Однофазный переменный ток параметры переменного тока
Однофазный переменный ток
Получение переменного тока

Рис. 1. Изменение индуктированной э. д. с. в проводнике, вращающемся в магнитном поле
В промежуточных точках 2 и 4, в которых проводник пересекает силовые линии под углом α = 45°, величина индуктированной э. д. с. будет соответственно меньше, чем в точке 3. Таким образом, при повороте проводника из точки 1 в точку 5, т. е. на 180°, индуктированная э. д. с. изменяется от нуля до максимума и снова до нуля.
Совершенно очевидно, что при дальнейшем повороте проводника А на угол 180° (через точки 6, 7, 8 и 1) характер изменения индуктированной э. д. с. будет такой же, но направление ее изменится на обратное, так как проводник будет пересекать магнитные силовые линии уже под другим полюсом, что равносильно пересечению их в противоположном первому направлении.
Следовательно, при повороте проводника на 360° индуктированная э. д. с. не только изменяется все время по величине, но и дважды меняет свое направление.
Если проводник замкнуть на какое-либо сопротивление, то в проводнике появится электрический ток, также изменяющийся по величине и направлению.
Что такое синусоида
Рис. 2. Синусоида и величины ее характеризующие
Рассмотренные нами изменения э. д. с. по синусоиде соответствуют повороту проводника в магнитном поле на угол 360°. При повороте проводника на следующие 360° изменения индуктированной э. д. с. (и тока) вновь произойдут по синусоиде, т. е. будут периодически повторяться.
Амплитуда, период, частота однофазного переменного тока
Сила тока, изменяющегося по синусоиде, непрерывно меняется. Так, если в точке А (рис. 2) ток был равен 3а, то в точке Б он уже будет больше. В другой какой-либо точке на синусоиде, например в точке С, ток будет иметь уже новое значение и т. д.
Время, в течение которого индуктированная э. д. с. (или сила тока) проходит весь цикл изменений, называется периодом Т (рис. 2). Период обычно измеряется в секундах.
Величина, обратная периоду, называется частотой ( f ). Иначе говоря, частота переменного тока есть число периодов в единицу времени, т. е. в секун ду. Так, например, если переменный ток в течение 1 секунды десять раз принимает одинаковые по величине и направлению значения, то частота такого переменного тока будет составлять 10 периодов в секунду.
Для измерения частоты вместо числа периодов в секунду применяется единица, получившая название герц (гц). Частота 1 герц равна частоте 1 пер/сек. При измерении больших частот удобнее пользоваться единицей, в 1000 раз большей герца, т. е килогерцем (кгц), или в 1000000 раз большей герца, — мегагерц (мггц).
Переменные токи, применяемые в технике, в зависимости от частоты могут быть подразделены на токи низкой частоты и токи высокой частоты.
Действующее значение переменного тока
Постоянный ток, проходя по проводнику, нагревает его. Если, пропустить по проводнику переменный ток, проводник также будет нагреваться. Это и понятно, так как хотя переменный ток и меняет все время свое направление, но выделение тепла совершенно не зависит от направления тока в проводнике.
Проводя и дальше аналогию с постоянным током, можно ожидать, что переменный ток, проходя по проводнику, создает вокруг него магнитное поле. На самом деле п еременный ток не создает магнитного поля, а потому, что создаваемое им магнитное поле будет также переменным по направлению и величине.
Переменный ток все время изменяется как по величине, так и по направлени ю. Естественно возникает вопрос, как же измерить переменный т ок и какое значение его при изменении по синусоиде следует принять как производящее то или иное действие.
С этой целью переменный ток сравнивают по производимому им действию с постоянным током, величина которого в течение опыта остается неизменной.
Предположим, что по проводнику с неизменным сопротивлением пропущен постоянный ток 10 А и при этом обнаружено, что проводник нагрелся до температуры 50°. Если теперь по этому же проводнику пропустить не постоянный, а переменный ток и так подобрать его величину (действуя, например, реостатом), чтобы проводник также нагрелся до температуры 50°, то в этом случае мы можем сказать, что действие переменного тока равно действию постоянного тока.
Нагревание проводника в обоих случаях до одной и той же температуры говорит о том, что за единицу времени переменный ток выделяет в проводнике такое же количество тепла, как и постоянный.
Опыт и подсчеты показали, что действующие значения переменного тока меньше амплитудных его значений в √ 2 (1,41) раза. Следовательно, если амплитудное значение тока известно, то действующее значение тока I д может быть определено путем деления амплитуды тока Iа на √ 2, т. е. I д = I а/ √ 2
Наоборот, если известно действующее значение тока, то может быть вычислено амплитудное значение тока, т. е. I а = I д √ 2
Измерительные приборы чаще всего показывают действующие значения, поэтому при обозначениях индекс “д” обычно опускается, но забывать об этом не следует.
Полное сопротивление в цепях переменного тока
При включении в цепь переменного тока потребителей, имеющих индуктивность и емкость, приходится считаться как с активным, так и с реактивным сопротивлением (реактивное сопротивление появляется при включении конденсатора или катушки индуктивности в цепь переменного тока). Поэтому при определении тока, проходящего по такому потребителю, необходимо подведенное напряжение делить на полное сопротивление цепи (потребителя).
Полное сопротивление (Z) цепи однофазного переменного тока определяется по следующей формуле:
В цепях переменного тока применяются различные потребители, в которых необходимо учитывать или все три величины R, L, С или только некоторые из них. Одновременно с этим необходимо учитывать и угловую частоту переменного тока.
В некоторых потребителях при соответствующих значениях угловой частоты можно принимать во внимание только величины R и L. Так, например, при частоте переменного тока 50 гц катушку соленоида или обмотку генератора можно рассматривать лишь как содержащую активное и индуктивное сопротивление. Иначе говоря, емкостью в этом случае можно пренебречь. Тогда полное сопротивление переменному току такого потребителя можно подсчитать по формуле:
Если такую катушку, или обмотку, рассчитанную для работы в цепи переменного тока, включить в цель постоянного тока с таким же напряжением, по катушке пойдет очень большой ток, который может привести к значительному выделению тепла, и изоляция обмотки может быть повреждена. Напротив, по катушке, рассчитанной для работы в цепи постоянного тока и включенной в цепь переменного тока с тем же напряжением, будет проходить небольшой ток, и прибор, в котором применена эта катушка, не произведет необходимого действия.
Треугольник сопротивлений, треугольник напряжений и треугольник мощностей:
Однофазный переменный ток параметры переменного тока
Однофазный переменный ток
Однофазный переменный ток
Практически в домашних условиях применяют однофазный переменный ток, который получают с помощью генераторов переменного тока. Устройство и принцип действия этих генераторов основывается на явлении электромагнитной индукции — возникновение электрического тока в замкнутом проводнике при изменении магнитного потока, проходящего через него. Это явление было открыто английским ученым М.Фарадеем (1791-1867) в 1831 г.
Переменный ток, используемый в производстве и быту, изменяется по синусоидальному закону:
i = Im · sin (2 ·π·f·t ),
где i — мгновенное значение тока;
Im — амплитудное (наибольшее) значение тока;
f — частота переменного тока;
t — время.
На рис. справа представлен график переменного тока и указаны амплитудные и мгновенное значения переменного тока в момент времени t .
Частота измеряется в герцах (Гц) в честь немецкого ученого Г. Герца (1857-1894). В сети переменного тока она равна 50 Гц. Частота переменного тока характеризует быстроту периодических процессов, число колебаний, совершаемых в единицу времени. Она измеряется с помощью специальных приборов — частотомеров.
Величина, обратная частоте, называется периодом колебания Т. Он равен для сети переменного тока 0,02 секунды.
Частота переменного тока зависит от частоты вращения ротора генератора и числа пар полюсов индуктора. Она определяется по формуле:
где p — число пар полюсов индуктора;
n — частота вращения ротора в минуту.
Если генератор имеет одну пару полюсов, то ротор такого генератора совершает 3000 об/мин для получения переменного тока частотой 50 Гц.
Переменный ток так же, как и постоянный ток, может производить тепловое действие. Накаливание волоска лампочки осуществляется как переменным, так и постоянным током. Поэтому, сравнивая тепловые эффекты постоянного и переменного токов ( Q = = Q – _ ), получают соотношение между действующим (эффективным) и максимальным токами:
Измерительные приборы, включенные в цепь переменного тока, показывают действующие значения тока или напряжения.
Переменный ток одного напряжения, в отличие от постоянного, легко преобразовать в переменный ток другого напряжения с помощью трансформатора.
Трансформатором называется электромагнитный аппарат, который служит для преобразования переменного тока одного напряжения в переменный ток другого напряжения при неизменной частоте тока. Трансформаторы широко используются при передаче и распределении электрической энергии переменного тока. Они бывают однофазные и трехфазные.
Однофазные и трехфазные электрические цепи
Сравнение AC и DC
Направление потока электрической энергии определяет постоянный и переменный ток. Разница в том, что в первом случае заряды перемещаются в одном направлении и непрерывно, а во втором — направление потока меняется через равные интервалы. Последнее сопровождается чередованием уровня напряжения и сменой полюсов на источнике с положительного на отрицательный и наоборот, что делает процессы в нагрузках более сложными, чем в случае с постоянным напряжением.
Ключевым преимуществом DC состоят в том, что его можно легко аккумулировать или создавать в портативных химических источниках. Но использование AC позволяет осуществлять передачу электрической энергии на большие расстояния намного экономичнее. Дело в том, что мощность W=I*V, передаваемая от станции, не в полном объёме доставляется до точки назначения. Часть её расходуется на нагрев линий электропередачи в размере W= I2*R.
Очевидный способ сокращения потерь — уменьшение сопротивления за счёт наращивания толщины проводов. Но для его реализации существует экономический предел: толстые проводники стоят дороже. Кроме того, массивные провода требуют дорогих несущих конструкций.
Задача имеет блестящее решение, если изменить напряжение и силу тока при сохранении мощности. Например, при увеличении V в тысячу раз и соответствующем уменьшении I, значение мощности сохраняется прежним, но потери уменьшаются в миллионы раз, поскольку они находятся в квадратичной зависимости от силы тока. Остаётся проблема преобразования напряжения до безопасных значений при распределении его к потребителям.
Это невозможно в случае с DC, но переменный ток позволяет изменять значения I и V при сохранении мощности с помощью трансформаторов. Энергетические компании используют это свойство для транспортировки электричества. Способность к трансформации и определяет главное, практически применимое отличие переменного тока от постоянного.
Механизм получения
Известно, что существует два вида переменного тока:
Однофазное и трехфазное напряжение переменного тока
Стоит рассмотреть отличия в способах получения этих родов тока.
Однофазного
В 1-фазном генераторе все катушки индуцируемой обмотки подсоединены к одной линии. Питание потребителей осуществляется 2-жильным проводом (фаза и нейтраль). Напряжение в 1-фазной сети — 220 В.
Трехфазного
Индуцируемая обмотка 3-фазного генератора состоит из 3-х частей, расположенных на равном удалении друг от друга и подключенных каждая к своей линии. То есть угол между ними составляет 1200. В результате в каждой линии ток смещен по фазе относительно соседней на тот же угол.
Такая нагрузка называется симметричной и для ее подключения нейтральный провод вообще не нужен: токи каждой фазы в общих точках взаимно гасятся. Но зачастую нагрузка бывает асимметричной: помимо 3-фазных отдельными фазами запитывают 1-фазных потребителей.
Тогда токи в фазах неодинаковы и взаимного погашения не случится — нужен хотя бы 1 нейтральный провод.
Основные преимущества 3-фазного электроснабжения:
На промышленных электростанциях стоят только 3-фазные генераторы.
При обрыве нейтрального провода на подключенные к разным фазам 1-фазные потребители подается напряжение в 380 В, что приводит к их поломке. Потому в странах Запада нейтральным проводом оснащают каждую фазу. У нас же из-за экономии пока применяют один общий.
Сети переменного тока
Четырёхпроводная линия электропередачи 220/380 В, такие ЛЭП распространены в районах одноэтажной застройки, в сельской местности.Два нижних провода — сеть проводного радиовещания.
Преобразование напряжения в электрических сетях
Схема разводки трёхфазной сети в многоквартирных жилых домах.
Производители электроэнергии (ГЭС, ТЭС, ТЭЦ, атомные и другие электростанции) генерируют переменный ток промышленной частоты (в России — 50 Гц), напряжением порядка 10 — 20 кВ.
Затем электрический ток поступает на трансформаторные подстанции, которые находятся рядом с электростанциями, где происходит повышение электрического напряжения.
Переменный ток высокого напряжения передаётся потребителям по линиям электропередачи (ЛЭП). Повышение напряжения необходимо для того, чтобы уменьшить потери в проводах ЛЭП (см. Закон Джоуля — Ленца, при увеличении электрического напряжения уменьшается сила тока в электрической цепи, соответственно уменьшаются тепловые потери).









На другом конце линии электропередачи находится понижающая трансформаторная подстанция, где высоковольтный переменный ток понижается трансформаторами до нужного потребителю значения.
В подавляющем большинстве случаев по линиям электропередачи передаётся трёхфазный ток, однако существуют линии электропередачи постоянного тока, например высоковольтная линия постоянного тока Волгоград-Донбасс, высоковольтная линия постоянного тока Экибастуз-Центр, материковая Южная Корея — остров Чеджудо и другие. Использование постоянного тока позволяет увеличить передаваемую электрическую мощность, передавать электроэнергию между энергосистемами, использующими переменный ток разной частоты, например, 50 и 60 герц, а также не синхронизировать соседние энергосистемы, как это сделано на границе Ленинградской области с Финляндией (см. вставка постоянного тока Выборг — Финляндия).
В России в электрических сетях общего назначения используется трёхфазный ток с межфазным напряжением 380 Вольт.
Качество электрической энергии — её электрическое напряжение и частота должны строго соблюдаться.
К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод) линии электропередачи (воздушные или кабельные ЛЭП) с межфазным напряжением 380 вольт (с 2003 года 400 Вольт по ГОСТ 29322-2014). В отдельную квартиру (или в сельский дом) подводится фазовый провод и нулевой провод, электрическое напряжение между «фазой» и «нулём» составляет 220 вольт (с 2003 года 230 Вольт по ГОСТ 29322-2014). Определить, где какой провод можно с помощью индикатора фазы.
Например, в первую квартиру подводится фаза «A», во вторую квартиру — фаза «B», в третью квартиру — фаза «C» и так далее…
Недостатки переменного тока
Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами. А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.
Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.
Действующее значение переменного синусоидального тока[править | править код]
Если все положительные и отрицательные мгновенные значения переменного синусоидального тока сложить, то их сумма будет равна нулю. Но если алгебраическая сумма всех мгновенных значений за период равна нулю, то и среднее значение этого тока за период также равно нулю: Iavg(T)=<\displaystyle I_
Среднее значение синусоидального тока за период не может служить для измерения этого тока.
Чтобы судить о величине переменного синусоидального тока, переменный ток сравнивают с постоянным током по их тепловому действию.
Два тока, один из которых синусоидальный, а другой постоянный, эквивалентны по тепловому действию, если они, протекая по одинаковым сопротивлениям, за одинаковые отрезки времени выделяют одинаковое количество тепла. Действующее значение переменного синусоидального тока численно равно току постоянному, эквивалентному данному синусоидальному току, то есть выделяющему порознь с ним в одинаковом сопротивлении за одинаковый отрезок времени одинаковое количество тепла.
Найдено экспериментально, а затем подтверждено теоретически, что величина действующего значения переменного синусоидального тока находится в строго определённой зависимости от амплитуды этого тока: I=Im2<\displaystyle I=<\frac
Амперметр электромагнитной или электродинамической системы, включенный в цепь переменного синусоидального тока, показывает действующее значение тока.
Аналогично действующему значению переменного синусоидального тока можно говорить о действующем значении переменной синусоидальной электродвижущей силы или переменного синусоидального напряжения.
Вольтметр электромагнитной или электродинамической системы, включенный в сеть переменного синусоидального тока, показывает действующее значение синусоидального напряжения.
Например, в электрической розетке электрическое напряжение ∼220 B
B>, так как это действующее значение, амплитудное напряжение будет 220×1,41=311<\displaystyle <220>\times <1,41>=<311>> Вольт.
Данные формулы справедливы только для синусоидального тока, если импульсы будут треугольной, пилообразной, прямоугольной или иной формы — требуется другая методика вычисления.
Методом математического анализа можно определить среднее значение переменного синусоидального тока за половину периода, например за положительную полуволну синусоиды.
Среднее значение переменного синусоидального тока за половину периода равно IIavg(T2)=2πIm=,637Im<\displaystyle <\frac
Также можно определить отношение k <\displaystyle k>действующего значения тока к среднему за половину периода (положительную полуволну). Это отношение для синусоидального тока равно:
Электрификация железных дорог на переменном токе
Российский пассажирский электровоз переменного тока ЭП1П, выпускается на Новочеркасском электровозостроительном заводе.
В России и в республиках бывшего СССР около половины всех железных дорог электрифицировано на однофазном переменном токе частотой 50 Гц. Напряжение
25 кВ (обычно до 27,5 кВ, с учётом потерь) подаётся на контактный провод, вторым (обратным) проводом служат рельсы. Также проводится электрификация по системе 2 × 25 кВ (два по двадцать пять киловольт), когда на отдельный питающий провод подаётся напряжение
50 кВ (обычно до 55 кВ, с учётом потерь), а на контактный провод от автотрансформаторов подаётся половинное напряжение от 50 кВ (то есть 25 кВ). Электровозы и электропоезда переменного тока при работе на участках 2 × 25 кВ в переделке не нуждаются.









Проводится политика на дальнейшее расширение полигона тяги переменного тока как за счёт вновь электрифицируемых участков, так и за счёт перевода некоторых линий с постоянного тока на переменный ток. Переведены в 1990-е — 2000-е годы:
— на Восточно-Сибирской железной дороге: участок Слюдянка — Иркутск — Зима; — на Октябрьской железной дороге: участок Лоухи — Мурманск; — на Приволжской железной дороге: Саратовский и Волгоградский железнодорожные узлы; — на Северо-Кавказской железной дороге: участки Минеральные Воды — Кисловодск и Бештау — Железноводск.
Следует отметить, что также выпускаются двухсистемные электровозы, способные работать как на переменном, так и на постоянном токе (см. ВЛ61Д, ВЛ82 и ВЛ82М, ЭП10, ЭП20).
Генерация и трансформация
Принцип генерации электричества прост. Если магнитное поле вращается вдоль стационарного набора катушек из витков проводника или, наоборот, катушка вращается вокруг стационарного магнитного поля, то благодаря явлению электромагнитной индукции на концах обмоток возникает разность потенциалов. С каждым изменением угла поворота в результате описанного кругового движения выходное напряжение также будет меняться как по величине, так и по направлению.

Эти же законы помогают не только в производстве AC, но и в его передаче и распределении. Преобразования напряжения энергетическим компаниями невозможно осуществить без электрических машин, называемых трансформаторами
Вот почему это изобретение Теслы было так важно для революции в транспортировке электричества
Любой трансформатор состоит из следующих элементов:
Слово «первичная» применяется для обмотки, на которую подаётся электрическое напряжение, нуждающееся в трансформации. Индуцированное напряжение на вторичной катушке всегда равно приложенному на первичной, умноженному на соотношение витков вторичной к первичной. Трансформатор позволяет пошагово изменять напряжение.
Виды электрогенераторов
Генераторы переменного тока делятся на два вида:
По способу питания обмотки индуктора (электромагнита) электрогенераторы делятся на 4 вида:
Принцип получения переменного тока
Преобразование механической энергии в электрическую происходит за счет электромагнитной индукции. Это явление состоит в следующем: если магнитный поток (МП), пересекающий проводник, изменить, в дальнейшем возникнет электродвижущая сила (ЭДС). Добиться изменения МП можно путем перемещения проводника в магнитном поле.
Электродвижущая сила источника тока
ЭДС при этом равна Е = B * L * V * sin α, где:
Направление ЭДС определяют по правилу правой руки: если расположить ее так, чтобы силовые линии поля входили в ладонь, а отогнутый под прямым углом большой палец указывал направление движения проводника, 4 соединенных пальца укажут направление ЭДС.
Получение переменного тока
Генерация тока основана на явлении электромагнитной индукции, которое открыл Майкл Фарадей. Суть его такова: в проводнике, находящемся в магнитном поле с изменяющимися характеристиками, возникает электродвижущая сила (ЭДС).
Под параметрами магнитного поля подразумевают:
Обеспечить изменение показателей магнитного поля можно несколькими способами:
В электрогенераторах применяют два первых метода, последний — в трансформаторах тока. Приведение в движение магнита или проводника требует затрат механической энергии. Она и преобразуется генератором в электрическую. Направление ЭДС определяется правилом правой руки.









При таком ее положении, когда силовые линии поля входят в ладонь, а отведенный в сторону большой палец совпадает с вектором движения проводника, прочие пальцы указывают на направление ЭДС. Простейший генератор переменного тока — вращающаяся между постоянными магнитами проволочная рамка, подключенная к электроцепи.

Вращающуюся часть генератора или электродвигателя, в нашем примере это рамка, называют ротором. Неподвижную — статором.
Наводимая в рамке ЭДС определяется формулой: E = B*S*ω*sinα, где В — магнитная индукция, S — площадь рамки, ω — угловая частота, А — угол поворота рамки.
Изменяется только угол α, следовательно, график изменения ЭДС имеет вид синусоиды. Поскольку ток, в соответствии с законом Ома, равен отношению ЭДС к сопротивлению нагрузки (I = E/R), он также является синусоидальным.
Синусоидальность переменных ЭДС и тока означает, что они периодически меняют не только величину, но и направление на противоположное.
Принципиальные схемы генераторов переменного тока
Способы
Таким образом, для получения переменного тока достаточно вращать в поле постоянного магнита проволочную рамку с подсоединенной к ее концам электрической цепью. Источником энергии выступает сила, вращающая рамку и преодолевающая сопротивление магнитного поля.
Каждые пол-оборота проводники рамки меняют направление движения относительно полюсов магнита, соответственно, меняется и направление ЭДС в рамке.
Получение переменного тока
Угол между вектором скорости и силовыми линиями поля меняется по закону α = w*t, где:
То есть ЭДС зависит от sin (wt): E = f (sin (wt)). Следовательно, график изменения значения ЭДС с течением времени имеет вид синусоиды. Вызванный этой ЭДС переменный ток называют, соответственно, синусоидальным.
Описанный простейший генератор можно усовершенствовать:
Проблемная часть такого генератора — подвижный контакт между вращающимся ротором и электрической цепью.
Он состоит из медного кольца и графитовых щеток, прижимаемых к кольцу пружинами. Чем выше мощность генератора, тем менее надежен этот узел: он искрит, быстро изнашивается. Поэтому в мощных промышленных генераторах, установленных на электростанциях, обмотки статора и ротора меняют местами: обмотку возбуждения размещают на роторе, а индуцирующую — на статоре.
Подвижный контакт остается, но из-за малой мощности обмотки возбуждений требования к нему снижаются. Частота промышленного переменного тока — 50 Гц. То есть напряжение периодически меняет направление и величину 50 раз в секунду или 3000 раз в минуту. При наличии 2-х полюсов в обмотке возбуждения для достижения такой частоты и ротор должен вращаться со скоростью 3000 об/мин.

Кроме того, ротор гидростанции имеет огромные размеры и при частоте вращения в 3000 об/мин.
Его удаленные от центра участки двигались бы со скоростью сверхзвукового истребителя, что приведет к разрушению конструкции. Для сокращения количества оборотов увеличивают число пар полюсов в электромагните. Частота вращения при этом составит W = 3000 / n, где n — число пар полюсов. То есть при наличии 10-ти пар полюсов для генерации переменного тока с частотой 50 Гц ротор необходимо вращать со скоростью всего 300 об/мин, а при 20-ти парах — 150 об/мин.









В электротехнике практикуют и другой способ получения переменного тока — преобразованием постоянного. Применяется электронное устройство — инвертор, состоящее из силовых транзисторов, управляющей ими микросхемы и прочих элементов. На выходе инвертора можно получить переменное напряжение любой величины и частоты. Самые простые схемы выдают прямоугольное переменное напряжение, более сложные и дорогие — стабилизированное синусоидальное.

Передавать особенно значительные мощности на сверхбольшие расстояния по ряду причин выгоднее постоянным током, а не переменным. В конечной точке его преобразуют инвертором в переменный промышленной частоты и отправляют в местную энергосистему.
Чем отличается трехфазный ток от однофазного
Основное отличие однофазной цепи от трехфазной:
Обратите внимание! Трехфазная система позволяет использовать разные номиналы напряжений при питании оборудования с разными параметрами мощности
Эдисон и Тесла
Ипполит Пикси сумел создать первый генератор переменного тока в 1835 году. Это было устройство на постоянных магнитах, работающее при вращении рукоятки. Предприниматели того времени были заинтересованы в генерации DC и не совсем понимали, где может применяться изобретение и зачем нужно получать AC.
Настоящая конкуренция за стандарты электричества в линиях передач развернулась к концу 1880-х. годов, когда началась борьба между основными энергетическими компаниями за доминирование на рынке собственных запатентованных энергетических систем. Это было соперничество концепций электрификации двух великих изобретателей: Николы Теслы и Томаса Эдисона.
Эдисон изобрёл и усовершенствовал немало устройств, необходимых для первых систем генерации и транспортировки постоянного тока. В течение короткого времени его компания смогла открыть более 200 станций в Северной Америке. Предприятие росло, и изобретатель для выполнения работ по усовершенствованию оборудования нанял Николу Теслу — молодого инженера из Европы. Новый сотрудник предложил вниманию Эдисона революционные для того времени работы, основанные на технологиях переменного значения. Идеи Тесла были отвергнуты и пути изобретателей разошлись.

Структура
Электрическая цепь — совокупность устройств и элементов, имеющая целью доставить ток потребителю и преобразовать его в другой вид энергии: тепло, свет или механическую работу.

Источник питания — генератор, аккумулятор, солнечную батарею — называют внутренней частью цепи, остальные компоненты — внешней. Также источник называют активным элементом, прочие — пассивными. Электрическая цепь функционирует только в замкнутом виде, то есть в непрерывном. При размыкании сила тока в ней падает до нуля, хотя участок со стороны генератора или батареи остается под напряжением.
По числу выводов компоненты цепи делятся на два вида:
Процессы в электрической цепи описываются законами Ома и Кирхгофа.
Компоненты в ней соединяются тремя способами:
Применяют такие термины:
По функциональности отдельные части в структуре электрической цепи делятся на такие виды:
По сложности электрические цепи делят на:
В сложных цепях выделяют:
Как определить ноль и фазу собственными силами.
Для определения нуля и фазы тока существуют специальные отвертки-тестеры.
Она работает по принципу прохождения тока низкого напряжения через тело человека, использующего ее. Отвертка состоит из следующих частей:
Принцип работы с отверткой-тестером показан на картинке ниже.
Кроме тестовых отверток, существуют и другие способы определить, к какому контакту розетки подключена фаза тока, а к какому – ноль. Некоторые электрики предпочитают пользоваться более точным тестером, используя его в режиме вольтметра.









Показания стрелки вольтметра означают:
1. Наличие напряжения 220 В между фазой и нулем
2. Отсутствие напряжения между землей и нулем
3. Отсутствие напряжения между фазой и нулем
Вообще-то, в последнем случае стрелка должна показывать 220 В, но в данном конкретном случае центральный контакт розетки не подключен к потенциалу земли.





















