сопротивлением), то диод выходит из строя. В таких приборах при чрезмерном увеличении обратного напряжения (по модулю) практически сразу же начинается тепловой пробой (участок электрического пробоя практически отсутствует).
Диоды некоторых конкретных типов спроектированы с расчетом на работу в режиме лавинного пробоя в течение некоторого короткого времени. Такие диоды называют лавинными. Если отрезок времени, в течение которого диод находится в режиме лавинного пробоя, невелик, то его p-n-переход не успевает перегреться и диод не выходит из строя.
Иначе лавинный пробой перейдет в тепловой и диод выйдет из строя.
Изобразим вольт-амперную характеристику для лавинного диода (рис. 1.29).
Лавинные диоды, как правило, более надежны в сравнении с обычными кратковременные (перенапряжения не выводят лавинный диод из строя).
Для некоторых конкретных типов диодов режим пробоя является основным рабочим режимом. Это так называемые стабилитроны, рассматриваемые ниже.
Зависимость барьерной емкости диода от напряжения.
Приведем график зависимости общей емкости Сд кремниевого диода 2Д212А от обратного напряжения (основной вклад в общую емкость вносит барьерная емкость) (рис. 1.30).
Для этого диода максимальный постоянный (средний) прямой ток — 1 А, максимальное постоянное (импульсное) обратное напряжение — 200 В.
Временные диаграммы тока и напряжения диода при его переключении.
Обратимся к схеме на рис. 1.31. Предполагается, что вначале ключ К подключает источник напряжения u1, а затем, в момент времени t = 0, источник напряжения u2.
Предполагается также, что напряжения u1 и u2 значительно больше прямого падения напряжения на диоде. Изобразим соответствующие временные диаграммы (рис. 1.32).
До момента времени t = 0 протекает ток i1, который с учетом принятого условия u1>>u определяется выражением i1=u1/R/ Сразу после переключения ключа К и в течение так называемого времени рассасывания tрас протекает ток i2, который ограничивается практически только сопротивлением R, т. е. i2= — (u1/R). В этот отрезок времени в базе диода уменьшается (рассасывается) заряд накопленных при протекании тока неравновесных носителей. Заряд уменьшается в результате рекомбинации и перехода неосновных носителей в эмиттер.
По истечении времени tpac концентрация неосновных носителей в базе на границе p-n-перехода становится равной равновесной. В глубине же базы неравновесный заряд еще существует. Длительность времени рассасывания прямо пропорциональна среднему времени жизни неосновных носителей в базе и зависит от соотношения токов i1 и i2 (чем больше по модулю ток i2, тем меньше, при заданном токе i1, время рассасывания).
В момент времени t1 напряжение на диоде начинает быстро возрастать по модулю, а ток i уменьшаться по модулю (спадать). Соответствующий отрезок времени tcп называют временем спада. Время спада отсчитывают до того момента t2 которому соответствует достаточно малое (по модулю) значение тока i3.
Время спада зависит от времени жизни носителей, а также от барьерной емкости диода и от сопротивления R схемы.
Чем больше указанные емкость и сопротивление R, тем медленнее спадает ток.
Отрезок времени tвос = tpac + tcп называется временем восстановления (временем обратного восстановления).
После завершения переходного процесса (момент времени t3) через диод течет ток iобр ycm — обратный ток в установившемся режиме (определяемый по статической вольт-амперной характеристике диода).
Для упомянутого выше диода 2Д212А типовое время восстановления — 150 нc (150 · 10
9 с) при i1 = 2 А (импульсный ток) и i2 = 0,2 А.
Параметры диодов.
Для того, чтобы количественно охарактеризовать диоды, используют большое количество (измеряемое десятками) различных параметров. Некоторые параметры характеризуют диоды самых различных подклассов.
Другие же характеризуют специфические свойства диодов только конкретных подклассов.
Укажем наиболее широко используемые параметры, применяемые к диодам различных подклассов:
Iпр макс — максимально допустимый постоянный прямой ток;
Uобр макс — максимально допустимое обратное напряжение диода (положительная величина);
Rдиф — дифференциальное сопротивление диода (при заданном режиме работы).
В настоящее время существуют диоды, предназначенные для работы в очень широком диапазоне токов и напряжений. Для наиболее мощных диодов Iпр макс составляет килоамперы, a Uобр макс — киловольты.