Нормальный закон распределения вероятностей имеет три параметра
Лекция 7. Нормальный закон распределения вероятностей
Нормальный закон распределения вероятностей. Нормальная кривая. Функция Лапласа. Вычисление вероятности попадания в заданный интервал нормальной случайной величины. Правило трех сигм. Показательное распределение. Функция надежности. Показательный закон надежности.
Лекция 6.
Определение 6.1. Непрерывная случайная величина называется распределенной по нормальному закону, если ее плотность распределения имеет вид:

Замечание. Таким образом, нормальное распределение определяется двумя параметрами: а и σ.
График плотности нормального распределения называют нормальной кривой (кривой Гаусса). Выясним, какой вид имеет эта кривая, для чего исследуем функцию (6.1).
1) Область определения этой функции: (-∞, +∞).
2) f(x) > 0 при любом х (следовательно, весь график расположен выше оси Ох).
3) 
4) 



Найдем вид функции распределения для нормального закона:

Перед нами так называемый «неберущийся» интеграл, который невозможно выразить через элементарные функции. Поэтому для вычисления значений F(x) приходится пользоваться таблицами. Они составлены для случая, когда а = 0, а σ = 1.
Определение 6.2. Нормальное распределение с параметрами а = 0, σ = 1 называется нормированным, а его функция распределения

— функцией Лапласа.
Замечание. Функцию распределения для произвольных параметров можно выразить через функцию Лапласа, если сделать замену: 

Найдем вероятность попадания нормально распределенной случайной величины на заданный интервал:

Пример. Случайная величина Х имеет нормальное распределение с параметрами а = 3, σ = 2. Найти вероятность того, что она примет значение из интервала (4, 8).
Полученный результат позволяет сформулировать правило «трех сигм»: если случайная величина распределена нормально, то модуль ее отклонения от х = а не превосходит 3σ.
Показательное распределение.
Определение 6.3. Показательным (экспоненциальным)называют распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью

В отличие от нормального распределения, показательный закон определяется только одним параметром λ. В этом его преимущество, так как обычно параметры распределения заранее не известны и их приходится оценивать приближенно. Понятно, что оценить один параметр проще, чем несколько.
Найдем функцию распределения показательного закона:


Теперь можно найти вероятность попадания показательно распределенной случайной величины в интервал (а, b):

Пусть элемент (то есть некоторое устройство) начинает работать в момент времени t0 = 0 и должен проработать в течение периода времени t. Обозначим за Т непрерывную случайную величину – время безотказной работы элемента, тогда функция F(t) = p(T > t) определяет вероятность отказа за время t. Следовательно, вероятность безотказной работы за это же время равна
Эта функция называется функцией надежности.
Показательный закон надежности.
Часто длительность безотказной работы элемента имеет показательное распределение, то есть
Следовательно, функция надежности в этом случае имеет вид:
Определение 6.4. Показательным законом надежности называют функцию надежности, определяемую равенством
где λ – интенсивность отказов.
Нормальный закон распределения
На рисунке ниже показан нормальный закон распределения случайной величины X в виде гистограммы.
Рисунок 1 — Пример нормального закона распределения
Случайная непрерывная величина X имеет нормальный закон распределения, если ее плотность распределения вероятности имеет выражение:
где m, σ — параметры распределения СВ;
mxили m — математическое ожидание случайной величины,

σ 2 — дисперсия.
Формула функции распределения СВ нормального закона определяется по формуле:

На рисунке 2 показана функция плотности нормального закона распределения при m=0 и σ=1;
При m=0 и σ=1 на рисунке 2 нормальное распределение СВ называется стандартным нормальным распределением СВ (таблица плотности вероятности нормальной случайной величины), плотность которого равна

а функция распределения или функция Лапласа (таблица функции Лапласа)

Вероятность попадания в заданный интервал (α; β) распределенной случайной величины по нормальному закону с параметрами a, σ вычисляется по формуле:

с использованием интеграла вероятности
Из этих соотношений легко получить вероятность отклонения распределения случайной величины X от своего математического ожидания m:
,где δ — величина отклонения.
Полагая в этой формуле δ=3σ, получаем
Замечание
Нормальный закон распределения СВ является основным (базовым), часто встречается на практике и его также называют законом Гаусса.
Используется для построения доверительных интервалов, применяется для моделирования разброса при стрельбе, измерения ошибок и т.д.
При n→∞ биномиальное распределение быстро начинает приближаться к нормальному закону распределения СВ.
Пример 1
Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины X соответственно равны 20 и 5. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (15, 25).
Решение
Так как функция Ф(х) нечётна:
По таблице функции Лапласа находим значение Ф(1) =0,3413
По таблице функции Лапласа находим значение Ф(1.41) =0,3413
Пример 3
На станке изготавливается некоторая деталь. Ее длина представляет собой случайную величину, распределенную по нормальному закону, и имеет среднее значение 20 см и среднее квадратическое отклонение равную 0,2 см. Найти вероятность того, что длина детали будет заключена между 19,7 см и 20.3 см
Решение
По таблице функции Лапласа находим значение Ф(1) =0,3413
Пример 4
Производится измерение диаметра вала без систематических (одного знака) ошибок. Случайные ошибки измерения X подчинены нормальному закону со средним квадратическим отклонением σ=10 мм. Найти вероятность того, что измерение будет произведено с ошибкой, не превосходящей по абсолютной величине 15 мм.
Решение
Математическое ожидание равно нулю, δ=15, σ=10, тогда
По таблице функции Лапласа находим значение Ф(1.5) =0,43319
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.5 / 5. Количество оценок: 4
Нормальный закон распределения
Нормальный закон распределения случайной величины
Значение для исследований в области физической культуры и спорта (ФКиС)
Нормальное распределение случайной величины (гауссово распределение, распределение Гаусса, распределение Гаусса-Лапласа) – одно из непрерывных распределений, имеющее основополагающую роль в математической статистике. Причинами это являются:
Однако в природе и в области ФКиС встречаются экспериментальные распределения, для описания которых модель нормального распределения малопригодна.
История изучения нормального распределения
Первые исследования по теории вероятностей проводили математик, механик, физик Блез Паскаль и математик Пьер Ферма в середине XVII века. Эти исследования выполнялись по просьбе Шевалье де Мере, азартного игрока в кости, который пытался понять природу выигрыша. В дальнейшем эти исследования заложили основы теории вероятностей (Дж. Гласс, Дж. Стэнли, 1976).
Дальнейшее развитие теория вероятностей получила в XVIII веке. В 1713 году была опубликована книга швейцарского математика Якоба Бернулли «Искусство предположений». В этой книге был рассмотрен ряд вопросов теории вероятностей. Якоб Бернулли ввёл значительную часть современных понятий теории вероятностей, а также изложил правила подсчёта вероятности для сложных событий и дал первый вариант «закона больших чисел», разъясняющего, почему частота события в серии испытаний не меняется хаотично, а в некотором смысле стремится к своему предельному теоретическому значению (то есть вероятности).
В последствии (в 1730 г.) шотландский математик Джеймс Стирлинг опубликовал формулу, аппроксимирующую произведение первых n чисел. Это позволило упростить решение ряда задач, которые встречаются в теории вероятностей. Однако все еще эти задачи оставались трудно разрешимыми.
Эту задачу решил английский математик Абрахам де Муавр. В работе «Доктрина случайностей», которая была издана в 1738 году он привел формулу, аппроксимирующую биномиальное распределение события, вероятность которого была равна 0,5 (рис.1). То есть он нашел уравнение кривой, проходящей через точки графика, изображенного на рис. 1. Эта была формула, которую впоследствии стали называть формулой нормального распределения вероятностей. Появление формулы нормального распределения значительно упростило расчеты вероятностей событий.
В начале XIX века (в 1812 г.) французский математик, механик, физик и астроном Пьер-Симон де Лаплас обобщил результаты А. Муавра для произвольного биномиального распределения.

Одновременно с П. Лапласом в 1809 году немецкий математик, механик, физик и астроном Карл Фридрих Гаусс в сочинении «Теория движения небесных тел» использовал формулу нормального распределения для описания случайных ошибок, возникающих в результате многократных измерений движений небесных тел. К.Ф. Гаусс внес настолько большой вклад в разработку теории нормального распределения, что впоследствии это распределение стали назвать гауссово распределение или распределение Гаусса-Лапласса.
В начале ХХ века бельгийский математик, астроном и социолог Адольф Кетле одним из первых применил нормальный закон распределения случайной величины к анализу биологических и социальных процессов. Изучая распределение солдат американской армии по росту, Адольф Кетле обратил внимание, что распределение роста подчиняется нормальному закону. Он писал: «…Человеческий рост, изменяющийся, по-видимому, самым случайным образом, тем не менее подчиняется самым точным законам, и эта особенность свойственна не только росту, она проявляется также в весе, силе, быстроте передвижений человека, во всех его физических … и нравственных способностях. Этот великий принцип… разнообразящий проявление человеческих способностей…кажется нам одним из самых удивительных законов мира» (А.Кетле, 1911).
В настоящее время нормальное распределение широко используется в биологии, медицине, экономике и других областях науки.
Более подробно о методах статистической обработки данных рассказано в книгах:
Формула нормального распределения
Формула, описывающая нормальный закон распределения случайной величины, имеет следующий вид:
где: μ — генеральное среднее арифметическое; σ — генеральное стандартное отклонение, е — основание натуральных логарифмов, приблизительно равное 2,719, π — число, приблизительно равное 3,142; xi — конкретное значение признака.
Пусть Вас не пугает эта формула. Сейчас мы с ней разберемся. Для начала давайте посмотрим, как выглядит график, построенный на основе этой формулы. Зададим значения μ=0 и σ=1. Хочу заметить, что μ и σ — это просто числа. Их еще называют параметрами распределения. Поэтому критерии, в формулу расчета которых входят параметры распределения называют параметрическими. Например, параметрическим критерием является t-критерий Стьюдента. В формулу расчета критерия Стьюдента входят параметры μ и σ. Кривая нормального распределения вероятностей имеет вид (рис.2).
Рис.2. График плотности вероятностей нормального распределения при μ=0 и σ=1.
Если мы поменяем параметры, то получим следующее. Изменение параметра μ будет сдвигать график вдоль оси Х. Например при μ=3 график сместится вправо вдоль оси Х (рис.3).
Рис.3. График плотности вероятностей нормального распределения при μ=3 и σ=1.
Рис.4. График плотности вероятностей нормального распределения при μ=0 и σ=3.
Свойства нормального распределения
Нормированное отклонение
В области математической статистики важное место занимает нормированное отклонение (t) – показатель, представляющий отклонение той или иной варианты от средней величины, отнесенное к значению стандартного отклонения. Нормированное отклонение рассчитывает по формуле:
Нормированное отклонение позволяет установить, на сколько «сигм» отклоняются варианты от среднего значения. Например, необходимо определить насколько «сигм» отклоняется значение роста человека, равное 180 см от среднего, если среднее арифметическое равно 170 см, а «сигма», то есть стандартное отклонение равно 10 см. Подставив эти значения в формулу, получим: t= (180-170)/10 = 1.
Ответ: значение роста человека, равное 180 см отклоняется от среднего на одну «сигму».
Нормированное нормальное распределение
Рис.5. Нормированное нормальное распределение роста мужчин с параметрами: µ=0; σ = 1.
Формула нормального распределения описывает целое семейство кривых, зависящих от двух параметров μ и σ, которые могут принимать любые значения. Поэтому возможно бесконечно много нормально распределенных совокупностей.
Чтобы избежать неудобств, связанных с расчетами для каждого конкретного случая в до компьютерную эпоху было предложено использовать нормированное (стандартное) нормальное распределение, для которого были составлены подробные таблицы. Нормированное нормальное распределение имеет параметры: µ=0; σ = 1 (рис.1, 5). Это распределение получается, если пронормировать нормально распределенную величину Х по формуле:
Для нормированного нормального распределения характерно, что в интервал µ± σ попадают 68 % всех результатов, в интервал µ± 2σ попадают 95% всех результатов, в интервал µ± 3σ попадают 99 % всех результатов.
Критерии согласия
Чтобы проверить, соответствует ли распределение нормальному закону, существует много методов.
Можно использовать свойства нормального распределения (равенство среднего, моды и медианы).
Однако более точные результаты дают критерии согласия. В зависимости от объема выборки (n) следует использовать различные критерии:
Нормальный закон распределения вероятностей
Без преувеличения его можно назвать философским законом. Наблюдая за различными объектами и процессами окружающего мира, мы часто сталкиваемся с тем, что чего-то бывает мало, и что бывает норма: 
Перед вами принципиальный вид функции плотности нормального распределения вероятностей, и я приветствую вас на этом интереснейшем уроке.
Какие можно привести примеры? Их просто тьма. Это, например, рост, вес людей (и не только), их физическая сила, умственные способности и т.д. Существует «основная масса» (по тому или иному признаку) и существуют отклонения в обе стороны.
Это различные характеристики неодушевленных объектов (те же размеры, вес). Это случайная продолжительность процессов, например, время забега стометровки или превращения смолы в янтарь. Из физики вспомнились молекулы воздуха: среди них есть медленные, есть быстрые, но большинство двигаются со «стандартными» скоростями.
Более того, даже дискретные распределения бывают близкИ к нормальному, и в конце урока мы раскроем важный секрет «нормальности». Но прежде, математика, математика, математика, которая в древности не зря считалась философией!
Непрерывная случайная величина 



Данная функция получила фамилию некоронованного короля математики, и я не могу удержаться, чтобы не запостить: 
Одну из таких купюр мне довелось лично держать в руках, и ещё будучи школьником я внимательно изучил функцию Гаусса. Педантичные немцы отобразили все её особенности (на картинке видно плохо), и мы с толком, с расстановкой приступаем к их немцев изучению.
Начнём с того, что для функции 


Любопытно отметить, что сам по себе неопределённый интеграл 



Следующие замечательные факты я тоже приведу без доказательства:


Эти значения выводятся с помощью общих формул математического ожидания и дисперсии, и желающие / нуждающиеся могут ознакомиться с подробными выкладками в учебной литературе, и совсем здОрово, если вам удастся провести их самостоятельно.
Ну а мы переходим к насущным практическим вопросам. Практики сегодня будет много, и она будет интересна не только «чайникам», но и более подготовленным читателям:
Нормально распределённая случайная величина задана параметрами 
Несмотря на кажущуюся простоту задания, в нём существует немало тонкостей.
Первый момент касается обозначений. Они стандартные, и никаких вольностей: математическое ожидание обозначают буквой 



Решение начнём шаблонной фразой: функция плотности нормально распределённой случайной величины имеет вид 

Первая, более лёгкая часть задачи выполнена. Теперь график. Вот на нём-то, на моей памяти, студентов «заворачивали» десятки раз, причём, многих неоднократно. По той причине, что график 
Сначала полная картина, затем комментарии:
Строим декартову систему координат. При выполнении чертежа от руки во многих случаях оптимален следующий масштаб:
по оси абсцисс: 2 тетрадные клетки = 1 ед.;
по оси ординат: 2 тетрадные клетки = 0,1 ед., при этом саму ось следует расположить из тех соображений, что в точке 

И логично, что в первую очередь удобно найти максимум функции. В данном примере он находится в точке 

Отмечаем вершину графика (красная точка).
Далее вычислим значения функции при 

Отмечаем синим цветом.
Внимание! 

Далее отклоняемся от центра ещё на одно стандартное отклонение 
Отмечаем точки на чертеже (зелёный цвет) и видим, что этого вполне достаточно.
На завершающем этапе аккуратно чертим график, и особо аккуратно отражаем его выпуклость / вогнутость! Ну и, наверное, вы давно поняли, что ось абсцисс – это горизонтальная асимптота, и «залезать» за неё категорически нельзя!
При электронном оформлении решения график легко построить в Экселе, и неожиданно для самого себя я даже записал короткий видеоролик на эту тему. Но сначала поговорим о том, как меняется форма нормальной кривой в зависимости от значений 

При увеличении или уменьшении «а» (при неизменном «сигма») график сохраняет свою форму и перемещается вправо / влево соответственно. Так, например, при 


Нормально распределённая величина с нулевым математическим ожиданием получила вполне естественное название – центрированная; её функция плотности 
В случае изменения «сигмы» (при постоянном «а»), график «остаётся на месте», но меняет форму. При увеличении 



Всё в полном соответствии с геометрическими преобразованиями графиков.
Нормальное распределёние с единичным значением «сигма» называется нормированным, а если оно ещё и центрировано (наш случай), то такое распределение называют стандартным. Оно имеет ещё более простую функцию плотности, которая уже встречалась в локальной теореме Лапласа: 
Ну а теперь смотрим кино:
Да, совершенно верно – как-то незаслуженно у нас осталась в тени функция распределения вероятностей. Вспоминаем её определение:



Внутри интеграла обычно используют другую букву, чтобы не возникало «накладок» с обозначениями, ибо здесь каждому значению 


Почти все значения 


Раз, два – и готово:

На чертеже хорошо видно выполнение всех свойств функции распределения, и из технических нюансов здесь следует обратить внимание на горизонтальные асимптоты и точку перегиба 
Теперь вспомним одну из ключевых задач темы, а именно выясним, как найти 



но каждый раз вымучивать приближенное значение 

! Вспоминаем также, что
Тут можно снова задействовать Эксель, но есть пара весомых «но»: во-первых, он не всегда под рукой, а во-вторых, «готовые» значения 
Об этом я неоднократно рассказывал ранее: в своё время (и ещё не очень давно) роскошью был обычный калькулятор, и в учебной литературе до сих пор сохранился «ручной» способ решения рассматриваемой задачи. Его суть состоит в том, чтобы стандартизировать значения «альфа» и «бета», то есть свести решение к стандартному распределению:
Примечание: функцию 




и из проведённой замены как раз следует формула 


Зачем это нужно? Дело в том, что значения 

В силу очевидной нечётности функции Лапласа (






Таким образом, наша задача становится чуть ли не устной! Порой, здесь хмыкают и говорят, что метод устарел. Может быть…, но парадокс состоит в том, что «устаревший метод» очень быстро приводит к результату! И ещё в этом заключена большая мудрость – если вдруг пропадёт электричество или восстанут машины, то у человечества останется возможность заглянуть в бумажные таблицы и спасти мир =)
Из пункта 

Решение: в задаче рассматривается нормально распределённая случайная величина 

Если в нашем распоряжении есть таблица значений функции 


Для самопроверки можно задействовать экселевскую функцию =НОРМСТРАСП(z) или напрямую «забить» 

Если же в нашем распоряжении есть таблица значений функции Лапласа 

Дробные значения традиционно округляем до 4 знаков после запятой, как это сделано в типовой таблице. И для контроля есть Пункт 5 макета.
Напоминаю, что 
Ответ требуется дать в процентах, поэтому рассчитанную вероятность нужно умножить на 100 и снабдить результат содержательным комментарием:
– с перелётом от 5 до 70 м упадёт примерно 15,87% снарядов
Диаметр подшипников, изготовленных на заводе, представляет собой случайную величину, распределенную нормально с математическим ожиданием 1,5 см и средним квадратическим отклонением 0,04 см. Найти вероятность того, что размер наугад взятого подшипника колеблется от 1,4 до 1,6 см.
В образце решения и далее я буду использовать функцию Лапласа, как самый распространённый вариант. Кстати, обратите внимание, что согласно формулировке, здесь можно включить концы интервала в рассмотрение. Впрочем, это не критично.
И уже в этом примере нам встретился особый случай – когда интервал 


Параметр «дельта» называют отклонением от математического ожидания, и двойное неравенство можно «упаковывать» с помощью модуля:



Хорошо то решение, которое умещается в одну строчку:)

Результат этой задачи получился близким к единице, но хотелось бы ещё бОльшей надежности – а именно, узнать границы, в которых находится диаметр почти всех подшипников. Существует ли какой-нибудь критерий на этот счёт? Существует! На поставленный вопрос отвечает так называемое
правило «трех сигм»
Его суть состоит в том, что практически достоверным является тот факт, что нормально распределённая случайная величина 

И в самом деле, вероятность отклонения от матожидания менее чем на 

В «пересчёте на подшипники» – это 9973 штуки с диаметром от 1,38 до 1,62 см и всего лишь 27 «некондиционных» экземпляров.
В практических исследованиях правило «трёх сигм» обычно применяют в обратном направлении: если статистически установлено, что почти все значения исследуемой случайной величины укладываются в интервал длиной 6 стандартных отклонений, то появляются веские основания полагать, что эта величина распределена по нормальному закону. Проверка осуществляется с помощью теории статистических гипотез.
Продолжаем решать суровые советские задачи:
Случайная величина 
Решение очень простое. По условию, 



Ответ:
Прорешанная задача принципиально отличается от вроде бы похожего Примера 3 урока о равномерном распределении. Там была погрешность округления результатов измерений, здесь же речь идёт о случайной погрешности самих измерений. Такие погрешности возникают в связи с техническими характеристиками самого прибора (диапазон допустимых ошибок, как правило, указывают в его паспорте), а также по вине экспериментатора – когда мы, например, «на глазок» снимаем показания со стрелки тех же весов.
Помимо прочих, существуют ещё так называемые систематические ошибки измерения. Это уже неслучайные ошибки, которые возникают по причине некорректной настройки или эксплуатации прибора. Так, например, неотрегулированные напольные весы могут стабильно «прибавлять» килограмм, а продавец систематически обвешивать покупателей. Или не систематически ведь можно обсчитать. Однако, в любом случае, случайной такая ошибка не будет, и её матожидание отлично от нуля.
…срочно разрабатываю курс по подготовке продавцов =)
Самостоятельно решаем обратную задачу:
Диаметр валика – случайная нормально распределенная случайная величина, среднее квадратическое отклонение ее равно 

Пункт 5* расчётного макета в помощь. Обратите внимание, что здесь не известно математическое ожидание, но это нисколько не мешает решить поставленную задачу.
И экзаменационное задание, которое я настоятельно рекомендую для закрепления материала:
Нормально распределенная случайная величина 


а) записать плотность вероятности и схематически изобразить ее график;
б) найти вероятность того, что 

в) найти вероятность того, что 


г) применяя правило «трех сигм», найти значения случайной величины 
Такие задачи предлагаются повсеместно, и за годы практики мне их довелось решить сотни и сотни штук. Обязательно попрактикуйтесь в ручном построении чертежа и использовании бумажных таблиц 😉
Ну а я разберу пример повышенной сложности:
Плотность распределения вероятностей случайной величины 






Решение: прежде всего, обратим внимание, что в условии ничего не сказано о характере случайной величины. Само по себе присутствие экспоненты ещё ничего не значит: это может оказаться, например, показательное или вообще произвольное непрерывное распределение. И поэтому «нормальность» распределения ещё нужно обосновать:
Так как функция 



Приводим. Для этого выделяем полный квадрат и организуем трёхэтажную дробь: 
Обязательно выполняем проверку, возвращая показатель в исходный вид: 

Таким образом:


Теперь найдём значение параметра 






Построим график плотности: 
и график функции распределения 

Если под рукой нет Экселя и даже обычного калькулятора, то последний график легко строится вручную! В точке 






После чего аккуратно проводим интегральную кривую, не забывая о перегибе и двух горизонтальных асимптотах.
Да, и ещё нужно вычислить:


Ответ:
Но этим, конечно, всё дело не ограничивается! Дополнительные примеры, причём довольно творческие, можно найти в тематической pdf-книжке.
И в заключение урока обещанный секрет:
понятие о центральной предельной теореме
которую также называют теоремой Ляпунова. Её суть состоит в том, что если случайная величина 


В окружающем мире условие теоремы Ляпунова выполняется очень часто, и поэтому нормальное распределение (близкое к нему) и встречается буквально на каждом шагу.
Так, например, молекул воздуха очень и очень много, и каждая из них своим движением оказывает ничтожно малое влияние на всю совокупность. Поэтому скорость молекул воздуха распределена нормально.
Большая популяция некоторых особей. Каждая из них (или подавляющее большинство) оказывает несущественное влияние на жизнь всей популяции, следовательно, длина их лапок тоже распределена по нормальному закону.
Теперь вернёмся к знакомой задаче, где проводится 






Уже при 


И чем больше 

Именно этот факт мы и использовали в теоремах Лапласа – когда приближали биномиальные вероятности соответствующими значениями функций нормального распределения.
Вот такие вот пироги.
Необычайно интересной, и я бы даже сказал «сочной» получилась эта статья, что бывает далеко не всегда, но всегда вдохновляет на новое творчество! Надеюсь, вам тоже понравилось, и вы освоили весь материал «на одном дыхании».
Пример 3. Решение: т.к. случайная величина 




Ответ:
Пример 5. Решение: используем формулу: 
В данной задаче 


откуда находим:

Длина искомого интервала составляет
Ответ: 20 мм
Пример 6. Решение: функция плотности нормально распределённой случайной величины имеет вид 




Выполним чертёж: 
! Примечание: несмотря на то, что условие допускает схематическое построение графика, на чертеже обязательно отображаем все его принципиальные особенности, в частности, на забываем о перегибах в точках 
б) Используем формулу 

В данной задаче 



в) Используем формулу 



г) Согласно правилу «трех сигм», практически все значения (99,73%) нормально распределенной случайной величины входят в интервал 


Ответ: а) 


Автор: Емелин Александр
(Переход на главную страницу)





























