назовите изогнутый спектр цветных линий при разложении светового луча поле чудес
Почему радуга именно 7 таких цветов и в таком порядке?
Как рождается радуга?
Когда идет дождь, в воздухе сконцентрировано невероятно большое количество капель воды. У каждой капельки есть своя роль малюсенькой призмы. Лучи солнца, проходящие сквозь дождевые капли, через призмы, преломляются в дождевых каплях. В итоге, от разложения световых лучей создается большой изогнутый спектр – цветные линии, отражающиеся на противоположной стороне на небе. А так как их много, то радуга занимает полнеба. Проследив путь луча, который проходит сквозь каплю, можно увидеть, что преломившись у границы капли, луч проникает в нее и доходит до противоположной стороны. Часть луча преломляется и покидает каплю, часть снова отправляется внутри капли к другой границе. Каждый луч белого цвета преломляется в капле и разлагается в цветовой спектр, и из каплю появляется пучок расходящихся лучей разного цвета.
Стоит отметить, что радуга может появиться тогда, когда солнцем освещается завеса дождя и лишь в той стороне, которая противоположна солнцу. Находится она именно между дождем и солнцем, при этом солнце расположено сзади, а дождь впереди – перед нами. В противном случае, радуга будет не видна. По мере уменьшения дождя блекнет и радуга, а после и вовсе пропадает.
Может ли появиться радуга без дождя?
И такое чудо случается. Зимой воздух полон кристалликами льда. Они также способны разделять белый цвет на цвета радуги, а потому она может появляться даже в зимний период. Радуга может появиться рядом с водопадами, фонтанами, на фоне капельной завесы, разбрызгиваемой поливальной машиной, либо поливальной установкой. Возможно самостоятельное создание завесы капель, используя при этом ручной пульверизатор. Для этого нужно встать спиной к Солнцу, и перед вами появится радуга, созданная собственноручно.
Какого вида будет радуга, насколько яркими будут цвета и широкими полосы, определяется размерами и количеством капель в воздухе. Если дождевые капли большие, то и радуга будет ярче. При мелких каплях радуга будет бледной, трудно заметной. Люди видят радугу, пока не кончится дождь. Кстати, каждый человек видит свою радугу. Если ехать по дороге и смотреть на радугу, то она будет перемещаться вместе с вами.
О цветах радуги
Как показали исследования, человеческому взгляду под силу различить 160 оттенков цветов. Это происходит из-за того, что между цветами отсутствует четкая граница, а переходят они один в другой через оттенки. Основными цветами радуги являются:
Именно они образуют все остальные цвета радуги. Они чередуются в той же последовательности, что и в спектре, который получается при пропускании пучка лучей солнца сквозь призму. Цвет внутренней (обращенной к поверхности Земли) крайней области радуги – фиолетовый, а внешней крайней области – красный.
Последовательность цветов радуги:
Между ними есть множество других оттенков, из-за чего и не виден четкий переход одного цвета к другому. Цвета радуги находится в строго определенном порядке.
Почему именно 7 цветов?
Радуге приписывали эту цифру неспроста. Это древнее число с мистическим смыслом – 7 дней недели, 7 смертельных грехов. А отец 7-цветовой радуги – Ньютон. Для лучшего запоминания их последовательности, люди сочинили разные фразу, вроде:
«Каждый Охотник Желает Знать, Где Сидит Фазан».
В этой фразе, как и подобных ей, каждое слово начинается с первой буквы названия конкретного цвета.
Назовите изогнутый спектр цветных линий при разложении светового луча поле чудес
Что можно сказать о величине коэффициента отражения видимого света для сажи?
Вопрос о причине различной окраски тел занимал ум человека уже давно. Большое значение в понимании этого вопроса имели работы Ньютона (начавшиеся около 1666 г.) по разложению белого света в спектр (см. рисунок).
Свет от фонаря освещает узкое прямоугольное отверстие S (щель). При помощи линзы L изображение щели получается на экране MN в виде узкого белого прямоугольника S’. Поместив на пути лучей призму Р, обнаружим, что изображение щели сместится и превратится в окрашенную полоску, переходы цветов в которой от красного к фиолетовому подобны наблюдаемым в радуге. Это радужное изображение Ньютон назвал спектром.
В таблице приведены в качестве примера значения показателя преломления в зависимости от длины волны для двух сортов стекла и воды.
(цвет)
флинт
Цвет окружающих нас предметов может быть различным благодаря тому, что световые волны разной длины в луче белого цвета рассеиваются, поглощаются и пропускаются предметами по-разному. Доля светового потока, участвующая в каждом из этих процессов, определяется с помощью соответствующих коэффициентов: отражения ρ, пропускания и поглощения α.
Если, например, у какого-либо тела для красного света коэффициент пропускания велик, коэффициент отражения мал, а для зелёного — наоборот, то это тело будет казаться красным в проходящем свете и зелёным в отражённом. Такими свойствами обладает, например, хлорофилл — вещество, содержащееся в листьях растений и обусловливающее их цвет. Раствор (вытяжка) хлорофилла в спирту оказывается на просвет красным, а на отражение — зелёным.
Для очень белого непрозрачного тела коэффициент отражения близок к единице для всех длин волн, а коэффициенты поглощения и пропускания очень малы. Прозрачное стекло имеет малые коэффициенты отражения и поглощения, а коэффициент пропускания близкий к единице для всех длин волн.
Различие в значениях коэффициентов и ρ и их зависимость от цвета (длины волны) падающего света обусловливают чрезвычайное разнообразие в цветах и оттенках различных тел.
Вставьте в предложение пропущенные слова, используя информацию из текста.
На рисунке показана схема опыта по разложению света в спектр с помощью __________________________________________________________. Согласно опыту в наибольшей степени преломляются _________________________________________.
В ответ запишите слова (сочетания слов) по порядку, без дополнительных символов.
На месте первого пропуска должно быть слово «призмы» или словосочетание «стеклянной призмы», на месте второго — словосочетание «фиолетовые лучи».
Дисперсия света. Цветовой диск Ньютона
Введение
Мы живем в мире разнообразных световых явлений – радуга, полярные сияния, голубое небо. Тем, кто не знаком с причинами их возникновения, эти световые явления кажутся необыкновенными и загадочными.
В повседневной жизни мы встречаемся со многими световыми явлениями, но обычно не задумываемся над ними – насколько они привычны для нас, а вот объяснить их часто затрудняемся. Например, чайная ложка, опущенная в стакан с водой, кажется нам надломленной или сломанной, в зависимости от того, с какой стороны мы смотрим на ложку. Мы видим окружающие нас предметы многоцветными при освещении Солнцем или яркой лампой, но с наступлением сумерек или при ослаблении света цветность предметов блекнет.
Все эти явления связаны с понятием «свет». В обыденной речи «свет» мы используем в самых разных значениях: ученье – свет, а неученье – тьма, свет мой, солнышко, скажи … В физике термин «свет» имеет гораздо более определенное значение. Опытным путем было установлено, что свет нагревает тела, на которое падает. Следовательно, он передает этим телам энергию. Мы также знаем, что одним из видов теплопередачи является излучение, следовательно, Свет – это электромагнитное излучение, воспринимаемое человеческим глазом и вызывающее зрительные ощущения. Свет обладает множественными свойствами, одним таким свойством света является – дисперсия. Мы всегда сталкиваемся с этим явлением в жизни, но не всегда замечаем этого. Но если быть внимательным, то явление дисперсии всегда нас окружает. Одно из таких явлений это обычная радуга. На первый взгляд радуга это что-то простое, на самом деле при возникновении радуги происходят сложные физические процессы. Поэтому мы выбрали тему дисперсия света для того, чтобы глубже понять физические процессы и явления, происходящие в природе. Это очень интересная тема и мы постараемся в своем проекте представить все моменты, происходящие в истории развития науки о свете и показать опыты по демонстрации дисперсии света, а так же свою экспериментальную установку, разработанную специально для наблюдения дисперсии света, которая впоследствии может быть использована на уроках физики при изучении данной темы.
Цель проекта – изучение понятия «Дисперсия света» и изготовление экспериментальной установки «Цветовой диск Ньютона».
Задачи:
I. Теоритическая часть
1.1. Открытие Исаака Ньютона
В 1665–1667 годах Исаак Ньютон – английский физик и математик занимаясь усовершенствованием телескопов, обратил внимание на то, что изображение, даваемое объективом, по краям окрашено, данное наблюдение его очень заинтересовало, и он решил разгадать природу возникновения цветных полос. В это время в Англии свирепствовала эпидемия чумы, и молодой Исаак Ньютон решил укрыться от неё в своём родном Вулсторпе. Перед отъездом в деревню он приобрёл стеклянные призмы, чтобы «произвести опыты со знаменитыми явлениями цветов». Исследуя природу цветов, Ньютон придумал и выполнил целый комплекс различных оптических экспериментов. Некоторые из них без существенных изменений в методике, используются в физических лабораториях до сих пор. Главный опыт был традиционным. Проделав небольшое отверстие в ставне окна затемнённой комнаты, Ньютон поставил на пути пучка лучей, проходивших через это отверстие, стеклянную призму. На противоположной стене он получил изображение в виде полоски чередующихся цветов (рис. 1).
Рисунок 1. Эксперимент И. Ньютона
1.2. Спектральный состав света
Полученную таким образом цветную полоску солнечного света Ньютон разделил на семь цветов радуги – красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый (рис. 2).
Рисунок 2. Разложение белого пучка света на спектр
Спектр – (от латинского «spectrum» – видение) непрерывный ряд цветных полос, получается путем разложения луча белого света на составные части (рис. 3).
Если же рассматривать спектр без подобного предубеждения, то полоса спектра распадается на три главные части – красную, желто-зелёную и сине-фиолетовую. Остальные цвета занимают сравнительно узкие области между этими основными.
Все цвета спектра содержатся в самом солнечном свете, а стеклянная призма лишь разделяет их, так как различные цвета по-разному преломляются стеклом. Наиболее сильно преломляются фиолетовые лучи, слабее всего – красные.
1.3. Дисперсия света
Проходя через призму, луч солнечного света не только преломляется, но и разлагается на различные цвета.
Дисперсией называется явление разложения света на цвета при прохождении света через вещество.
Прежде чем разобраться в сути этого явления, необходимо рассмотреть преломлении световых волн. Изменение направления распространения волны при прохождении из одной среды в другую называется преломлением.
Положим на дно пустого не прозрачного стакана монету или другой небольшой предмет. Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой. Не меняя положения головы, будем наливать в стакан воду. По мере повышения уровня воды дно стакана с монетой как бы приподнимается. Монета, которая ранее была видна лишь частично, теперь будет видна полностью. Эти явления объясняются изменением направления лучей на границе двух сред — преломлением света (рис. 4).
Рисунок 4. Преломление светового луча
Закон преломления света: падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости.
sin α | = n21 |
sin β |
где n21 – относительный показатель преломления второй среды относительно первой.
Если луч переходит в какую-либо среду из вакуума, то
где n – абсолютный показатель преломления второй среды.
Абсолютный показатель преломления – физическая величина, равная отношению синуса угла падения луча к синусу угла преломления при переходе луча из вакуума в эту среду.
Чем больше у вещества показатель преломления, тем более оптически плотным считается это вещество. Например, рубин – среда оптически более плотная, чем лёд.
Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Это было доказано французским математиком Пьером Ферма и голландским физиком Христианом Гюйгенсом. Они доказали, что
Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах:
sin α | = n21 = | V1 |
sin β | V2 |
Скорость света в любом веществе меньше скорости света в вакууме. Причиной уменьшения скорости света в среде является взаимодействие световой волны с атомами и молекулами вещества. Чем сильнее взаимодействие, тем больше оптическая плотность среды, и тем меньше скорость света. Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой.
Абсолютный показатель преломления определяется скоростью распространения света в данной среде, которая зависит от физического состояния среды, т. е. от температуры вещества его плотности. Показатель преломления зависит также и от характеристик самого света. Для красного света он меньше, чем для зеленого, а для зеленого – меньше, чем для фиолетового.
Дисперсия света – зависимость показателя преломления и скорости света от частоты световой волны.
Абсолютный показатель преломления стекла n, из которого изготовлена призма, зависит не только от свойств стекла, но и от частоты (от цвета) проходящего через него света. В опыте Ньютона при разложении в спектр пучка белого света, лучи фиолетового цвета, имеющие большую частоту, чем красные, преломились сильнее красных, поэтому на экране можно наблюдать цветную полосу – спектр (рис. 5).
Рисунок 5. Преломление светового луча при прохождении через более оптически-плотную среду – стеклянную призму
1.4. Радуга
Дисперсией света объясняются многие явления природы, например Радуга. В результате преломления солнечных лучей в каплях воды во время дождя на небе появляется разноцветная дуга – радуга (рис. 6).
Рисунок 6. Природное явление радуга
Радуга — это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя.
Разноцветная дуга появляется оттого, что луч света преломляется в капельках воды, а затем, возвращаясь к наблюдателю под углом в 42 градуса, расщепляется на составные части от красного до фиолетового цвета (рис. 7).
Рисунок 7. Преломления света в капле дождя
Прежде всего, заметим, что радуга может наблюдаться только в стороне, противоположной Солнцу. Если встать лицом к радуге, то Солнце окажется сзади. Наблюдаемые в радуге цвета чередуются в такой же последовательности, как и в спектре, получаемом при пропускании пучка солнечных лучей через призму. При этом внутренняя (обращенная к поверхности Земли) крайняя область радуги окрашена в фиолетовый цвет, а внешняя крайняя область — в красный.
Яркость оттенков и ширина радуги зависят от размера капель дождя. Чем крупнее капли, тем уже и ярче радуга, тем в ней больше красного насыщенного цвета. Если идёт мелкий дождик, то радуга получается широкая, но с блёклыми оранжевыми и жёлтыми краями.
Чаще всего видим радугу в форме дуги, но дуга – это лишь часть радуги. Радуга имеет форму окружности, но мы наблюдаем лишь половину дуги, потому что её центр находится на одной прямой с нашими глазами и Солнцем (рис. 8).
Рисунок 8. Схема образования радуги относительно наблюдателя
Целиком радугу можно увидеть лишь на большой высоте, с борта самолёта или с высокой горы (рис. 9).
Рисунок 9. Радуга с борта самолета
II. Практическая часть
2.1. Демонстрация экспериментов по наблюдению дисперсии света
Изучив историю открытия дисперсии света, и процесс образования спектра, мы решили опытным путем пронаблюдать дисперсию света. Для этого подготовили и провели видео эксперименты, которые можно использовать на уроках физики при изучении темы Дисперсия света.
Эксперимент №1. Получение радужного спектра на мыльных пленках
Для проведения эксперимента понадобится: ёмкость с мыльным раствором, проволочная рамка.
Ход эксперимента: наливаем мыльный раствор в ёмкость, опускаем рамку в раствор, образуется мыльная плёнка. На плёнке появляется радужные полосы.
Эксперимент №2. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении сквозь стеклянную призму
Для проведения эксперимента понадобится: призма, источник света (фонарик телефона), экран (лист белой бумаги).
Ход эксперимента: устанавливаем призму на экспериментальном столике. С одной стороны столика устанавливаем экран. Свет направляем на призму и на экране наблюдаем радужные полосы.
Эксперимент № 3. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении через воду
Для проведения эксперимента понадобится: зеркало, источник света (фонарик телефона), экран (лист белой бумаги), ёмкость с водой.
Ход эксперимента: в ёмкость наливаем воду и кладем на дно зеркало. Направляем на зеркало свет, чтобы отраженный свет попадал на экран.
1.2. Цветовой диск Ньютона
Ньютон провел обычный опыт со стеклянной призмой и заметил разложение света на спектр. Направив луч дневного света на призму, он увидел на экране различные цвета радуги. После увиденного он выделил из них семь основных цветов. Это были такие цвета как: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый (каждый охотник желает знать где сидит фазан). Ньютон выбрал лишь семь цветов по той причине, что были наиболее яркие, он также говорил, что в музыке всего семь нот, но сочетание их, различные вариации позволяют получить совершенно различные мелодии. Проведя обратный опыт, т.е. полученный спектр он направил на грань другой призмы и в результате опыта Ньютон снова получил белый свет (рис.10).
Рисунок 10. Первая призма разлагает белый свет в спектр, вторая вновь собирает спектр в белый свет
На основе этих простых опытов Ньютону пришла в голову мысль о создании круга состоящего из семи секторов и закрашенных определенными цветами в результате вращения, которого произойдет их смешение и мы получим белую раскраску этого круга. В последствии этот круг стали называть Цветной диск Ньютона (рис. 11).
Рисунок 11. Цветной диск Ньютона
Попробуем повторить опыт Ньютона. Для этого создадим экспериментальную установку, которая состоит из компьютерного кулера и прикрепленного к нему цветового диска, также блока питания (рис. 12).
Рисунок 12. Экспериментальная установка по получению белого света из спектра
Кулер создает большой проток воздуха, и служит для того что бы привести во вращение цветной диск. Так как наша установка подключается в сеть с напряжением 220 В, а кулер рассчитан на 12 В, поэтому к кулеру подключили блок питания для понижения напряжения с 220 В на 12 В. Для безопасности установка изолирована в пластмассовом боксе.
В результате при включении установки в розетку сети питания цветной круг, закрепленный на кулере, начнет вращаться, и мы увидим желтовато-белую окраску круга (рис. 13).
Рисунок 13. Результат вращения цветового диск Ньютона
Окраска круга при вращении желтовато-белая по двум причинам:
Таким образом, нам удалось повторить эксперименты Ньютона по разделению белого света на спектр и наоборот получение белого света из спектра.
Заключение
В результате проведенных опытов и экспериментов нами были сделаны следующие выводы:
Таким образом, посредством теоретического изучения данной темы и ее практического подтверждения и была достигнута основная цель проекта.