камера видящая сквозь стены
Камеры в смартфонах смогут видеть сквозь стены
Этот предприимчивый парень ждет не дождется смартфона-рентгена! (Карикатура © 2012 Sun Home)
Подписывайтесь на наш нескучный канал в Telegram, чтобы ничего не пропустить.
вроде и не первое апреля.
«. а владеть подобной техникой будут только военные, медицинские и еще какие-то учреждения.» При нашем уровне коррупции этими технологиями (фотокамерами) очень скоро овладеют «разномастные извращенцы.» А так если эта информация не розыгрыш, то технологии действительно стремительно развиваются и это радует.
Но при чем тут ренген на снимке? Сдается мне что фотографии человека в ИК спектре это немного не то что хоят увидеть воуяристы.
Под третьей картинкой ссылка на источники.
Я имел ввиду еще более пруф, ученые же заявление где-то делали.
Я так понимаю, что Айфоня будет просто дисплеем у мифического прибора. Зачем прибору дисплей, если у всех есть Айфон? Логично! Прибор смотрит, Айфон видит:)
Ждите китайские планшеты с такой фишкой)
Стеновизоры. Спецназ увидит через стену
На вооружении спецподразделений состоят различные приборы и устройства для решения особых задач. Одним из них может быть т.н. стеновизор – специальная система, способная обнаружить и выявить противника за той или иной преградой. Такие приборы появились не слишком давно, но уже получают определенное распространение и помогают бойцам в подготовке операций.
На старых принципах
Подготовка к различным спецоперациям всегда связана со сбором информации о противнике, его расположении и возможностях. В некоторых ситуациях разведка может быть затруднена или невозможна ввиду наличия различных преград – стен зданий, перекрытий и т.д. Приборы класса «стеновизор» предназначаются для обеспечения разведки в подобных условиях.
Стеновизор или прибор тактической разведки / чрезстенного видения представляет собой особую разновидность радиолокатора. Маломощная РЛС и сопутствующие приборы помещаются в компактном корпусе, пригодном для переноски и быстрого развертывания. Такие изделия предназначаются для использования в различной застройке с целью изучения обстановки за преградами. Часть стеновизоров также могут работать в режиме георадара.
Компактная РЛС сантиметрового диапазона (2-10 ГГц) способна «просвечивать» стены или иные объекты и с высокой разрешающей способностью засекать движение в запреградном пространстве. За счет сложных алгоритмов обработки сигналов производится выявление живых существ в исследуемом объеме, в т.ч. с селекцией людей, движущихся или неподвижных. Объекты выдают себя любыми движениями – в частности, неподвижный человек засекается по дыханию.
При помощи стеновизора бойцы спецподразделения могут изучить ситуацию, определить численность и расположение противника или третьих лиц, уточнить планировку сооружения и т.д. Все это упрощает подготовку к бою и повышает вероятность успешного решения поставленных задач. Кроме того, в отличие от ряда других средств разведки, стеновизор может применяться в любых условиях и выдает себя только слабым излучением, обнаружение которого является непростым делом.
Зарубежные разработки
Первые серийные стеновизоры появились и получили широкое распространение в зарубежных странах. Лидером отрасли считается израильская компания Camero Tech Ltd., предлагающая заказчикам линейку приборов Xaver. На данный момент в нее входят три стеновизора с разными характеристиками и возможностями, а также система связи и управления для их более эффективного использования.
Самым компактным и легким в линейке (22 х 10 х 7 см, 660 г) является стеновизор Xaver 100. Он выполнен в виде небольшого прибора с ручкой для переноски и управления. Лицевая сторона имеет экран и органы управления, на тыльной помещена антенна локатора. Заявлена возможность наблюдения через стены из различных материалов, применяемых в строительстве. Максимальная дальность наблюдения – 20 м. Имеются режимы работы, обеспечивающие изучение ситуации, выявление опасностей, поиск мест для проделывания проходов и т.д.
Более крупный и тяжелый прибор Xaver 400 (37 х 23 х 12 см, 3,2 кг) отличается иной РЛС и расширенным набором функций. В частности, обеспечивается расчет трасс движущихся объектов, выявление неподвижных целей и т.д. Информация выдается на дисплей в нескольких режимах. Также возможна передача данных на удаленный пульт.
Наиболее крупным представителем семейства является стеновизор Xaver 800. Он отличается крупным антенным устройством характерной формы и устанавливается на штативе. Наличие нескольких отдельных локаторов с антеннами позволяет не только изучать пространство за преградой, но и формировать трехмерную картину. По остальным функциям Xaver 800 похож на Xaver 400.
Для использования с изделиями Xaver 100 и 400 предлагается система управления Xavernet. Это особый планшетный компьютер со средствами связи, позволяющий объединять стеновизоры в сеть и использовать их совместно силами одного оператора. Xavernet позволяет быстро развернуть целый комплекс наблюдения, повышающий ситуационную осведомленность подразделения.
Отечественные изделия
Ввиду интереса со стороны различных служб и организаций российские предприятия начали разработку собственных стеновизоров, и некоторые такие приборы уже присутствуют на рынке. Часть их дошла до эксплуатации в силовых структурах и получает хорошие отзывы.
В качестве примера можно привести изделия компании «Логис-Геотех». В каталоге ее продукции имеется ручной радар-обнаружитель РО-900 – аналог израильского Xaver 100 с похожим форм-фактором. Это компактный и легкий прибор с возможностью обнаружения людей за различными материалами на дальностях не менее 15 м. В режиме георадара РО-900 «просвечивает» не менее 500 мм грунта.
Выпускается двухканальный прибор РО-400/2D, выполненный в виде соединенных пульта управления и антенного блока. При необходимости они могут разноситься на расстояние до 50 м и соединяться кабелем. РО-400/2D работает на дальностях не менее 21 м за 600-мм стеной. В режиме георадара глубина действия достигает 5 м.
Московское предприятие «Меркурий-Про» собирает стеновизоры серии «Данник» разработки НПО «Спецтехника и связь». Представлены два изделия в переносном и портативном исполнении – аналоги РО-900 и РО-400/2D или Xaver 100 и Xaver 400. Целью этих проектов, как утверждалось ранее, было освоение передовых технологий и создание устройств, способных составить конкуренцию иностранной продукции.
Стеновизоры на вооружении
Радары-обнаружители «чрезстенного видения» предназначаются для различных спецподразделений из состава вооруженных сил или силовых структур. Также такие приборы могут быть интересны спасателям. Зарубежные силовики достаточно давно начали освоение стеновизоров, а несколько лет назад аналогичный процесс начался в нашей стране.
Так, в 2014 г. министерство внутренних дел разместило заказ на 36 стеновизоров двух моделей из линейки «Данник». Общая стоимость закупок превысила 60 млн рублей. Соответствующий контракт был заключен в сентябре 2014 г. В установленные сроки заказчик получил требуемые приборы. Какое подразделение получило стеновизоры – не уточнялось.
В ноябре 2016 г. стало известно о завершении испытаний стеновизора РО-900 специалистами Росгвардии. В ближайшее время ожидался крупный заказ на поставку таких приборов. Первые поставки состоялись в следующем 2017 г. Кому предназначались стеновизоры – вновь не называлось.
В ноябре прошлого года новое оснащение получил спецотряд «Сатурн» Федеральной службы исполнения наказаний. Эта организация предпочла зарубежную технику и закупила радары-обнаружители Xaver 400. По всей видимости, специалистов ФСИН заинтересовало выгодное сочетание малых габаритов и всех доступных функций.
Перспективное направление
Стеновизоры позволяют вести наблюдение через различные преграды. Это резко повышает ситуационную осведомленность подразделения и положительно сказывается на эффективности его работы. Преимущества такой аппаратуры очевидны, и потому спецподразделения разных стран стремятся получить ее в свое распоряжение.
Интерес со стороны заказчиков является стимулом для производителей, что приводит к появлению новых конструкций – с теми или иными отличиями и преимуществами. Современные конструкции не лишены некоторых недостатков, и разработчики стараются улучшать их и внедрять новые решения. Следует ожидать, что в будущем количество стеновизоров на рынке увеличится, а параллельно будет расти численность их эксплуатантов.
Wi-Vi: как видеть сквозь стены и отслеживать перемещения людей по сигналу Wi-Fi
В фантастических фильмах иногда показывают установки, позволяющие видеть людей за стенами и укрытиями. Благодаря усилиям специалистов Лаборатории искусственного интеллекта Массачусетского технологического института такая возможность понемногу становится реальностью. Речь не о тепловизорах и не о рентгене. Определить число людей в помещении за стеной или закрытой дверью теперь помогает обычный Wi-Fi.
Возможность обнаружить человека за непрозрачной преградой всегда интересовала военных, службы специального назначения и спасателей. Дальше всех продвинулась компания Camero-Tech, представив в последние годы несколько серийных вариантов такого оборудования.
Каждый из этих приборов работал по принципу радара. Изучаемая зона освещалась электромагнитными волнами той длины, которая позволяла проникать сквозь препятствия. По характеру их отражения судили о количестве объектов на пути распространения радиоволн, их скорости и направлении перемещения.
Такие методы уже применяются спецслужбами, но ещё не позволяют достичь желаемого результата. Приборы дорогие и сложные, крупногабаритные либо малоэффективные. но главная проблема даже не в этом. Малоподвижные цели (например, заложников) так практически не видно, а сам факт радиотехнической разведки становится явным и может выдать оперативную группу с головой. Конечно, в демо-роликах всё проходит идеально.
Профессор кафедры электротехники и компьютерных наук Дина Катаби (Dina Katabi) и её аспирант Фадел Адиб (Fadel Adib) пошли немного другим путём и приблизились к решению одной из двух ключевых проблем. В созданном ими устройстве используется широко распространённый диапазон Wi-Fi, на слабое повышение активности в котором вряд ли кто-то отреагирует.
В стандарте IEEE 802.11 выделяется четырнадцать каналов с длиной волны от 121 до 124 мм. Дециметровый диапазон и типичная мощность до ста милливатт приводят к тому, что качество связи в значительной степени зависит от наличия любых преград на пути распространения сигнала. Заметное влияние оказывает перемещение людей, что и используется в данном случае.
В реальных условиях практически не встречаются сплошные стены. В них есть пустоты, стыки, технологические отверстия и штробы, поэтому слабый сигнал Wi-Fi проходит даже через преграды, которые внешне кажутся монолитными.
В устройстве Wi-Vi (аббревиатура от Wireless Vision) маломощный сигнал излучается в противофазе одновременно двумя антеннами. Отражения радиоволн регистрируются одним приёмником. Основная доля отражений возникает от стен и других неподвижных объектов внутри исследуемого помещения. Такие радиоволны приходят одновременно и взаимно гасятся, а оставшийся минимальный шум отфильтровывается программным способом. В итоге учитываются только радиоволны, отразившиеся от движущихся объектов – людей.
Приведённый ролик демонстрирует не только возможность определить присутствие людей в зоне действия источника сигнала Wi-Fi, но и узнать направление их движения. Когда человек удаляется от размещённого за стеной прибора, возникает доплеровское смещение, меняется угол отражения радиоволн и график уходит вниз. Соответственно движение в направлении антенны вызывает резкий подъём на графике, а топтание на месте отмечается слабыми всплесками в районе фонового уровня от статичного окружения.
Раньше подобных результатов удавалось достичь только с помощью массива разнесённых по большой площади антенн, индивидуальных приёмников для каждой и сложных алгоритмов обработки.
Прототип Wi-Vi использует только две антенны и один приёмник, что в разы уменьшает габариты и стоимость прибора. По словам разработчиков, с помощью первой версии устройства уже можно отслеживать перемещение за стеной как отдельных людей, так и группы численностью до трёх человек.
Впервые технология Wi-Vi была представлена на проходившей в Гонконге конференции SIGCOMM. В качестве примеров практического использования докладчиками приводились сценарии работы поисково-спасательных команд, выявление засады сотрудниками полиции, а также оценка сил противника и поиск заложников антитеррористическими подразделениями.
К похожей концепции пришли в прошлом году и в университетском колледже Лондона. Созданный там прототип Wi-Fi-сканера примечателен тем, что никак не выдаёт самого факта проведения разведки. Это пассивное устройство, анализирующее изменение характеристик сигнала на частоте 2,4 ГГц от изначально работающих точек доступа Wi-Fi.
Есть у описываемых технологий и совершенно другие потенциальные сферы применения. Например, на их основе можно создавать системы постоянного подсчёта количества людей в общественном месте и регулировать его работу. Появляется возможность автоматически изменять параметры работы климатической системы и вентиляции, скорость движения эскалаторов, частоту следования транспорта, своевременно получать сообщения о потребности в дополнительном персонале и применять другие схемы адаптивного управления.
Камеры нового поколения смогут видеть сквозь стены
А вам нравится камера на вашем новеньком смартфоне? Она может определять лицо на фотографии и снимать видео в режиме slow-motion в высочайшем разрешении. Но эти технологические прорывы — лишь начало большой революции, которая разворачивается у нас на глазах. Последние исследования в области камер отходят от увеличения числа мегапикселей в пользу слияния данных камер с вычислительной мощностью. И здесь имеется в виду не обработка в стиле Photoshop, когда на изображение накладываются эффекты и фильтры, а скорее новый подход, когда поступающие данные вообще не похожи на изображение. Изображением они становятся после серии вычислительных манипуляций, которые часто связаны со сложной математикой и моделированием того, как свет проходит через сцену или камеру.
Дополнительный уровень вычислительной обработки магически освобождает нас от цепочек обычных методов визуализации. В один прекрасный день нам больше не будут нужны камеры в обычном смысле. Вместо этого мы будем использовать световые детекторы, которые еще несколько лет назад никто даже и не рассматривал для создания изображений. И они будут способны на удивительные вещи: видеть через туман, заглядывать внутрь человеческого тела и даже видеть сквозь стены.
Однопиксельные камеры
Среди любопытных примеров — однопиксельная камера, которая опирается на совершенно простой принцип. Стандартные камеры используют множество пикселей (крошечных чувствительных элементов) для захвата сцены, которая освещена одним источником света (в большинстве случаев). Но можно сделать и наоборот: улавливать информацию из множества источников света с помощью одного пикселя.
Для этого вам нужен контролируемый источник света, даже простой проектор данных, который освещает сцену одним пятном или выдает серию разных паттернов. Для каждого пятна освещения или паттерна можно измерить количество отраженного света и суммировать его, создав конечное изображение.
Очевидно, недостаток такой фотосъемки заключается в том, что вам придется передать множество освещенных пятен или паттернов, чтобы создать одно изображение (обычная камера сделает это одним щелчком затвора). Но такая форма визуализации позволит создать изображение, которое камеры создать не смогут, например, в длинах волн света за пределами видимого спектра, которые не смогут уловить обычные детекторы камер.
Эти камеры можно использовать для создания фотографий через туман или густой падающий снег. Или они могут имитировать глаза некоторых животных и автоматически увеличивать разрешение изображения (количество деталей, которое оно захватывает) в зависимости от того, что находится на сцене.
Можно даже поймать изображения из частиц света, которые никогда не взаимодействовали с объектом, который мы хотим сфотографировать. Таким образом можно было бы использовать идею «квантовой запутанности» — две частицы могут быть запутаны таким образом, что происходящее с одной мгновенно будет отражаться на другой частице, даже если они находятся на большом расстоянии друг от друга. Можно было бы изучать свойства объектов, которые меняются при освещении. Так, можно было бы понять, как выглядит сетчатка глаза в темноте (очевидно, не так, как на свету).
Мультисенсорная визуализация
Однопиксельная визуализация — лишь одно из простых новшеств, которые появляются в новейших камерах и опираются на традиционную концепцию создания изображения. Однако в настоящее время мы наблюдаем рост интереса к системам, которые используют много информации, в то время как традиционные методы собирают лишь небольшую ее часть.
Именно здесь мы могли бы использовать мультисенсорные подходы, которые включают множество разных детекторов, направленных на одну сцену. Телескоп Хаббла был хорошим примером того, что это работает, создав снимки из сочетания множества снимков, сделанных на разной длине волны. Но сегодня вы можете купить коммерческий вариант такой технологии, например, воплощенный в камере Lytro, которая собирает информацию об интенсивности света и направлении на одном датчике, а затем производит снимки, которые можно перефокусировать уже после съемки.
Камера следующего поколения, вероятно, будет похожа на камеру Light L16, которая оснащена новейшими технологиями на основе более десятка разных датчиков. Их данные объединяются при помощи компьютера, чтобы создать 50-мегабайтовое, перефокусируемое и повторно масштабируемое изображение профессионального качества. Сама камера выглядит как интерпретация камеры телефона в стиле Пикассо.
И это пока еще первые шаги к созданию камер нового поколения, которые изменят наше отношение к фотографиям. Ученые работают над проблемой съемки в тумане, сквозь стены и даже планируют заглянуть в тело и мозг человека. Все эти методы полагаются на совмещение изображений с моделями, которые объясняют, как свет движется в разных субстанциях.
Еще один интересный подход основан на том, как искусственный интеллект «учится» распознавать объекты в данных. Эти методы вдохновлены процессом обучения, который протекает в мозге человека, и, вероятнее всего, будут играть крупную роль в будущих системах визуализации.
Технологии с одним фотоном и квантовой визуализацией также постепенно вызревают — они смогут делать снимки в условиях невероятно низкой освещенности и видео с невероятно быстрой скоростью, триллионы кадров в секунду. Этого достаточно, чтобы снять даже сам свет, проходящий через сцену.
Некоторым из этих приложений потребуется еще немного времени для полного развития, но теперь мы знаем, что физика позволяет нам решать эти и другие проблемы с помощью умного сочетания новых технологий и вычислительной изобретательности.
Мой дом уже не крепость: технологии, позволяющие смотреть сквозь стены
Раньше техника, позволяющая следить за людьми сквозь стены, была доступна лишь государственным службам, да и то не всем. Сейчас, благодаря совершенствованию технологий и сопутствующему снижению цен, ситуация меняется.
В начале 2015 года в прессе с подачи USA Today прокатилась волна публикаций о ручном радаре Range-R, применяемом американской полицией и другими государственными службами. Этот аппарат позволяет «видеть сквозь стены». А если точнее, фиксировать движение внутри закрытых помещений. Чувствительность прибора такова, что он способен почувствовать даже дыхание человека, притаившегося где-то в глубине здания за несколькими перегородками.
Существование подобного устройства для многих журналистов, описывающих возможности Range-R, оказалось сюрпризом. Между тем такие радары уже давно массово выпускаются для нужд военных и спецслужб. Они применяются ФБР в операциях по освобождению заложников, пожарными при поиске людей в завалах, Службой федеральных маршалов, отлавливающей беглых преступников, и так далее.
Поэтому не будет удивительным, если завтра подобное оборудование возьмут на вооружение преступники. Следовательно, самое время присмотреться поподробнее к этой технике и ее возможностям.
Есть кто живой?
Категория устройств, к которым относится Range-R, получила название through-thewall sensors (TTWS). Как и большинство других радаров, они «подсвечивают» поле зрения радиоволнами, а потом регистрируют отраженное излучение.
Легко это сделать только в теории. На практике создателям TTWS приходится комбинировать в одном устройстве сразу множество технологий и продвинутых методов обработки данных. А операторам приборов — долго учиться интерпретировать их показания.
Большинство TTWS-радаров работают на частотах от 1 до 10 ГГц — излучение в этом диапазоне относительно неплохо проникает через стены (бетон, дерево, пластик, стекло). Чтобы в этом убедиться, просто посмотрите на обширный список Wi-Fi-сетей, переполняющих эфир в вашем доме или офисе.
Чем выше частота, тем хуже излучение проходит через стены. Но зато тем точнее с его помощью получается оценить размеры и расстояния до объектов. Кроме того, некоторые материалы избирательно поглощают радиоволны в каком-то узком диапазоне. Поэтому продвинутые сканеры обычно умеют перебирать частоту на ходу или использовать сразу широкий участок спектра.
Работа с короткими импульсами позволяет оценить расстояние до объекта по времени прохождения волны туда-обратно. А для регистрации движений используется эффект Доплера: отраженная от движущегося объекта волна чуть-чуть меняет частоту, и это позволяет, например, обнаружить незначительное перемещение грудной клетки при дыхании.
Конечно, у TTWS-устройств есть много ограничений. Самое главное — радиоволны не проникают через металл. Поэтому почувствовать человека в закрытом автомобильном кузове или в доме, обшитом алюминиевым сайдингом, никак не получится. Похожими свойствами обладает и вода, так что мокрый пористый бетон будет довольно эффективной защитой.
Да и вообще, толстый слой бетона или кирпичной кладки здорово ослабляет сигнал. При суммарной толщине стен, разделяющих радар и объект, больше 30 сантиметров разглядеть обычно уже ничего не получается.
Дальность действия большинства устройств составляет 15–20 метров, хотя приборы с большими антеннами и мощным питанием могут «бить» и метров на 70. Двигаться внутри дома может не только человек, но и собака, штора на сквозняке — далеко не всегда объекты удается однозначно различить. Особенно в условиях нехватки времени — стандартный замер занимает примерно минуту.
Большинство радаров выпускают в ручном исполнении. Во время работы их прислоняют к стене дома, чтобы исключить ошибки от тремора рук оператора. Однако бывают ситуации, когда к стене не очень-то и подойдешь, — некоторые модели крепятся на штативах, роботизированных платформах и даже дронах.
Самые простые TTWS просто показывают, есть кто живой (движущийся) в помещении или нет. Более сложные устройства определяют расстояние и направление на объект или объекты в двух или трех измерениях, строят приближенную схему помещения и так далее.
Экспериментальные решения обещают уже намного больше, по крайней мере в лабораторных условиях. Например, подвижная радарная система на базе Wi-Fi-модулей, смонтированная на паре роботов, позволяет создать план неизвестного помещения аж с двухсантиметровой погрешностью. Для серийных устройств это пока фантастика.
Как защититься: лучшая защита от «TTWS-прослушки» — экранированное помещение. Если у вас в доме хорошие толстые железобетонные перекрытия, то и делать ничего не нужно. В противном случае хороши алюминиевый сайдинг или металлизированные обои. Еще можно держать дома нескольких догов — серийные устройства больше трех целей пока не различают.
Этот (не)страшный терагерц
Если вы следите за научно-популярными новостями, то наверняка что-нибудь слышали о терагерцовых детекторах, которые и сквозь стены видят, и бомбы издалека чуют. Публикации подобного рода периодически появляются в Сети после очередного бодрого пресс-релиза какой-нибудь научной лаборатории, в который раз сообщившей о «значительном успехе на пути к…».
Мой дом уже не крепость: технологии, позволяющие смотреть сквозь стены #шпионаж #безопасность
На самом деле терагерцевые радары сегодня успешно прижились только в устройствах для досмотра пассажиров в аэропортах. В этой роли они прославились на публике благодаря способности «раздевать людей», то есть создавать довольно подробную картинку человеческого тела, скрытого под одеждой.
Большинство прочих применений «терагерца» (диапазон 300 ГГц — 10 ТГц) остаются пока в разделе «Научная фантастика». В реальности остается слишком много нерешенных проблем — от затухания сигнала на препятствиях до конструирования компактных источников излучения высокой мощности.
Еще одна городская легенда — заглядывающие через стены инфракрасные камеры. Вопреки распространенному мнению ничего подобного тепловые детекторы не умеют. Даже слой матового стекла или фанерная перегородка непрозрачны для инфракрасного детектора.
Как защититься: снять шапочку из фольги. Или, наоборот, надеть — по вкусу.
И какие вам видятся голоса?
Все, кто хоть раз смотрел фильмы про шпионов, знают, что разговор можно подслушивать издалека, через комнатное стекло. Под действием звуковых колебаний стекло вибрирует, и эти движения можно считывать лазером. В ответ придумали недорогие и эффективные «глушилки», которые крепятся на стекло и генерируют случайные помехи.
Современным шпионам жить становится проще. Они могут узнать содержание разговора в помещении, проанализировав беззвучную видеозапись со случайным фрагментом комнаты в кадре. Общий принцип работы здесь тот же, только в роли мембраны выступает любой восприимчивый к вибрациям объект внутри помещения — пакетик чипсов, поверхность воды в стакане или листья домашнего фикуса.
Стандартные оконные глушилки подобной «звукосъемке» не помешают. Правда, для того, чтобы расшифровать разговор, съемка должна проводиться специальной камерой — со скоростью записи несколько тысяч кадров в секунду (она должна быть выше, чем частота тона голоса).
Впрочем, скоростные камеры проникают в нашу жизнь быстро. Многие современные смартфоны уже умеют снимать видео с повышенной скоростью кадров, позволяющей извлекать ценную информацию (например, могут помочь идентифицировать личности участников разговора).
А в окно заглянуть в наше время совершенно не проблема — благо дроны с каждым днем становятся все дешевле и круче.
Как защититься: штора или жалюзи надежно закроют возможность «видеопрослушивания». Важно только, чтобы занавеска не могла сама выступить в качестве звуковой мембраны. Так что лучше выбирать что-нибудь потяжелее — или закрепить на шторе вышеупомянутую «глушилку».