Комплексная оценка оксидативного стресса 7 параметров

Оксидативный стресс (7 показателей)

Комплексная оценка оксидативного стресса 7 параметров. Смотреть фото Комплексная оценка оксидативного стресса 7 параметров. Смотреть картинку Комплексная оценка оксидативного стресса 7 параметров. Картинка про Комплексная оценка оксидативного стресса 7 параметров. Фото Комплексная оценка оксидативного стресса 7 параметров

Комплексная оценка оксидативного стресса

Анализ крови на Оксидативный стресс, в ходе которого измеряется 7 показателей – уровень содержания малонового диальдегида, общего коэнзима Q10 (убихинона), альфа-токоферола (витамина Е), аскорбиновой кислоты (витамина C), ретинола (витамина A), бета-каротина (транс-формы), свободного глутатиона (восстановленного – GSH), проводится для комплексного определения степени окислительного стресса и интоксикационного синдрома, выявления дефицита в организме пациента антиоксидантов и оценивания риска возникновения ассоциированных с ним патологий.

Комплексная оценка оксидативного стресса 7 параметров. Смотреть фото Комплексная оценка оксидативного стресса 7 параметров. Смотреть картинку Комплексная оценка оксидативного стресса 7 параметров. Картинка про Комплексная оценка оксидативного стресса 7 параметров. Фото Комплексная оценка оксидативного стресса 7 параметровОксидативный стресс представляет собой патологическое состояние, при котором происходит повреждение клеток вследствие окисления их компонентов. Это явление приводит к образованию неустойчивых атомов, которые атакуют молекулы и нарушают их структуру – свободных радикалов.

В организме человека значительная часть кислорода (около 95 %), образующаяся в процессе тканевого дыхания, превращается в воду, а 5% принимает активную форму. При нормальных условиях такое соотношение не представляет опасности, однако при наличии каких-либо серьезных патологических процессов количество химически активных молекул, содержащих кислород, увеличивается – это приводит к тому, что защитная система, блокирующая образование свободных радикалов, не способна справиться и развивается окислительный стресс. Его «запуску» способствуют неблагоприятные экологические условия, чрезмерное физическое напряжение, недоедание, вредные привычки, излишняя инсоляция, дефицит антиоксидантов.

Для установления степени оксидативного стресса и выбора тактики терапевтических мероприятий используется комплексное лабораторное исследование крови, включающее определение семи показателей, обеспечивающих защиту человеческого организма от свободных радикалов:

Показания для проведения анализа

Комплексное оценивание оксидативного стресса необходимо при:

Правила подготовки к анализу

Для получения достоверных результатов накануне исследования пациент должен исключить:

Метод исследования

Для измерения уровня содержания компонентов антиоксидантной системы используют образец венозной крови, который отбирают в условиях лабораторного центра в утренние часы, натощак. Анализ выполняется с помощью метода высокоэффективной жидкостной хроматографии.

Расшифровка анализа

Таблица №1. Интерпретация показателей оксидативного стресса.

Источник

Комплексная оценка оксидативного стресса

Адрес лаборатории: Москва, ул. Беговая, д. 7 стр. 2

+ Записаться на прием

Окислительный, или оксидативный, стресс возникает вследствие нарушения обмена веществ, провоцирующих производство активных форм кислорода (АФК). В нормальном состоянии свободных радикалов в сперме содержится примерно столько же, сколько и антиоксидантов. В результате образования большого количества свободных радикалов разрушаются клеточные мембраны, повреждается белковая оболочка и ДНК, происходят патологические изменения в сперматозоидах.

Избыток свободных радикалов негативно влияет на состояние спермы:

Оксидативный стресс может лежать в основе таких патологий спермы, как тератозооспермия, олигоспермия, астенозооспермия. Повышение уровня АФК наблюдается и при воспалительных процессах, но в данном случае он является следствием и снижается по мере успешного лечения.

Повышение уровня свободных радикалов в сперме может возникать двумя способами: перепроизводство АФК и недостаточное количество антиоксидантов, которые могут нейтрализовать радикалы. Свободные радикалы могут как вырабатываться самим организмом вследствие патологических процессов, так и попадать в него извне вместе c пищей, бедной антиоксидантами, в результате курения, приема сильнодействующих препаратов.

Анализ на оксидативный стресс (ROS-тест) проводится путем определения количества свободных радикалов. Если констатируется значительное превышение АФК над антиоксидантами, говорят об оксидативном стрессе.

Общая информация об исследовании

Комплексная оценка оксидативного стресса включает в себя исследование образца спермы с целью изучения семи показателей: коэнзим Q10, бета-каротин, витамины Е и С, глутатион, малоновый диальдегид, 8-ОН-дезоксигуанозин.

Анализ на оксидативный стресс может выполняться на нативном эякуляте, отмытых сперматозоидах и семенной плазме.

Оценка оксидативного стресса только констатирует текущую ситуацию без указания причин.

Показания к процедуре

Комплексная оценка оксидативного стресса 7 параметров. Смотреть фото Комплексная оценка оксидативного стресса 7 параметров. Смотреть картинку Комплексная оценка оксидативного стресса 7 параметров. Картинка про Комплексная оценка оксидативного стресса 7 параметров. Фото Комплексная оценка оксидативного стресса 7 параметров

Комплексная оценка оксидативного стресса проводится при диагностике следующих состояний:

Подготовка к исследованию

Перед тем как сдать анализ на оксидативный стресс, необходимо придерживаться следующих правил:

Уменьшить количество свободных радикалов и повысить антиоксидантную защиту организма можно при помощи изменения образа жизни, сбалансированной диеты и приема антиоксидантов строго по назначению лечащего врача.

Источник

Комплексная оценка оксидативного стресса (коэнзим Q10, витамин Е, витамин С, бета-каротин, глутатион, малоновый диальдегид, 8-ОН-дезоксигуанозин) 7 параметров в крови (ВЭЖХ, ГХ-МС)

Описание

Комплексная оценка оксидативного стресса — это комплексный биохимический анализ крови, включающий в себя 7 показателей, таких как: коэнзим Q10, витамины Е и С, бета каротин, глутатион, малоновый диальдегид, 8-ОН-дезоксигуанозин.

Анализ проводят для оценки баланса этих соединений в организме, а также для контроля за лечением пациента.

Коэнзим Q10 — «убихинон», или «вездесущий хинон», участвует в синтезе высокоэнергетического соединения — аденозинтрифосфата (АТФ), является одним из основных компонентов дыхательной цепи митохондрий и обеспечивающий энергетический обмен клеток, также он выполняет функции антиоксиданта и стабилизатора мембран клеток. Он образуется во всех клетках организма. Во время интенсивно протекающих окислительно-восстановительных процессов вблизи от митохондриальных мембран, образуются эндогенные свободные радикалы в виде активных форм кислорода (супероксид). Накопление последних в миокарде, сосудистых клетках — играет важную роль в процессах старения и патогенезе широкого спектра заболеваний.

Уровень коэнзима Q10 в крови зависит от концентрации холестерина и триглицеридов, пола, возраста, а также употребление алкоголя. Его дефицит в организме также связан с риском развития гипертонической болезни, хронической сердечной недостаточности, нейродегенеративных заболеваниий, а также статинассоциированной миопатии.

Коэнзим Q поступает в организм как с пищей, так и синтезируется из аминокислоты тирозина с участием витаминов В2, В3, В6, В12, фолиевой и пантотеновой кислот. При недостатке любого из витаминов и микроэлементов может возникнуть дефицит коэнзима Q10.

Основные источники коэнзима Q10
Основными источниками алиментарного коэнзима Q10 являются мясо и курица, взрослый мужчина в сутки потребляет около 3–5 мг. Следует отметить, что алиментарный путь поступления коэнзима Q10 играет значительно более важную роль в организме больного человека. В первую очередь это касается заболеваний, в патогенезе которых важны нарушения энергетического обмена. Назначение пероральных препаратов коэнзима Q10 с контролем его концентрации в крови — один из перспективных методов лечения этой группы заболеваний.

Коэнзим Q10 медленно выводится из организма. Так, время его полувыведения составляет 34 часа. У пациентов с заболеваниями гепатобилиарной системы (вирусные гепатиты, желчнокаменная болезнь), экскреция коэнзима Q10 может быть нарушена.

Витамин Е (токоферол) — жирорастворимый витамин, антиоксидант, смесь из 4 токоферолов и 4 токотриенолов.

Витамин С (аскорбиновая кислота) — является незаменимым питательным элементом для человека. Это антиоксидант, а также важный кофермент многих биохимических реакций, протекающих в живом организме. Участвует в окислительно-восстановительных процессах, необходим в синтезе гормонов, регулирует проницаемость капилляров и свёртываемость крови, оказывает противовоспалительное действие, уменьшает аллергические реакции, помогает справиться с последствиями стресса и усиливает устойчивость организма к инфекциям. Витамин С помогает организму лучше усваивать железо и кальций, в то же время выводит свинец, ртуть и медь, действует комплексно на устойчивость других витаминов в человеческом организме. Аскорбиновая кислота не образуется в организме человека, а поступает только с пищей. Выводится почками, через кишечник, с потом, грудным молоком. При несбалансированном и неполноценном питании человек испытывает дефицит в аскорбиновой кислоте. Курение и употребление этанола ускоряют разрушение аскорбиновой кислоты.

Клинические признаки дефицита витамина С
Клинические проявления дефицита витамина С: общая слабость и утомляемость, хрупкость кровеносных сосудов, кровоточивость дёсен, расшатывание и выпадение зубов, носовые кровотечения, бледность и сухость кожи, замедленное восстановление тканей после физических повреждений (раны, синяки), снижение иммунитета, вялость, быстрая утомляемость, ослабление мышечного тонуса, ревматоидные боли в крестце и конечностях, суставная боль, выпадение волос, ломкость ногтей и сухость кожи.

Витамин А (бета-каротин)предшественник группы «ретиноидов»
Витамин А — является предшественником группы «ретиноидов», к которой принадлежат ретиналь и ретиноевая кислота. Ретинол образуется при окислительном расщеплении провитамина β–каротина. Витамин А и β–каротин необходимы для нормального зрения, роста и дифференциации эпителиальной ткани, роста костей, развития плода, играет важную роль в иммунной защите организма, в процессе синтеза половых гормонов, в формировании костей и зубов, жировых отложений, а также замедляет процесс старения. Витамин А обеспечивает нормальное эмбриональное развитие, питание зародыша и уменьшает риск рождения ребенка с маленьким весом, принимает участие в синтезе гормонов (включая прогестерон), сперматогенезе, является антагонистом гормона щитовидной железы — тироксина. Недостаток витамина может вызвать нарушение менструального цикла у женщин и бесплодие у мужчин.

Клинические проявления недостатка витамина А
При наличии недостатка витамина А развивается куриная слепота (значительное снижение адаптации к темноте), поражения кожи и слизистых оболочек (фолликулярный гиперкератоз, изъязвление), ксерофтальмия (сухость роговой оболочки глаз), частые инфекционные заболевания, конъюнктивиты, отставание в физическом развитии и росте, нарушение половых функций, бесплодие.

Исследование на витамин А назначается для определения недостатка и переизбытка этого элемента, а также хронических заболеваний, обусловленных отсутствием его в организме. Исследование является общеклиническим.

Глутатион — трипептид, образованный остатками трех аминокислот: глутаминовой, цистеина и глицина.

Глутатион синтезируется печенью. В печени находятся самые большие его запасы, здесь он нейтрализует токсичные вещества, которые потом выводятся с желчью.

Он защищает иммунные клетки организма, в частности, лимфоциты, и поддерживает целостность эритроцитов. Если глутатиона в организме недостаточно, лимфоциты вынуждены принимать все на себя, и могут погибнуть, вызвав серьезные нарушения в функционировании иммунной системы.

Функции глутатиона
Глутатион защищает клетку от свободных радикалов, определяет окислительно-восстановительный статус внутриклеточной среды. Серосодержащие группы (SH) определяют функцию антиоксиданта.

Глутатион необходим для метаболизма углеводов, расщепления окисленных жиров, профилактики атеросклероза и старения организма. Его дефицит вызывает поражения мозга, вызывая расстройства координации.

Малоновый диальдегид (MDA) — эндогенный альдегид, являющийся клинико-лабораторным маркером оксидативного стресса и используемый для прогноза и контроля лечения ишемической болезни сердца, а также широкого спектра других заболеваний.

Концентрация малонового диальдегида в сыворотке крови отражает активность процессов перекисного окисления липидов в организме и служит маркером степени эндогенной интоксикации (высокое содержание малонового диальдегида соответствует тяжелой степени эндогенной интоксикации).

Значительно повышенные уровни альдегида были отмечены и при тяжелом течении таких заболеваний как псориаз, инсульт, рассеянный склероз, хронические патологии почек и некоторые инфекции (сифилис, стрептококковая инфекция), также и онкологии (рак желудка и легких). Поэтому MDA может использоваться с высокой точностью как вспомогательный прогностический сигнал во время обследования пациентов с описанными выше заболеваниями. В настоящее время выросла значимость определения уровня MDA в клинической диагностике людей пожилого возраста.

8-OH-дезоксигуанозин (8-OHdG) — модифицированный нуклеозид, являющийся клинико-лабораторным маркёром оксидативного стресса и канцерогенеза. Используется для диагностики, прогноза и контроля лечения онкологических и инфекционно-воспалительных заболеваний.

Окислительный стресс
Одним из следствий окислительного стресса на молекулярном уровне является окислительное повреждение нуклеиновых кислот, вызванное действием активных форм кислорода. Среди многих окислительных повреждений ДНК одним из наиболее исследованных соединений является 8-ОН-дезоксигуанозин, что обусловлено чувствительностью его измерений. Поэтому 8-ОН-дезоксигуанозин может рассматриваться как биомаркёр окислительного стресса.

Исследование определения состояния антиоксидантной защиты организма необходимо для профилактики или лечения заболеваний, связанных с окислительным стрессом и профилактики преждевременного старения, с индивидуальным подбором препаратов, способных блокировать образование или нейтрализовывать свободные радикалы и другие активные формы кислорода.

Накануне проведения исследования необходимо исключить эмоциональные и физические нагрузки, спортивные тренировки, курение.

Источник

Комплексная оценка оксидативного стресса (7 параметров)

Комплекс исследований, позволяющий оценить активность свободнорадикальных процессов в организме и состояние систем антиоксидантной защиты.

Оценка окислительного стресса, оценка антиоксидантной защиты.

Синонимы английские

Assessment of oxidative stress, evaluation of antioxidant protection.

Высокоэффективная жидкостная хроматография.

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

Общая информация об исследовании

В нормальных условиях внутриклеточное содержание активных форм кислорода (ROS) поддерживается на низком уровне различными ферментными системами, участвующими в редокс-гомеостазе. Поэтому окислительный стресс можно рассматривать как дисбаланс между прооксидантами и антиоксидантами в организме. В течение последних двух десятилетий окислительный стресс был одной из самых острых проблем среди биологических исследователей во всем мире. Стресс можно определить как процесс измененного биохимического гомеостаза, вызванного психологическими, физиологическими или экологическими причинами (стрессорами). Любое изменение в гомеостазе приводит к увеличению производства свободных радикалов, значительно выше детоксикационной способности местных тканей. Эти избыточные свободные радикалы затем взаимодействуют с другими молекулами внутри клеток и вызывают окислительное повреждение белков, мембран и генов. В процессе этого часто образуется еще больше свободных радикалов, вызывая цепь разрушений. Окислительные повреждения связаны с причиной многих заболеваний, таких как сердечно-сосудистые заболевания, дегенерация нейронов и онкология, а также влияют на процесс старения.

Стресс может запускаться различными стрессорами, например экстремальными условиями окружающей среды, чрезмерными физическими упражнениями или полной иммобилизацией, недоеданием. Внешние факторы, такие как загрязнение, избыточная инсоляция и курение, также вызывают образование свободных радикалов. Стресс может быть острым или хроническим. Стрессор инициирует любой из факторов, играющих решающую роль в поддержании клеточного гомеостаза. Окислительный стресс возникает, когда гомеостатические процессы терпят неудачу, а генерация свободных радикалов намного превышает способность антиоксидантной защиты организма, тем самым способствуя повреждению клеток и тканей.

Окислительный стресс является сложным процессом. Его воздействие на организм зависит от типа окислителя, от места и интенсивности его производства, от состава и активности различных антиоксидантов, а также от способности восстановительных систем.

Термин «ROS» включает в себя все нестабильные (свободные) метаболиты молекулярного кислорода (O2), которые имеют более высокую реакционную способность, чем O2 (например, супероксидный радикал, гидроксильный радикал) и нерадикальные молекулы (например, перекись водорода (H2O2). Эти ROS генерируются как побочный продукт нормального аэробного метаболизма, но их уровень увеличивается при стрессе, что является основной опасностью для здоровья.

До 1-3% легочного поступления кислорода преобразуется в ROS. В условиях нормального метаболизма непрерывное образование свободных радикалов важно для нормальных физиологических функций, таких как генерация АТФ, различные катаболические, анаболические процессы и сопровождающие клеточные окислительно-восстановительные циклы.

Центральная нервная система чрезвычайно чувствительна к повреждению свободных радикалов из-за относительно небольшой общей антиоксидантной способности. ROS, продуцируемые в тканях, могут нанести прямой ущерб макромолекулам, таким как липиды, нуклеиновые кислоты и белки. Полиненасыщенные жирные кислоты являются одной из предпочтительных целей окисления для них. Кислородсодержащие радикалы, в частности радикал супероксидного аниона, гидроксильный радикал (ОН) и алкилпероксильный радикал (OOCR), являются мощными инициаторами перекисного окисления липидов, роль которых хорошо установлена в патогенезе широкого спектра заболевания (например, развитии атеросклероза, прогрессировании фиброза печени).

В результате перекисного окисления липидов в биологических системах накапливаются их конечные продукты, такие как малондиальдегид (MDA), 4-гидрокси-2-ноненол (4-HNE) и F2-изопростанты.

Основания ДНК также очень восприимчивы к окислению ROS, а преобладающим конечным продуктом этого взаимодействия является 8-гидрокси-2-дезоксигуанозин. В результате могут возникнуть мутации и делеции как в ядерной, так и в митохондриальной ДНК. Митохондриальная ДНК особенно подвержена окислительному повреждению из-за ее близости к первому источнику ROS и недостаточной восстановительной способности по сравнению с ядерной ДНК. Эти окислительные модификации приводят к функциональным изменениям в ферментативных и структурных белках, которые могут оказывать существенное физиологическое воздействие. Также хорошо установлена связь между окислительным стрессом и иммунной функцией организма. Механизм иммунной защиты использует повреждающие эффекты окислителей с защитной целью, используя ROS в уничтожении патогенов. В нескольких исследованиях была продемонстрирована взаимозависимость окислительного стресса, иммунной системы и воспаления. Все факторы, ответственные за окислительный стресс, прямо или косвенно участвуют в механизме защиты иммунной системы. Любые изменения, приводящие к иммуносупрессии, могут спровоцировать развитие болезни. Окислительная модификация белков не только изменяет их антигенный профиль, но также усиливает антигенность. Существует несколько примеров аутоиммунных заболеваний, возникающих в результате таких окислительных модификаций, а именно системная красная волчанка, сахарный диабет и диффузная склеродермия. Более того, окислительный стресс представляет дополнительную угрозу для тканей-мишеней, как в случае бета-клеток, продуцирующих инсулин. Окислительный стресс, вызванный неразрешенным и стойким воспалением, может быть основным фактором, влияющим на изменение динамики иммунных реакций. Эти изменения могут создать иммунологический хаос, который может привести к потере архитектурной целостности клеток и тканей, что в конечном итоге приведет к хроническим заболеваниям или онкологии.

Окислительный стресс может запускать развитие аллергии, аутоиммунных или нейродегенеративных заболеваний (например, болезнь Альцгеймера) наряду с измененным ростом клеток, хроническими инфекциями, ангиогенезом и раковыми заболеваниями. Старение является неотъемлемым процессом, характерным для всех живых клеток. Теория окислительного стресса в настоящее время является наиболее приемлемым объяснением старения, которое подтверждает, что увеличение ROS приводит к функциональным изменениям, патологическим состояниям и другим клинически наблюдаемым признакам старения. В нормальных условиях физиологичным является равновесие между уровнем антиоксидантов и клеточными прооксидантами. Окислительный стресс может быть запущен не только стрессорами, но и дефицитом антиоксидантов, приводящим к образованию избыточного количества активного кислорода или азота. Антиоксиданты являются первой линией на пути предотвращения развития стресса. Несколько первичных антиоксидантных ферментов (SOD, каталаза) и несколько пероксидаз катализируют сложный каскад реакций для превращения ROS в более стабильные молекулы, такие как вода и O2. Помимо первичных антиоксидантных ферментов, большое количество вторичных ферментов действуют в тесной связи с малыми молекулярными антиоксидантами с образованием окислительно-восстановительных циклов, которые обеспечивают необходимые кофакторы для первичных антиоксидантных ферментных функций.

Малые молекулярные неферментные антиоксиданты (например, GSH, NADPH, тиоредоксин, витамины E и C и следовые металлы, такие как селен) также действуют как прямые поглотители ROS. Эти ферментативные и неферментные антиоксидантные системы необходимы для поддержания жизни путем поддержания деликатного внутриклеточного редокс-баланса и минимизации нежелательного повреждения клеток, вызванного ROS.

Эндогенные и экзогенные антиоксиданты включают в себя некоторые высокомолекулярные соединения (SOD, GPx, Catalse, альбумин, металлотионеин) и некоторые низкомолекулярные вещества (мочевая кислота, аскорбиновая кислота, липоевая кислота, глутатион, убихинол, токоферол / витамин E, флавоноиды).

Комплексная оценка оксидативного стресса состоит из количественного определения содержания в крови следующих параметров: коэнзим Q10, витамин Е, витамин С, бета-каротин, глутатион, малоновый диальдегид, 8-ОН-дезоксигуанозин. Диагностика метаболических особенностей организма позволит врачу-специалисту скорректировать антиоксидативный статус пациента до появления симптомов заболевания, используя показатели общего антиоксидантного статуса и перекисного окисления липидов для назначения антиоксидативной терапии.

Для чего используется исследование?

Когда назначается исследование?

Что означают результаты?

Отдельно для каждого показателя, входящего в состав комплекса:

Источник

Общий антиоксидантный статус (TAS) (венозная кровь) в Москве

Лабораторный анализ для определения эффективности работы системы антиоксидантной защиты (САЗ) в организме. Нарушение работы САЗ ведет к возникновению оксидативного стресса и, как следствие, нарушению работы клеток.

Приём и исследование биоматериала

Комплексы с этим исследованием

Когда нужно сдавать анализ Общий антиоксидантный статус (TAS)?

Подробное описание исследования

В норме в живых тканях непрерывно протекают окислительные реакции. Свободнорадикальное окисление наблюдается в каждой клетке организма — это физиологический процесс, который обеспечивает быстрое изменение свойств и структуры плазматических мембран. Также перекисное окисление лежит в основе фагоцитоза — процесса устранения чужеродных микроорганизмов и поврежденных клеток макрофагами и лимфоцитами.

Перекисному окислению в первую очередь подвергаются липиды, в меньшей степени —нуклеиновые кислоты и белки. В здоровом организме интенсивность перекисных окислительных процессов относительно стабильна и протекает примерно на одном и том же уровне благодаря многофакторной системе нейтрализации свободных радикалов — системе антиоксидантной защиты (САЗ или TAS).

Несмотря на некоторые положительные свойства активных форм кислорода (АФК), их накопление способствует развитию множества патологических реакций. Кроме того, АФК принимают участие в развитии аутоиммунных реакций (окисленные липиды имеют антигенные свойства). Именно поэтому в организме существует система антиоксидантной защиты, которая способна контролировать интенсивность окислительных процессов. Важнейшие ферменты САЗ — это супероксиддисмутаза, глутатионпероксидаза и каталаза. Данные вещества либо ускоряют распад кислорода (его активных форм), либо расщепляют молекулы АФК до воды и нетоксичных форм.

Помимо ферментов, в систему САЗ входят витамины A, С и E, а также каротиноиды и стероидные гормоны. Дисбаланс между образованием и накоплением свободных радикалов и активности антиоксидантной системы повышает уровень ПОЛ (перекисного окисления липидов) в клетках. Это увеличивает риск развития оксидативного стресса, что впоследствии может привести к повреждению клетки — появлению мутаций в генетическом материале, повреждению мембраны, изменению действий ферментов и поражению митохондрий.

Понятие «оксидативный стресс» стало актуальным в связи с развитием техногенной цивилизации. Негативное влияние выхлопных газов, табачного дыма, продуктов промышленной деятельности, радиационного и ультрафиолетового излучения, выбросов химических предприятий — всё это оказывает неизбежное влияние на чрезмерное образование активных радикалов и, как следствие, приводит к возникновению оксидативного стресса. Не стоит забывать, что в основе развития сердечно-сосудистых заболеваний, нейродегенеративных изменений и различных новообразований лежит оксидативный стресс.

Установлено, что показатель общего антиоксидантного статуса может быть прогностическим фактором хронической обструктивной болезни легких (ХОБЛ). У пациентов, страдающих ХОБЛ, уровень TAS гораздо выше, чем у здоровых людей — причём у мужчин он обычно больше, чем у женщин.

Таким образом, общий антиоксидантный статус (TAS) — это отражение баланса (или его отсутствия) между двумя разнонаправленными реакциями: системой антиоксидантной защиты (САЗ) и образованием активных форм кислорода.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *