Классический метод к оцениванию параметров регрессии основан на
Система нормальных уравнений и явный вид ее решения при оценивании методом наименьших квадратов линейной модели парной регрессии
Предположим, что в ходе регрессионного анализа была установлена линейная взаимосвязь между исследуемыми переменными х и у, которая описывается моделью регрессии вида:
В результате оценивания данной эконометрической модели определяются оценки неизвестных коэффициентов. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).
Метод наименьших квадратов позволяет получить такие оценки параметров β0и β1, при которых сумма квадратов отклонений фактических значений результативного признака y от расчетных (теоретических) y˜ минимальна:
В процессе минимизации функции (1) неизвестными являются только значения коэффициентов β0 и β1, потому что значения результативной и факторной переменных известны из наблюдений. Для определения минимума функции двух переменных вычисляются частные производные этой функции по каждому из оцениваемых параметров и приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений для функции (2):

Если разделить обе части каждого уравнения системы на (-2), раскрыть скобки и привести подобные члены, то получим систему нормальных уравнений для функции регрессии вида yi=β0+β1xi:
Если решить данную систему нормальных уравнений, то мы получим искомые оценки неизвестных коэффициентов модели регрессии β0 и β1:
y – среднее значение зависимой переменной;
x – среднее значение независимой переменной;
xy – среднее арифметическое значение произведения зависимой и независимой переменных;
G 2 (x) – дисперсия независимой переменной;
Gcov (x, y) – ковариация между зависимой и независимой переменными.
Таким образом, явный вид решения системы нормальных уравнений может быть записан следующим образом:
Классический метод наименьших квадратов для модели множественной регрессии. Метод Крамера
В общем виде линейную модель множественной регрессии можно записать следующим образом:
где yi – значение i-ой результативной переменной,
x1i…xmi – значения факторных переменных;
β0…βm – неизвестные коэффициенты модели множественной регрессии;
εi – случайные ошибки модели множественной регрессии.
В результате оценивания данной эконометрической модели определяются оценки неизвестных коэффициентов. Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК). Суть метода наименьших квадратов состоит в том, чтобы найти такой вектор β оценок неизвестных коэффициентов модели, при которых сумма квадратов отклонений (остатков) наблюдаемых значений зависимой переменной у от расчётных значений y˜ (рассчитанных на основании построенной модели регрессии) была бы минимальной.
Матричная форма функционала F метода наименьших квадратов:


В процессе минимизации функции (1) неизвестными являются только значения коэффициентов β0…βm, потому что значения результативной и факторных переменных известны из наблюдений. Для определения минимума функции (1) необходимо вычислить частные производные этой функции по каждому из оцениваемых параметров и приравнять их к нулю. Результатом данной процедуры будет стационарная система уравнений для функции (1):

Общий вид стационарной системы уравнений для функции (1):
Решением стационарной системы уравнений будут МНК-оценки неизвестных параметров линейной модели множественной регрессии:
Оценим с помощью метода наименьших квадратов неизвестные параметры линейной модели двухфакторной регрессии:
Чтобы рассчитать оценки неизвестных коэффициентов β0,β1 и β2данной двухфакторной модели регрессии, необходимо минимизировать функционал F вида:
Для определения экстремума функции нескольких переменных, частные производные по этим переменным приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений для модели множественной линейной регрессии с двумя переменными:
В результате элементарных преобразований данной стационарной системы уравнений получим систему нормальных уравнений:
Данная система называется системой нормальных уравнений относительно коэффициентов 
Полученная система нормальных уравнений является квадратной, т. к. количество уравнений равняется количеству неизвестных переменных, поэтому коэффициенты 
Рассмотрим подробнее метод Крамера решения квадратных систем нормальных уравнений.
Единственное решение квадратной системы линейных уравнений определяется по формуле:
где Δ – основной определитель квадратной системы линейных уравнений;
Δj – определитель, полученный из основного определителя путём замены j-го столбца на столбец свободных членов.
При использовании метода Крамера возможно возникновение следующих ситуаций:
1) если основной определитель системы Δ равен нулю и все определители Δj также равны нулю, то данная система имеет бесконечное множество решений;
2) если основной определитель системы Δ равен нулю и хотя бы один из определителей Δj также равен нулю, то система решений не имеет.
Ответы на тесты по эконометрике
Q=………..min соответствует методу наименьших квадратов
Автокорреляция — это корреляционная зависимость уровней ряда от предыдущих значений.
Автокорреляция имеется когда каждое следующее значение остатков
Аддитивная модель временного ряда имеет вид: Y=T+S+E
Атрибутивная переменная может употребляться, когда: независимая переменная качественна;
В каких пределах изменяется коэффициент детерминанта: от 0 до 1.
В каком случае модель считается адекватной Fрасч>Fтабл
В каком случае рекомендуется применять для моделирования показателей с увелич. ростом параболу если относительная величина…неограниченно
В результате автокорреляции имеем неэффективные оценки параметров
В хорошо подобранной модели остатки должны иметь нормальный закон
В эконометрическом анализе Xj рассматриваются как случайные величины
Величина доверительного интервала позволяет установить предположение о том, что: интервал содержит оценку параметра неизвестного.
Величина рассчитанная по формуле r=…является оценкой парного коэф. Корреляции
Внутренне нелинейная регрессия — это истинно нелинейная регрессия, которая не может быть приведена к линейной регрессии преобразованием переменных и введением новых переменных.
Временной ряд — это последовательность значений признака (результативного переменного), принимаемых в течение последовательных моментов времени или периодов.
Выберете авторегрессионную модель Уt=a+b0x1+Ɣyt-1+ƹt
Выберете модель с лагами Уt= a+b0x1…….(самая длинная формула)
Выборочное значение Rxy не > 1, |R| : rxy=Ca(x;y) разделить на корень Var(x)*Var(y): коэффициент. корреляции
Какая функция используется при моделировании моделей с постоянным ростом степенная
Какие точки исключаются из временного ряда процедурой сглаживания и в начале, и в конце.
Какое из уравнений регрессии является степенным y=a˳aͯ¹a
Классический метод к оцениванию параметров регрессии основан на: – метод наименьших квадратов (МНК)
Количество степеней свободы для t статистики при проверки значимости параметров регрессии из 35 наблюдений и 3 независимых переменных 31;
Количество степеней свободы знаменателя F-статистики в регрессии из 50 наблюдений и 4 независимых переменных: 45
Компоненты вектора Ei имеют нормальный закон
Корреляция — стохастическая зависимость, являющаяся обобщением строго детерминированной функциональной зависимости посредством включения вероятностной (случайной) компоненты.
Коэффициент автокорреляции: характеризует тесноту линейной связи текущего и предстоящего уровней ряда
Коэффициент детерминации — показатель тесноты стохастической связи в общем случае нелинейной регрессии
Коэффициент детерминации – это величина, которая характеризует связь между зависимыми и независимыми переменными.
Коэффициент детерминации – это квадрат множественного коэффициента корреляции
Коэффициент детерминации – это: величина, которая характеризует связь между независимой и зависимой (зависящей) переменными;
Коэффициент детерминации R показывает долю вариаций зависимой переменной y, объяснимую влиянием факторов, включаемых в модель.
Коэффициент детерминации изменяется в пределах: – от 0 до 1
Коэффициент доверия — это коэффициент, который связывает линейной зависимостью предельную и среднюю ошибки, выясняет смысл предельной ошибки, характеризующей точность оценки, и является аргументом распределения (чаще всего, интеграла вероятностей). Именно эта вероятность и есть степень надежности оценки.
Коэффициент доверия (нормированное отклонение) — результат деления отклонения от среднего на стандартное отклонение, содержательно характеризует степень надежности (уверенности) полученной оценки.
Коэффициент корелляции Rxy используется для определения полноты связи X и Y.
Коэффициент корелляции равный 0 означает, что: –отсутствует линейная связь.
Коэффициент корреляции используется для: определения тесноты связи между случайными величинами X и Y;
Коэффициент корреляции рассчитывается для измерения степени линейной взаимосвязи между двумя случайными переменными.
Коэффициент линейной корреляции — показатель тесноты стохастической связи между фактором и результатом в случае линейной регрессии.
Коэффициент регрессии — коэффициент при факторной переменной в модели линейной регрессии.
Коэффициент регрессии b показывает: на сколько единиц увеличивается y, если x увеличивается на 1.
Коэффициент эластичности измеряется в: неизмеримая величина.
Критерий Дарвина-Чотсона применяется для: – отбора факторов в модель; или – определения автокорреляции в остатках
Критерий Стьюдента — проверка значимости отдельных коэффициентов регрессии и значимости коэффициента корреляции.
Критерий Фишера показывает статистическую значимость модели в целом на основе совокупной достоверности всех ее коэффициентов;
Лаговые переменные это значение зависимых переменных за предшествующий период времени
Модель в целом статистически значима, если Fрасч > Fтабл.
Модель идентифицирована, если: – число параметров структурной модели равно числу параметров приведён. формы модели.
Модель неидентифицирована, если: – число приведён. коэф . больше числа структурных коэф.
Модель сверхидентифицирована, если: число приведён. коэф. меньше числа структурных коэф
Мультипликативная модель временного ряда имеет вид: – Y=T*S*E
Мультипликативная модель временного ряда строится, если: амплитуда сезонных колебаний возрастает или уменьшается
На основе поквартальных данных…значения 7-1 квартал, 9-2квартал и 11-3квартал …-5
Неправильный выбор функциональной формы или объясняющих переменных называется ошибками спецификации
Несмещённость оценки параметра регрессии, полученной по МНК, означает: – что она характеризуется наименьшей дисперсией.
Одной из проблем которая может возникнуть в многофакторной регрессии и никогда не бывает в парной регрессии, является корреляция между независимыми переменными
От чего зависит количество точек, исключаемых из временного ряда в результате сглаживания: от применяемого метода сглаживания.
Отметьте основные виды ошибок спецификации: отбрасывание значимой переменной; добавление незначимой переменной;
Оценки коэффициентов парной регрессии является несмещённым, если: математические ожидания остатков =0.
Оценки параметров парной линейной регрессии находятся по формуле b= Cov(x;y)/Var(x);a=y¯ bx¯
Оценки параметров регрессии являются несмещенными, если Математическое ожидание остатков равно 0
Оценки парной регрессии явл. эффективными, если: оценка обладают наименьшей дисперсией по сравнению с другими оценками
При наличии гетероскедастичности следует применять: – обобщённый МНК
При проверке значимости одновременно всех параметров регрессии используется: F-тест.
Применим ли метод наименьших квадратов для расчетов параметров показательной зависимости применим после ее приведения
Применим ли метод наименьших квадратов(МНК) для расчёта параметров нелинейных моделей? применим после её специального приведения к линейному виду
С помощью какого критерия оценивается значимость коэффициента регрессии T стьюдента
С увеличением числа объясняющих переменных скоррестированный коэффициент детерминации: – увеличивается.
Связь между индексом множественной детерминации R² и скорректированным индексом множественной детерминации Ȓ² есть
Скорректиров. коэф. детерминации: – больше обычного коэф. детерминации
Стандартизованный коэффициент уравнения регрессии Ƀk показывает на сколько % изменится результирующий показатель у при изменении хi на 1%при неизмененном среднем уровне других факторов
Стандартный коэффициент уравнения регрессии: показывает на сколько 1 изменится y при изменении фактора xk на 1 при сохранении др.
Суть коэф. детерминации r 2 xy состоит в следующем: – характеризует долю дисперсии результативного признака y объясняем. регресс., в общей дисперсии результативного признака.
Табличные значения Фишера (F) зависят от доверительной вероятности и от числа включённых факторов и от длины исходного ряда (от доверительной вероятности p и числа степеней свободы дисперсий f1 и f2)..
Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, идентифицируемо если D+1=H
Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, НЕидентифицируемо если D+1 H
Уравнение идентифицировано, если: – D+1=H
Уравнение неидентифицировано, если: – D+1
Уравнение сверхидентифицировано, если: – D+1>H
Фиктивные переменные – это: атрибутивные признаки (например, как профессия, пол, образование), которым придали цифровые метки;
Формула t= rxy….используется для проверки существенности коэффициента корреляции
Частный F-критерий: – оценивает значимость уравнения регрессии в целом
Число степеней свободы для факторной суммы квадратов в линейной модели множественной регрессии равно: m;
Что показывает коэффициент наклона – на сколько единиц изменится у, если х изменился на единицу,
Что показывает коэффициент. абсолютного роста на сколько единиц изменится у, если х изменился на единицу
Экзогенная переменная – это независимая переменная или фактор-Х.
Экзогенные переменные — это переменные, которые определяются вне системы и являются независимыми
Экзогенные переменные – это предопределенные переменные, влияющие на зависимые переменные (Эндогенные переменные), но не зависящие от них, обозначаются через х
Эластичность измеряется единица измерения фактора…показателя
Эндогенные переменные – это: зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через у
Определения
T-отношение (t-критерий) — отношение оценки коэффициента, полученной с помощью МНК, к величине стандартной ошибки оцениваемой величины.
Аддитивная модель временного ряда – это модель, в которой временной ряд представлен как сумма перечисленных компонент.
Критерий Фишера — способ статистической проверки значимости уравнения регрессии, при котором расчетное (фактическое) значение F-отношения сравнивается с его критическим (теоретическим) значением.
Линейная регрессия — это связь (регрессия), которая представлена уравнением прямой линии и выражает простейшую линейную зависимость.
Метод инструментальных переменных — это разновидность МНК. Используется для оценки параметров моделей, описываемых несколькими уравнениями. Главное свойство — частичная замена непригодной объясняющей переменной на такую переменную, которая некоррелированна со случайным членом. Эта замещающая переменная называется инструментальной и приводит к получению состоятельных оценок параметров.
Метод наименьших квадратов (МНК) — способ приближенного нахождения (оценивания) неизвестных коэффициентов (параметров) регрессии. Этот метод основан на требовании минимизации суммы квадратов отклонений значений результата, рассчитанных по уравнению регрессии, и истинных (наблюденных) значений результата.
Множественная линейная регрессия — это множественная регрессия, представляющая линейную связь по каждому фактору.
Множественная регрессия — регрессия с двумя и более факторными переменными.
Модель идентифицируемая — модель, в которой все структурные коэффициенты однозначно определяются по коэффициентам приведенной формы модели.
Модель рекурсивных уравнений — модель, которая содержит зависимые переменные (результативные) одних уравнений в роли фактора, оказываясь в правой части других уравнений.
Мультипликативная модель – модель, в которой временной ряд представлен как произведение перечисленных компонент.
Несмещенная оценка — оценка, среднее которой равно самой оцениваемой величине.
Нулевая гипотеза — предположение о том, что результат не зависит от фактора (коэффициент регрессии равен нулю).
Обобщенный метод наименьших квадратов (ОМНК) — метод, который не требует постоянства дисперсии (гомоскедастичности) остатков, но предполагает пропорциональность остатков общему множителю (дисперсии). Таким образом, это взвешенный МНК.
Объясненная дисперсия — показатель вариации результата, обусловленной регрессией.
Объясняемая (результативная) переменная — переменная, которая статистически зависит от факторной переменной, или объясняющей (регрессора).
Остаточная дисперсия — необъясненная дисперсия, которая показывает вариацию результата под влиянием всех прочих факторов, неучтенных регрессией.
Предопределенные переменные — это экзогенные переменные системы и лаговые эндогенные переменные системы.
Приведенная форма системы — форма, которая, в отличие от структурной, уже содержит одни только линейно зависящие от экзогенных переменных эндогенные переменные. Внешне ничем не отличается от системы независимых уравнений.
Расчетное значение F-отношения — значение, которое получают делением объясненной дисперсии на 1 степень свободы на остаточную дисперсию на 1 степень свободы.
Регрессия (зависимость) — это усредненная (сглаженная), т.е. свободная от случайных мелкомасштабных колебаний (флуктуаций), квазидетерминированная связь между объясняемой переменной (переменными) и объясняющей переменной (переменными). Эта связь выражается формулами, которые характеризуют функциональную зависимость и не содержат явно стохастических (случайных) переменных, которые свое влияние теперь оказывают как результирующее воздействие, принимающее вид чисто функциональной зависимости.
Регрессор (объясняющая переменная, факторная переменная) — это независимая переменная, статистически связанная с результирующей переменной. Характер этой связи и влияние изменения (вариации) регрессора на результат исследуются в эконометрике.
Система взаимосвязанных уравнений — это система одновременных или взаимозависимых уравнений. В ней одни и те же переменные выступают одновременно как зависимые в одних уравнениях и в то же время независимые в других. Это структурная форма системы уравнений. К ней неприменим МНК.
Система внешне не связанных между собой уравнений — система, которая характеризуется наличием одних только корреляций между остатками (ошибками) в разных уравнениях системы.
Случайный остаток (отклонение) — это чисто случайный процесс в виде мелкомасштабных колебаний, не содержащий уже детерминированной компоненты, которая имеется в регрессии.
Состоятельные оценки — оценки, которые позволяют эффективно применять доверительные интервалы, когда вероятность получения оценки на заданном расстоянии от истинного значения параметра становится близка к 1, а точность самих оценок увеличивается с ростом объема выборки.
Спецификация модели — определение существенных факторов и выявление мультиколлинеарности.
Стандартная ошибка — среднеквадратичное (стандартное) отклонение. Оно связано со средней ошибкой и коэффициентом доверия.
Степени свободы — это величины, характеризующие число независимых параметров и необходимые для нахождения по таблицам распределений их критических значений.
Тренд — основная тенденция развития, плавная устойчивая закономерность изменения уровней ряда.
Уровень значимости — величина, показывающая, какова вероятность ошибочного вывода при проверке статистической гипотезы по статистическому критерию.
Фиктивные переменные — это переменные, которые отражают сезонные компоненты ряда для какого-либо одного периода.
Эконометрическая модель — это уравнение или система уравнений, особым образом представляющие зависимость (зависимости) между результатом и факторами. В основе эконометрической модели лежит разбиение сложной и малопонятной зависимости между результатом и факторами на сумму двух следующих компонентов: регрессию (регрессионная компонента) и случайный (флуктуационный) остаток. Другой класс эконометрических моделей образует временные ряды.
Эффективность оценки — это свойство оценки обладать наименьшей дисперсией из всех возможных.












