на бесконечном поле есть горизонтальная и вертикальная стены правый конец горизонтальной стены

На бесконечном поле есть горизонтальная и вертикальная стены правый конец горизонтальной стены

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно снизу свободно слева свободно справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

На бесконечном поле есть горизонтальная и вертикальная стены. Правый конец горизонтальной стены соединён с верхним концом вертикальной стены. Длины стен неизвестны. В каждой стене есть ровно один проход, точное место прохода и его ширина неизвестны. Робот находится в клетке, расположенной непосредственно слева от вертикальной стены у её нижнего конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно под горизонтальной стеной и левее вертикальной стены. Проходы должны остаться незакрашенными. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рисунок).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

15.2 Напишите программу, которая в последовательности натуральных чисел определяет максимальное число, кратное 4. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, кратное 4. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — максимальное число, кратное 4.

Пример работы программы:

Входные данныеВыходные данные
3
8
16
11
16

15.1 Следующий алгоритм выполнит требуемую задачу.

Источник

На бесконечном поле есть горизонтальная и вертикальная стены правый конец горизонтальной стены

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно снизу свободно слева свободно справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

На бесконечном поле есть горизонтальная и вертикальная стены. Правый конец горизонтальной стены соединён с верхним концом вертикальной стены. Длины стен неизвестны. В каждой стене есть ровно один проход, точное место прохода и его ширина неизвестны. Робот находится в клетке, расположенной непосредственно под горизонтальной стеной у её левого конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно ниже горизонтальной стены и левее вертикальной стены. Проходы должны остаться незакрашенными. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рисунок).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

15.2 Напишите программу, которая в последовательности натуральных чисел определяет максимальное число, кратное 5. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, кратное 5. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — максимальное число, кратное 5.

Пример работы программы:

Входные данныеВыходные данные
3
10
25
12
25

15.1 Следующий алгоритм выполнит требуемую задачу.

Источник

На бесконечном поле есть горизонтальная и вертикальная стены правый конец горизонтальной стены

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно снизу свободно слева свободно справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

На бесконечном поле есть горизонтальная и вертикальная стены. Правый конец горизонтальной стены соединён с нижним концом вертикальной стены. Длины стен неизвестны. В горизонтальной стене есть ровно один проход, точное место прохода и его ширина неизвестны.Робот находится в клетке, расположенной рядом с вертикальной стеной слева от её верхнего конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно выше и ниже горизонтальной стены. Проход должен остаться незакрашенным. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рисунок).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

15.2 Напишите программу, которая в последовательности натуральных чисел определяет количество чисел, оканчивающихся на 3. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, оканчивающееся на 3. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — количество чисел, оканчивающихся на 3.

Пример работы программы:

Входные данныеВыходные данные
3
13
23
24
2

15.1 Следующий алгоритм выполнит требуемую задачу.

Источник

На бесконечном поле есть горизонтальная и вертикальная стены правый конец горизонтальной стены

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот не пройдёт. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно снизу свободно слева свободно справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

На бесконечном поле есть горизонтальная и вертикальная стены. Правый конец горизонтальной стены соединён с нижним концом вертикальной стены. Длины стен неизвестны. В каждой стене есть ровно один проход, точное место прохода и его ширина неизвестны. Робот находится в клетке, расположенной рядом с вертикальной стеной справа от её верхнего конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно выше горизонтальной стены и правее вертикальной стены. Проходы должны остаться незакрашенными. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рисунок).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в файле.

15.2 Напишите программу, которая в последовательности натуральных чисел определяет минимальное число, кратное 3. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, кратное 3. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число – минимальное число, кратное 3.

Пример работы программы:

Входные данныеВыходные данные
3
21
12
31
12

15.1 Следующий алгоритм выполнит требуемую задачу.

Источник

На бесконечном поле есть горизонтальная и вертикальная стены правый конец горизонтальной стены

Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно снизу свободно слева свободно справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

На бесконечном поле есть горизонтальная и вертикальная стены. Правый конец горизонтальной стены соединён с верхним концом вертикальной стены. Длины стен неизвестны. В горизонтальной стене есть ровно один проход, точное место прохода и его ширина неизвестны. Робот находится в клетке, расположенной рядом с вертикальной стеной слева от её нижнего конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно выше и ниже горизонтальной стены. Проход должен остаться незакрашенным. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рисунок).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

15.2 Напишите программу, которая в последовательности натуральных чисел определяет сумму чисел, оканчивающихся на 4. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, оканчивающееся на 4. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — сумму чисел, оканчивающихся на 4.

Пример работы программы:

15.1 Следующий алгоритм выполнит требуемую задачу.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Входные данныеВыходные данные