Ку 221 тиристор параметры
Как работают мощные силовые тиристоры
В схемах и технической документации часто используются различные термины и знаки, но не все начинающие электрики знают их значение. Предлагаем обсудить, что такое силовые тиристоры для сварки, их принцип работы, характеристики и маркировка этих приборов.
Что такое тиристор и их виды
Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе. Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же — это считается аналог выпрямителя.

Бывают:
Но в это же время для высоковольтных аппаратов (печей, станков, прочей автоматики производства) используют транзисторы типа IGBT или IGCT.

Но, в отличие от диода, который является двухслойным (PN) трехслойного транзистора (PNP, NPN), тиристор состоит из четырех слоев (PNPN) и этот полупроводниковый прибор содержит три p-n перехода. В таком случае, диодные выпрямители становятся менее эффективными. Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков (например, в библиотеке можно бесплатно почитать книгу автора Замятин).
Тиристор – это однонаправленный преобразователь переменного тока, то есть он проводит ток только в одном направлении, но в отличие от диода, устройство может быть сделано для работы в качестве коммутатора разомкнутой цепи или в виде ректификационного диода постоянного электротока. Другими словами, полупроводниковые тиристоры могут работать только в режиме коммутации и не могут быть использованы как приборы амплификации. Ключ на тиристоре не способен сам перейти в закрытое положение.
Кремниевый управляемый выпрямитель является одним из нескольких силовых полупроводниковых приборов вместе с симисторами, диодами переменного тока и однопереходными транзисторами, которые могут очень быстро переключаться из одного режима в другой. Такой тиристор называется быстродействующим. Конечно, большую роль здесь играет класс прибора.
Применение тиристора
Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.

Не стоит забывать и про тиристор зажигания для мотоциклов.
Описание конструкции и принцип действия
Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.

Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.
Типичные тиристорные ВАХ
Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:
Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.

Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки.
Проверка тиристора
Перед тем, как купить прибор, нужно знать, как проверить тиристор мультиметром. Подключить измерительный прибор можно только к так называемому тестеру. Схема, по которой можно собрать такое устройство, представлена ниже:

Согласно описанию, к аноду необходимо подвести напряжение положительного характера, а к катоду – отрицательного. Очень важно использовать величину, которая соответствует разрешению тиристора. На чертеже показаны резисторы с номинальным напряжением от 9 до 12 вольт, это значит, что напряжение тестера немного больше, чем тиристора. После того, как Вы собрали прибор, можно начинать проверять выпрямитель. Нужно нажать на кнопку, которая подает импульсные сигналы для включения.
Проверка тиристора осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). После этого если на тиристоре загорелись бегущие огни, то устройство считается нерабочим, но мощные приборы не всегда сразу реагируют после поступления нагрузки.

Помимо проверки прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами ОВЕН БУСТ или прочие марки, он работает примерно также, как и регулятор мощности на тиристоре. Главным отличием является более широкий спектр напряжений.
Видео: принцип работы тиристора
Технические характеристики
Рассмотрим технические параметры тиристора серии КУ 202е. В этой серии представляются отечественные маломощные устройства, основное применение которых ограничивается бытовыми приборами: его используют для работы электропечей, обогревателей и т.д.
На чертеже ниже представлена цоколевка и основные детали тиристора.
Цена тиристора зависит от его марки и характеристик. Мы рекомендуем покупать отечественные приборы – они более долговечны и отличаются доступной стоимостью. На стихийных рынках можно купить качественный мощный преобразователь до сотни рублей.
Справочные данные на тиристор ку221Л-ЛМ
Перерыл весь интернет и никак не могу найти данные на тиристоры ку221Л,И,М.Везде пишут параметры только до буквы Д.Может кто из вас подскажет их параметры?
В Интернете можно найти книжку по тиристорам, в ней эти тиристоры описаны (см. приложенный файл)
Спасибо,но эту книгу я уже давно нашёл и скачал,там эти тиристоры только до буквы Д.
Иван, немножко не то. КУ221. запираемый тип.
ку221 незапираемый тиристор это точно,на ку221Л мне нужно узнать допустимое обратное напряжение,прямое напряжение в закрытом состоянии и так же его быстродействие.Неучто никто не в силах помочь?
боюсь что только запрос производителю может тебе помочь
серия 221 НЕЗАПИРАЕМЫЙ ВЧ тиристор для строчной разветки и резонансных инверторов до 40-50кгц разрабатывался изначално для замены серии ку109*м которая применялась в развертке УПИМЦТ коих тогда полно было и ку109(клон буржуйского аналога=отсюда и странный для CCCP корпус причем вначале 109 были 2 видов с ушами(корпус как221) и без) они оказались ненадедные и сняты с пр-ва. так что в архивы заводов если завод жив впрочем ты можеш сам снять ВАХ и определить максималные прямые напряги(обр. для этой серии кажется всего 50в)
схема измерения стандартна в качвестве пороговых бери из 221а насколко помню в последних партиях серии внутри корпуса был диод КА=что избавляло от монтада кд411 впаралель на радиаторе в схеме упимцт
кстати это относилось и к кт872д внутри диод КЭ и рез 45ом БЭ-обнарудил при трепанации дохлого
поисковики указывают на сайт http://www.osipoff.ru/html/top14.htm
там и нужно спрашивать.
Ку 221 характеристика простейшие схемы включения
КУ221А
Тиристоры кремниевые КУ221А, диффузионные, структуры p-n-p-n, триодные, незапираемые, импульсные, высокочастотные.
Предназначены для применения в телевизионных приемниках цветного изображения при частоте до 30 кГц.
Выпускаются в металлостеклянном корпусе с жесткими выводами.
Тип тиристора приводится на корпусе.
Масса тиристора не более 7 г.
Схема фазового регулятора мощности для нагрузки 220В (КУ221Г)
Принципиальная схема фазового регулятора мощности для нагрузки с питанием от 220В, который выполнен с применением тиристоров КУ221. В цветных телевизорах УПИМЦТ отечественного производства, отрицательно знаменитых качеством узлов строчной развёртки, в модуле БР-13 применялись высоковольтные тринисторы серии КУ221 — по три тринистора в каждом телевизоре.
В настоящее время сохранившиеся экземпляры таких телевизоров интересуют разве что немногих коллекционеров, поэтому, дожившие до наших дней такие телевизоры можно невозбранно разбирать на запчасти.
Принципиальная схема
Принципиальная схема фазового регулятора мощности, предназначенного для управления лампой накаливания в настольном светильнике, показана на рис. 1. В силовом ключе устройства использованы две штуки тринисторов серии КУ221, включенных встречно-параллельно.
Тринисторы этой серии отличаются значительно более высокой надёжностью, чем популярные в прошлом веке отечественные тринисторы серий КУ201, КУ202 и симисторы серии КУ208 [1].
Рис. 1. Принципиальная схема фазового регулятора мощности на тиристорах КУ221.
Также, тринисторы серии КУ221 устойчивы к значительным кратковременным перегрузкам, например, легко переживают событие перегорания лампы накаливания, во время которого внутри колбы образуется дуговой разряд, в то время, когда большинство импортных мощных симисторов в корпусе ТО-220, при этих обстоятельствах получают пробой кристалла.
Напряжение сети переменного тока 230 В поступает на силовой ключ через замкнутые контакты выключателя питания SA1, плавкий предохранитель FU1 и двухобмоточный дроссель L1. Фильтр C1L1C2 уменьшает уровень помех, как поступающих от работающего фазового регулятора в сеть питания, так и в обратную сторону. На тринисторы серии КУ221 допускается подача обратного напряжения не более 50 В, поэтому они включены через диоды VD5, VD6, которые защищают тринисторы от обратного напряжения.
К управляющим выводам мощных тринисторов через токоограничительный резистор R1 подключен мостовой диодный выпрямитель VD1 — VD4. Выпрямленное сетевое напряжение через резистор R6 поступает на узел управления, выполненный на аналоге однопереходного транзистора VТ3, VТ4.
В зависимости от направления полуволны сетевого напряжения переменного тока открывается, или тринистор VS1, или VS2. На подключенную нагрузку — лампу накаливания EL1 через помехоподавляющий фильтр L2C4 поступает напряжение питания. Уровень поступающей на нагрузку мощности регулируют переменным резистором R11, чем меньше установленное сопротивление этого резистора, тем большая мощность подаётся в нагрузку. Фазовую задержку открывания симисторов обеспечивает конденсатор СЗ. Последовательно включенные светодиод HL1 и стабилитрон ограничивают рост напряжения на элементах регулировочного узла.
Этот регулятор рассчитан на управление подключенной нагрузкой, потребляющей мощность до 250 Вт. Следует отметить, что большинство светильников — настольных ламп, даже изготовленных в цельнометаллическом корпусе, рассчитаны на эксплуатацию с лампой накаливания мощностью не более 60 Вт. Плавкий предохранитель FU1 установлен на относительно большой ток с целью сохранить свою целостность в момент перегорания лампы накаливания.
Детали и конструкция
Большинство деталей устройства установлены на полукруглой монтажной плате, размеры и форма которой подогнаны под установку в металлическом корпусе основания диаметром 165 мм отечественной настольной лампы модели ННБ37-60-018 УХЛ4, изготовленной по ГОСТ 8607-82.
Для изоляции токоведущих элементов конструкции от корпуса светильника используется плотная стеклоткань, приклеенная двусторонней монтажной липкой лентой и клеем «БФ».
Рис. 2. Цоколевка транзисторов КТ502, КТ503 и тиристора КУ221.
Переменный резистор применён типа СПЗ-35, можно заменить, например, на СПЗ-30а, СП-1, СПЗ-12, СПЗ-4, СПЗ-33-32 или аналогичный. На ось переменного резистора должна быть надета регулировочная ручка из изоляционного материала. Остальные резисторы типов РПМ, МЯТ, С1-4, С1-14, С2-14, С2-33 или аналоги.
Конденсатор С1 керамический типа К15-5, вместо такого конденсатора можно установить любой керамический или плёночный на рабочее напряжение постоянного тока не менее 630 В или переменного не менее 275 В, например, К73-17, К73-24, К73-39. Такими же конденсаторами можно заменить С2 и С4. Конденсатор СЗ плёночный малогабаритный.
Диоды 1N4007 заменимы на 1N4005, 1N4006, UF4005- UF4007, RU3AM, 1N4936GP, 1N4937GP, FR155 — FR157, КД209Б, КД221В, КД243Г, КД247Д. Вместо светодиода АЛ316А красного цвета свечения подойдёт любой из серий АЛ341, КИПД21, КИПД40, L-1503, RL52, RL54, DB5-436. Для светодиода в основании светильника просверлено дополнительное отверстие.
Вместо стабилитрона Д814Д подойдёт любой из Д814Д1, КС213Ж, 1N4743A, 1N4743A,BZV55C-12,BZV55C-13, TZMC-13. Вместо транзистора KF13001 подойдёт MJE13001, MJE13002, MJE13003, MJE340, BF420, BF393, М PSA-42, 2N6517.
Транзистор BF421 заменим на BF493, MJE350, 2N6520, 2SA1625, 2SA1700, MPSA-44. Вместо транзистора КТ503Б подойдёт любой из серий КТ503, КТ3117, КТ6111, КТ6113, КТ645, SS8050, 2SC2116, 2SD261, SS8050, SS9013. Транзистор КТ502Е, можно заменить любым из КТ502, КТ209, КТ6112, КТ6115, КТ639, SS8550, SS9012, 2SA643, 2SA1048, 2SA1150, 2SA1378.
Учитывайте, что транзисторы даже одного типа, но разных изготовителей, могут иметь отличия в цоколёвке выводов. Тринисторы КУ221 работают без дополнительного металлического теплоотвода, можно устанавливать в паре тринисторы с разными буквенными индексами. Цоколёвка выводов применённых транзисторов и тринисторов показана на рис. 2.
Выключатель SA1 установлен клавишный на шнуре питания светильника. Двухобмоточный дроссель L1 применён готовый от компьютерного БП, выполненный на Ш-образном ферритовом сердечнике.
Подойдёт любой аналогичный с общим сопротивлением обмоток до 2 Ом, индуктивность, чем больше, тем лучше. Дроссель L2 самодельный, намотан на двух ферритовых стержнях 400НН диаметром 8 мм, длиной по 40 мм. На каждом стержне намотано по 60 витков обмоточного провода диаметром 0,39 мм, намотка виток к витку поверх двусторонней липкой бумажной ленты.
Катушки дросселя располагают параллельно одна другой так, чтобы их магнитный поток был замкнутым. Дроссели и конденсаторы LC фильтров обёрнуты стеклотканью и приклеены к внутренней стороне основания корпуса светильника.
Налаживание
Изготовленное из исправных деталей устройство начинает работать сразу. При желании, подбором конденсатора СЗ можно установить минимальную устанавливаемую яркость свечения лампы накаливания.
Этот фазовый регулятор мощности можно также применить для регулировки рабочей температуры электропаяльников, для регулировки оборотов маломощных коллекторных электродвигателей, рассчитанных на подключение к сети переменного тока 230 В. Минимальная мощность подключаемой нагрузки может быть 8 Вт.
Схема фазового регулятора мощности для нагрузки 220В (КУ221Г)
Принципиальная схема фазового регулятора мощности для нагрузки с питанием от 220В, который выполнен с применением тиристоров КУ221. В цветных телевизорах УПИМЦТ отечественного производства, отрицательно знаменитых качеством узлов строчной развёртки, в модуле БР-13 применялись высоковольтные тринисторы серии КУ221 — по три тринистора в каждом телевизоре.
В настоящее время сохранившиеся экземпляры таких телевизоров интересуют разве что немногих коллекционеров, поэтому, дожившие до наших дней такие телевизоры можно невозбранно разбирать на запчасти.
Принципиальная схема
Принципиальная схема фазового регулятора мощности, предназначенного для управления лампой накаливания в настольном светильнике, показана на рис. 1. В силовом ключе устройства использованы две штуки тринисторов серии КУ221, включенных встречно-параллельно.
Тринисторы этой серии отличаются значительно более высокой надёжностью, чем популярные в прошлом веке отечественные тринисторы серий КУ201, КУ202 и симисторы серии КУ208 [1].
Рис. 1. Принципиальная схема фазового регулятора мощности на тиристорах КУ221.
Также, тринисторы серии КУ221 устойчивы к значительным кратковременным перегрузкам, например, легко переживают событие перегорания лампы накаливания, во время которого внутри колбы образуется дуговой разряд, в то время, когда большинство импортных мощных симисторов в корпусе ТО-220, при этих обстоятельствах получают пробой кристалла.
Напряжение сети переменного тока 230 В поступает на силовой ключ через замкнутые контакты выключателя питания SA1, плавкий предохранитель FU1 и двухобмоточный дроссель L1. Фильтр C1L1C2 уменьшает уровень помех, как поступающих от работающего фазового регулятора в сеть питания, так и в обратную сторону. На тринисторы серии КУ221 допускается подача обратного напряжения не более 50 В, поэтому они включены через диоды VD5, VD6, которые защищают тринисторы от обратного напряжения.
К управляющим выводам мощных тринисторов через токоограничительный резистор R1 подключен мостовой диодный выпрямитель VD1 — VD4. Выпрямленное сетевое напряжение через резистор R6 поступает на узел управления, выполненный на аналоге однопереходного транзистора VТ3, VТ4.
В зависимости от направления полуволны сетевого напряжения переменного тока открывается, или тринистор VS1, или VS2. На подключенную нагрузку — лампу накаливания EL1 через помехоподавляющий фильтр L2C4 поступает напряжение питания. Уровень поступающей на нагрузку мощности регулируют переменным резистором R11, чем меньше установленное сопротивление этого резистора, тем большая мощность подаётся в нагрузку. Фазовую задержку открывания симисторов обеспечивает конденсатор СЗ. Последовательно включенные светодиод HL1 и стабилитрон ограничивают рост напряжения на элементах регулировочного узла.
Этот регулятор рассчитан на управление подключенной нагрузкой, потребляющей мощность до 250 Вт. Следует отметить, что большинство светильников — настольных ламп, даже изготовленных в цельнометаллическом корпусе, рассчитаны на эксплуатацию с лампой накаливания мощностью не более 60 Вт. Плавкий предохранитель FU1 установлен на относительно большой ток с целью сохранить свою целостность в момент перегорания лампы накаливания.
Детали и конструкция
Большинство деталей устройства установлены на полукруглой монтажной плате, размеры и форма которой подогнаны под установку в металлическом корпусе основания диаметром 165 мм отечественной настольной лампы модели ННБ37-60-018 УХЛ4, изготовленной по ГОСТ 8607-82.
Для изоляции токоведущих элементов конструкции от корпуса светильника используется плотная стеклоткань, приклеенная двусторонней монтажной липкой лентой и клеем «БФ».
Рис. 2. Цоколевка транзисторов КТ502, КТ503 и тиристора КУ221.
Переменный резистор применён типа СПЗ-35, можно заменить, например, на СПЗ-30а, СП-1, СПЗ-12, СПЗ-4, СПЗ-33-32 или аналогичный. На ось переменного резистора должна быть надета регулировочная ручка из изоляционного материала. Остальные резисторы типов РПМ, МЯТ, С1-4, С1-14, С2-14, С2-33 или аналоги.
Конденсатор С1 керамический типа К15-5, вместо такого конденсатора можно установить любой керамический или плёночный на рабочее напряжение постоянного тока не менее 630 В или переменного не менее 275 В, например, К73-17, К73-24, К73-39. Такими же конденсаторами можно заменить С2 и С4. Конденсатор СЗ плёночный малогабаритный.
Диоды 1N4007 заменимы на 1N4005, 1N4006, UF4005- UF4007, RU3AM, 1N4936GP, 1N4937GP, FR155 — FR157, КД209Б, КД221В, КД243Г, КД247Д. Вместо светодиода АЛ316А красного цвета свечения подойдёт любой из серий АЛ341, КИПД21, КИПД40, L-1503, RL52, RL54, DB5-436. Для светодиода в основании светильника просверлено дополнительное отверстие.
Вместо стабилитрона Д814Д подойдёт любой из Д814Д1, КС213Ж, 1N4743A, 1N4743A,BZV55C-12,BZV55C-13, TZMC-13. Вместо транзистора KF13001 подойдёт MJE13001, MJE13002, MJE13003, MJE340, BF420, BF393, М PSA-42, 2N6517.
Транзистор BF421 заменим на BF493, MJE350, 2N6520, 2SA1625, 2SA1700, MPSA-44. Вместо транзистора КТ503Б подойдёт любой из серий КТ503, КТ3117, КТ6111, КТ6113, КТ645, SS8050, 2SC2116, 2SD261, SS8050, SS9013. Транзистор КТ502Е, можно заменить любым из КТ502, КТ209, КТ6112, КТ6115, КТ639, SS8550, SS9012, 2SA643, 2SA1048, 2SA1150, 2SA1378.
Учитывайте, что транзисторы даже одного типа, но разных изготовителей, могут иметь отличия в цоколёвке выводов. Тринисторы КУ221 работают без дополнительного металлического теплоотвода, можно устанавливать в паре тринисторы с разными буквенными индексами. Цоколёвка выводов применённых транзисторов и тринисторов показана на рис. 2.
Выключатель SA1 установлен клавишный на шнуре питания светильника. Двухобмоточный дроссель L1 применён готовый от компьютерного БП, выполненный на Ш-образном ферритовом сердечнике.
Подойдёт любой аналогичный с общим сопротивлением обмоток до 2 Ом, индуктивность, чем больше, тем лучше. Дроссель L2 самодельный, намотан на двух ферритовых стержнях 400НН диаметром 8 мм, длиной по 40 мм. На каждом стержне намотано по 60 витков обмоточного провода диаметром 0,39 мм, намотка виток к витку поверх двусторонней липкой бумажной ленты.
Катушки дросселя располагают параллельно одна другой так, чтобы их магнитный поток был замкнутым. Дроссели и конденсаторы LC фильтров обёрнуты стеклотканью и приклеены к внутренней стороне основания корпуса светильника.
Налаживание
Изготовленное из исправных деталей устройство начинает работать сразу. При желании, подбором конденсатора СЗ можно установить минимальную устанавливаемую яркость свечения лампы накаливания.
Этот фазовый регулятор мощности можно также применить для регулировки рабочей температуры электропаяльников, для регулировки оборотов маломощных коллекторных электродвигателей, рассчитанных на подключение к сети переменного тока 230 В. Минимальная мощность подключаемой нагрузки может быть 8 Вт.
Как работают мощные силовые тиристоры
В схемах и технической документации часто используются различные термины и знаки, но не все начинающие электрики знают их значение. Предлагаем обсудить, что такое силовые тиристоры для сварки, их принцип работы, характеристики и маркировка этих приборов.
Что такое тиристор и их виды
Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе. Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же — это считается аналог выпрямителя.

Бывают:
Но в это же время для высоковольтных аппаратов (печей, станков, прочей автоматики производства) используют транзисторы типа IGBT или IGCT.

Но, в отличие от диода, который является двухслойным (PN) трехслойного транзистора (PNP, NPN), тиристор состоит из четырех слоев (PNPN) и этот полупроводниковый прибор содержит три p-n перехода. В таком случае, диодные выпрямители становятся менее эффективными. Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков (например, в библиотеке можно бесплатно почитать книгу автора Замятин).
Тиристор – это однонаправленный преобразователь переменного тока, то есть он проводит ток только в одном направлении, но в отличие от диода, устройство может быть сделано для работы в качестве коммутатора разомкнутой цепи или в виде ректификационного диода постоянного электротока. Другими словами, полупроводниковые тиристоры могут работать только в режиме коммутации и не могут быть использованы как приборы амплификации. Ключ на тиристоре не способен сам перейти в закрытое положение.
Кремниевый управляемый выпрямитель является одним из нескольких силовых полупроводниковых приборов вместе с симисторами, диодами переменного тока и однопереходными транзисторами, которые могут очень быстро переключаться из одного режима в другой. Такой тиристор называется быстродействующим. Конечно, большую роль здесь играет класс прибора.
Применение тиристора
Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.

Не стоит забывать и про тиристор зажигания для мотоциклов.
Описание конструкции и принцип действия
Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.

Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.
Типичные тиристорные ВАХ
Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:

Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.

Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки.
Проверка тиристора
Перед тем, как купить прибор, нужно знать, как проверить тиристор мультиметром. Подключить измерительный прибор можно только к так называемому тестеру. Схема, по которой можно собрать такое устройство, представлена ниже:

Согласно описанию, к аноду необходимо подвести напряжение положительного характера, а к катоду – отрицательного. Очень важно использовать величину, которая соответствует разрешению тиристора. На чертеже показаны резисторы с номинальным напряжением от 9 до 12 вольт, это значит, что напряжение тестера немного больше, чем тиристора. После того, как Вы собрали прибор, можно начинать проверять выпрямитель. Нужно нажать на кнопку, которая подает импульсные сигналы для включения.
Проверка тиристора осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). После этого если на тиристоре загорелись бегущие огни, то устройство считается нерабочим, но мощные приборы не всегда сразу реагируют после поступления нагрузки.

Помимо проверки прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами ОВЕН БУСТ или прочие марки, он работает примерно также, как и регулятор мощности на тиристоре. Главным отличием является более широкий спектр напряжений.
Видео: принцип работы тиристора
Технические характеристики
Рассмотрим технические параметры тиристора серии КУ 202е. В этой серии представляются отечественные маломощные устройства, основное применение которых ограничивается бытовыми приборами: его используют для работы электропечей, обогревателей и т.д.
На чертеже ниже представлена цоколевка и основные детали тиристора.

Цена тиристора зависит от его марки и характеристик. Мы рекомендуем покупать отечественные приборы – они более долговечны и отличаются доступной стоимостью. На стихийных рынках можно купить качественный мощный преобразователь до сотни рублей.
Ку 221 характеристика простейшие схемы включения
Несмотря на повсеместное распространение импортной бытовой техники, парк отечественных телевизоров остается еще достаточно большим.
Как показывает опыт, строчная развертка на тиристорах телевизоров УПИМЦТ — довольно капризная вещь. Было замечено, что она отказывается работать с некоторыми в общем-то исправными тиристорами КУ221А, в других же случаях функционирует нормально. При этом в первом случае тиристор VS1 (рис.1) открывается и не отпускает при прямом ходе развертки. И это происходит при отключенной схеме защиты и заведомо исправных генераторе строчной развертки (ГСР) и переходной емкости C1, через которую управляется тиристор, так что предположения о токовых утечках и неисправностях по управляющему электроду следует исключить.
Значит, дело в тиристорах. Возникло предположение, что они имеют разное напряжение отпускания. И в одних случаях оно достигается при прямом ходе луча строчной развертки, в других — нет, и тогда тиристор остается открытым, и развертка не работает.
«Необходимо отметить, что ВАХ имеют большой (от одного до трех порядков) технологический разброс при фиксированной температуре перехода. Поэтому корреляционные связи установить невозможно». Это фраза из [1]. Остается задать вопрос конструкторам, как они смогли опереться на радиоэлементы, разброс параметров которых может достигать трех порядков?
Впрочем, вопрос не только телевизионным конструкторам. У нас в мастерской на соседнем столе мастер мучается с симисторами КУ208, которые стоят в пультах управления бензоколонками в цепи 220 В и включают всего-то реле. Они (КУ208) не прозваниваются никаким мегаомметром. А в схеме дают утечку, и реле срабатывает. Интересно, используются ли тиристоры в космической технике?
Авторы сняли ВАХ с десятка экземпляров КУ221А, в том числе и с «хороших». Были исследованы области перехода из открытого в закрытое состояние (по стрелкам на рис.2). Именно эта область интересна в данном случае.
Как и ожидалось, ВАХ имели большой разброс и ощутимые различия (рис.2). Точка отпускания у «хороших» тиристоров была выше по напряжению (и по току) и составляла порядка 2,7 В против 1,3 В у «плохих». «Параллельно» с областью точки A вела себя и область открытого состояния тиристоров, т.е. окрестность точки B; большему остаточному напряжению открытого состояния соответствовало большее напряжение отпускания.
Замечание 1. «Ловить» точку A достаточно неудобно. У открытого тиристора требуется уменьшить ток, контролируя при этом напряжение, и в какойто момент зафиксировать его скачок.
Замечание 2. Область точки B имеет «стабилитронный» характер, т.е. напряжение на открытом тиристоре мало зависит от протекающего через него тока. Это достаточно большой плюс в пользу определяемости характеристик тиристоров, а, значит, и повторяемости прибора. Эти замечания и определили способ отбора КУ221А, который был использован в описываемом приборе — контроль остаточного напряжения на включенном тиристоре при определенном токе через него.
Прибор был собран по схеме рис.3. Яркость свечения лампочки определяет R1. Ток через нее был выбран порядка 130 мА, как компромисс между:
а) надежным удержанием тиристора в открытом состоянии;
б) экономичностью батарейного прибора;
в) достаточной яркости свечения индикаторной лампочки даже при ярком солнечном свете в «полевых» условиях радиорынка.
Детали и конструкция. Прибор собран в коробочке, спаянной из фольгированного стеклотекстолита. Размеры — 115х88х35 мм. Батарея — 4 пальчиковых элемента общим напряжением 6 В. В качестве измерительной головки использован индикатор тока записи от магнитофона. Его следует открыть, наклеить новую бумажку взамен старой для шкалы и отградуировать обычным способом. Вся шкала — 3 В. Поскольку прибор оценочный, нет смысла наносить очень мелкие деления, достаточно — через 0,5 В. Кнопки — любые, без фиксации. Жгут пробника следует сделать из цветного провода (анод тиристора — красный, управляющий электрод — синий, катод — черный), а крокодильчики желательно взять малогабаритные и в чехольчиках. При вынутом из гнезда штеккере случайное нажатие (в сумке, с другим и предметами) кнопки «Измерение» не приводит к зашкаливанию индикатора.
Пользование прибором. Прибор обеспечивает оперативный отбор тиристоров. Для этого надо зацепить электроды тиристора КУ221А согласно цветам жгута (а цвета легко запомнить) и нажать кнопку «запуск». При этом тиристор включится и загорится лампочка накаливания. После отпускания этой кнопки лампочка должна гореть. Затем надо нажать на кнопку «Измерение». Индикатор должен показать напряжение на открытом тиристоре. Кнопкой «Сброс» прерывается питание, и КУ221А «отпускает».
Критерий отбора КУ221А. Показания прибора около 0,8 В — тиристор не подходит, показания прибора порядка 1,2 В и выше — тиристор с большой вероятностью будет работоспособен в обсуждаемом случае. Критерии отбора достаточно условные и, конечно, не выдерживают строгой научной аргументации. Однако авторы уже успели попользоваться прибором, и большая партия тиристоров, отобранных с его помощью на радиорынке, была затем проверена в строчной развертке УПИМЦТ. Отобранные радиоэлементы прекрасно работали. А это, согласитесь, лучше, чем покупать «кота в мешке», а в случае неудачи — выбрасывать негодное приобретение в мусорный ящик.
Один тиристор КУ221А при покупке на рынке в холодную погоду не включался при нажатии кнопки «Запуск». Однако он заработал в строчной развертке УПИМЦТ при комнатной температуре. По-видимому, желательно еще увеличить пропускаемый ток через исследуемые тиристоры в приборе.










