Математические модели учитывающие в той или иной форме случайные параметры

Математическая модель

Процесс построения и изучения математических моделей называется математическим моделированием.

Все естественные и общественные науки, использующие математический аппарат, по сути, занимаются математическим моделированием: заменяют объект исследования его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект или процесс, построенный на этапе содержательного моделирования. Математическая модель позволяет предсказать поведение реального объекта.

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Принципами механики называются исходные положения, отражающие столь общие закономерности механических явлений, что из них как следствия можно получить все уравнения, определяющие движение механической системы (или условия её равновесия). В ходе развития механики был установлен ряд таких принципов, каждый из которых может быть положен в основу механики, что объясняется многообразием свойств и закономерностей механических явлений. Эти принципы подразделяют на невариационные и вариационные.

Метод ренормализационной группы (также часто называемый методом ренормгруппы, методом РГ) в квантовой теории поля — итеративный метод перенормировки, в котором переход от областей с меньшей энергией к областям с большей вызван изменением масштаба рассмотрения системы.

Комплекс задач о взаимодействии многих тел достаточно обширный и является одним из базовых, далеко не полностью разрешённых, разделов механики. В рамках ньютоновской концепции проблема ветвится на.

Источник

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель — это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования — исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование — это еще и метод познания окружающего мира, дающий возможность управлять им.

2. Основные этапы математического моделирования

1) Построение модели. На этом этапе задается некоторый «нематематический» объект — явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель. На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие — как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф — это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Математические модели учитывающие в той или иной форме случайные параметры. Смотреть фото Математические модели учитывающие в той или иной форме случайные параметры. Смотреть картинку Математические модели учитывающие в той или иной форме случайные параметры. Картинка про Математические модели учитывающие в той или иной форме случайные параметры. Фото Математические модели учитывающие в той или иной форме случайные параметры

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

Математические модели учитывающие в той или иной форме случайные параметры. Смотреть фото Математические модели учитывающие в той или иной форме случайные параметры. Смотреть картинку Математические модели учитывающие в той или иной форме случайные параметры. Картинка про Математические модели учитывающие в той или иной форме случайные параметры. Фото Математические модели учитывающие в той или иной форме случайные параметры

где t — время, g = 10 м/с 2 — ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Математические модели учитывающие в той или иной форме случайные параметры. Смотреть фото Математические модели учитывающие в той или иной форме случайные параметры. Смотреть картинку Математические модели учитывающие в той или иной форме случайные параметры. Картинка про Математические модели учитывающие в той или иной форме случайные параметры. Фото Математические модели учитывающие в той или иной форме случайные параметры

Эта кривая (парабола) пересекает ось x в двух точках: x1 = 0 (начало траектории) и Математические модели учитывающие в той или иной форме случайные параметры. Смотреть фото Математические модели учитывающие в той или иной форме случайные параметры. Смотреть картинку Математические модели учитывающие в той или иной форме случайные параметры. Картинка про Математические модели учитывающие в той или иной форме случайные параметры. Фото Математические модели учитывающие в той или иной форме случайные параметры(место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2 p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Математические модели учитывающие в той или иной форме случайные параметры. Смотреть фото Математические модели учитывающие в той или иной форме случайные параметры. Смотреть картинку Математические модели учитывающие в той или иной форме случайные параметры. Картинка про Математические модели учитывающие в той или иной форме случайные параметры. Фото Математические модели учитывающие в той или иной форме случайные параметры

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r0, при которых производная

Математические модели учитывающие в той или иной форме случайные параметры. Смотреть фото Математические модели учитывающие в той или иной форме случайные параметры. Смотреть картинку Математические модели учитывающие в той или иной форме случайные параметры. Картинка про Математические модели учитывающие в той или иной форме случайные параметры. Фото Математические модели учитывающие в той или иной форме случайные параметры

обращается в ноль:Математические модели учитывающие в той или иной форме случайные параметры. Смотреть фото Математические модели учитывающие в той или иной форме случайные параметры. Смотреть картинку Математические модели учитывающие в той или иной форме случайные параметры. Картинка про Математические модели учитывающие в той или иной форме случайные параметры. Фото Математические модели учитывающие в той или иной форме случайные параметрыМожно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r0. Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h0 = 2r0. Подставляя в выражение для r0 и h0 заданное значение V, получим искомый радиус Математические модели учитывающие в той или иной форме случайные параметры. Смотреть фото Математические модели учитывающие в той или иной форме случайные параметры. Смотреть картинку Математические модели учитывающие в той или иной форме случайные параметры. Картинка про Математические модели учитывающие в той или иной форме случайные параметры. Фото Математические модели учитывающие в той или иной форме случайные параметрыи высоту Математические модели учитывающие в той или иной форме случайные параметры. Смотреть фото Математические модели учитывающие в той или иной форме случайные параметры. Смотреть картинку Математические модели учитывающие в той или иной форме случайные параметры. Картинка про Математические модели учитывающие в той или иной форме случайные параметры. Фото Математические модели учитывающие в той или иной форме случайные параметры

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго — 70 т на заводы, причем на первый — 40 т, а на второй — 80 т.

Обозначим через aij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x1 и x2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x3 и x4 — со второго склада на первый и второй заводы соответственно. Тогда:

Общая стоимость всех перевозок определяется формулой

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x1, x2, x3 и x4, удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

а x4 не может быть определено однозначно. Так как xi і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30 Ј x4 Ј 70. Подставляя выражение для x1, x2, x3 в формулу для f, получим

Легко видеть, что минимум этой функции достигается при максимально возможном значении x4, то есть при x4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x1 = 40, x2 = 10, x3 = 0.

4) Задача о радиоактивном распаде.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A1, надо посетить города A2, A3 и A4, причем каждый город точно один раз, и затем вернуться обратно в A1. Известно, что все города попарно соединены между собой дорогами, причем длины дорог bij между городами Ai и Aj (i, j = 1, 2, 3, 4) таковы:

Математические модели учитывающие в той или иной форме случайные параметры. Смотреть фото Математические модели учитывающие в той или иной форме случайные параметры. Смотреть картинку Математические модели учитывающие в той или иной форме случайные параметры. Картинка про Математические модели учитывающие в той или иной форме случайные параметры. Фото Математические модели учитывающие в той или иной форме случайные параметрыНадо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Найдем теперь длины этих циклов (в км): L1 = 160, L2 = 180, L3 = 200. Итак, маршрут наименьшей длины — это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Математические модели учитывающие в той или иной форме случайные параметры. Смотреть фото Математические модели учитывающие в той или иной форме случайные параметры. Смотреть картинку Математические модели учитывающие в той или иной форме случайные параметры. Картинка про Математические модели учитывающие в той или иной форме случайные параметры. Фото Математические модели учитывающие в той или иной форме случайные параметрыСледовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

где a, b — константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a, b » – 4a, b » 28 – 5a, b » 69 – 6a.

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a. Подставим в исходную систему уравнений это значение b и, вычисляя a, получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: yр(7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения yэ(7) = 98°.

7) Задача об определении надежности электрической цепи.

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A)•P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу. Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P1 = 0,1, P2 = 0,15, P3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть Ai — событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A1A2A3 — событие, заключающееся в том, что одновременно работают все три элемента, и

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.

Источник

Математическое моделирование. Форма и принципы представления математических моделей

ЭВМ прочно вошла в нашу жизнь, и практически нет такой области человеческой деятельности, где не применялась бы ЭВМ. ЭВМ сейчас широко используется в процессе создания и исследования новых машин, новых технологических процессов и поиске их оптимальных вариантов; при решении экономических задач, при решении задач планирования и управления производством на различных уровнях. Создание же крупных объектов в ракетотехнике, авиастроении, судостроении, а также проектирование плотин, мостов, и др. вообще невозможно без применения ЭВМ.

Целью моделирования являются получение, обработка, представление и использование информации об объектах, которые взаимодействуют между собой и внешней средой; а модель здесь выступает как средство познания свойств и закономерности поведения объекта.

Моделирование широко используется в различных сферах человеческой деятельности, особенно в сферах проектирования и управления, где особенными являются процессы принятия эффективных решений на основе получаемой информации.

Теорией моделирования является раздел науки, изучающий способы исследования свойств объектов-оригиналов, на основе замещения их другими объектами-моделями. В основе теории моделирования лежит теория подобия. При моделировании абсолютное подобие не имеет места и лишь стремится к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта. Абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же.

Все модели можно разделить на два класса:

В свою очередь вещественные модели можно разделить на:

Источник

Математическое моделирование. Форма и принципы представления математических моделей

В общем случае математическая модель реального объекта, процесса или системы представляется в виде системы функционалов

Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.

Конечной целью этого этапа является формулирование математической задачи, решение которой с необходимой точностью выражает результаты, интересующие специалиста.

Форма и принципы представления математической модели зависит от многих факторов.

По принципам построения математические модели разделяют на:

Аналитическая модель разделяется на типы в зависимости от математической проблемы:

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

По виду входной информации модели разделяются на:

По поведению моделей во времени они разделяются на:

Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.

По степени соответствия между математической моделью и реальным объектом, процессом или системой математические модели разделяют на:

В дальнейшем для краткого определения вида математической модели в приведенной классификации будем пользоваться следующими обозначениями:

Источник

Основы математического моделирования

Добавил:DMT
Дата создания:5 апреля 2008, 12:42
Дата обновления:5 апреля 2008, 12:42
Просмотров:46122 последний сегодня, 1:20
Комментариев:0

Математическое моделирование

Математическая модель является приближенным представлением реальных объектов, процессов или систем, выраженным в математических терминах и сохраняющим существенные черты оригинала. Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи.

В общем случае математическая модель реального объекта, процесса или системы представляется в виде системы функционалов

Построение математической модели заключается в определении связей между теми или иными процессами и явлениями, создании математического аппарата, позволяющего выразить количественно и качественно связь между теми или иными процессами и явлениями, между интересующими специалиста физическими величинами, и факторами, влияющими на конечный результат.

Обычно их оказывается настолько много, что ввести в модель всю их совокупность не удается. При построении математической модели перед исследованием возникает задача выявить и исключить из рассмотрения факторы, несущественно влияющие на конечный результат (математическая модель обычно включает значительно меньшее число факторов, чем в реальной действительности). На основе данных эксперимента выдвигаются гипотезы о связи между величинами, выражающими конечный результат, и факторами, введенными в математическую модель. Такая связь зачастую выражается системами дифференциальных уравнений в частных производных (например, в задачах механики твердого тела, жидкости и газа, теории фильтрации, теплопроводности, теории электростатического и электродинамического полей).

Конечной целью этого этапа является формулирование математической задачи, решение которой с необходимой точностью выражает результаты, интересующие специалиста.

Форма и принципы представления математической модели зависит от многих факторов.

По принципам построения математические модели разделяют на :

В аналитических моделях процессы функционирования реальных объектов, процессов или систем записываются в виде явных функциональных зависимостей.

Аналитическая модель разделяется на типы в зависимости от математической проблемы:

• уравнения (алгебраические, трансцендентные, дифференциальные, интегральные),

• аппроксимационные задачи (интерполяция, экстраполяция, численное интегрирование и дифференцирование),

Однако по мере усложнения объекта моделирования построение аналитической модели превращается в трудноразрешимую проблему. Тогда исследователь вынужден использовать имитационное моделирование.

В зависимости от характера исследуемых реальных процессов и систем математические модели могут быть:

В детерминированных моделях предполагается отсутствие всяких случайных воздействий, элементы модели (переменные, математические связи) достаточно точно установленные, поведение системы можно точно определить. При построении детерминированных моделей чаще всего используются алгебраические уравнения, интегральные уравнения, матричная алгебра.

Стохастическая модель учитывает случайный характер процессов в исследуемых объектах и системах, который описывается методами теории вероятности и математической статистики.

По виду входной информации модели разделяются на :

По поведению моделей во времени они разделяются на :

Статические модели описывают поведение объекта, процесса или системы в какой-либо момент времени. Динамические модели отражают поведение объекта, процесса или системы во времени.

По степени соответствия между математической моделью и реальным объектом, процессом или системой математические модели разделяют на :

• изоморфные (одинаковые по форме),

• гомоморфные (разные по форме).

Информационное моделирование.
Классификация математических моделей

На этом шаге мы рассмотрим классификацию математических моделей .

Остановимся на этом чуть подробнее и поясним на примерах. Моделируя движение кометы, вторгшейся в Солнечную систему, мы описываем (предсказываем) траекторию ее полета, расстояние, на котором она пройдет от Земли и т. д., т.е. ставим чисто описательные цели. У нас нет никаких возможностей повлиять на движение кометы, что-то изменить.

На другом уровне процессов мы можем воздействовать на них, пытаясь добиться какой-то цели. В этом случае в модель входит один или несколько параметров, доступных нашему влиянию. Например, меняя тепловой режим в зернохранилище, мы можем стремиться подобрать такой, чтобы достичь максимальной сохранности зерна, т. е. оптимизируем процесс.

Часто приходится оптимизировать процесс по нескольким параметрам сразу, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, организовать питание больших групп людей (в армии, летнем лагере и др.) как можно полезнее и как можно дешевле. Ясно, что эти цели, вообще говоря, совсем не совпадают, т.е. при моделировании будет несколько критериев, между которыми надо искать баланс.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *