цитокинез происходит в какой фазе
Цитокинез происходит в какой фазе
• Два новообразованных ядра, которые являются продуктами кариокинеза, в процессе цитокинеза распределяются по двум отдельным клеткам
• При цитокинезе образуются две новых структуры цитоскелета: остаточное тельце и сократимое кольцо
• Функции митотического веретена, остаточного тельца и сократимого кольца взаимно скоординированы
• Различают три стадии цитокинеза: создание плоскости раздела, образование борозды деления и разделение клетки на две новых
После того как в клетке произошло разделение хромосом, она сама должна разделиться. В клетках животных деление завершается образованием перетяжки между двумя отдельными наборами хромосом. Незадолго до окончания анафазы В на поверхности клеток начинает образовываться перетяжка в той же плоскости, в которой находились хромосомы в метафазе.
В течение последующих 10-15 мин клетка превращается в две дочерних. Этот процесс носит название цитокинеза, или деления. Первая видеорамка этого процесса представлена на рисунке ниже. Цитокинез представляет собой последнюю стадию митоза. Он наступает после выхода клетки из митотического состояния и требует инактивации комплекса циклин B/CDK1.
Первый кадр видеосъемки, показывающий, что цитокинез начинается после окончания расхождения хромосом.
В результате этого процесса поперек клетки образуется глубокая борозда, по которой клетка делится на две.
Как и для разделения хромосом, для прохождения цитокинеза необходимо не только присутствие митотического веретена, но и образование двух новых структур, остаточного тельца и сократимого кольца. Остаточное тельце образуется в анафазе при организации микротрубочек веретена в большой параллельный пучок, расположенный между двумя отдельными группами хромосом.
Эта структура образуется постепенно, по мере слияния множества отдельных маленьких пучков микротрубочек. Сократимое кольцо состоит из пучка актиновых филаментов, образующих узкую полосу непосредственно под плазматической мембраной. Филаменты связаны между собой с помощью биполярных миозиновых филаментов, подобно тем, которые присутствуют в мышце. Наряду с основными структурными белками, остаточное тельце и сократимое кольцо содержат много других белков.
Сократимое кольцо принимает участие в создании перетяжки, которая обеспечивает деление с образованием двух дочерних клеток. Как следует из названия, кольцо способно сокращаться за счет взаимодействия входящих в его состав актина и миозина. Поскольку кольцо связано с плазматической мембраной, оно функционирует наподобие тесемки для сумки: при сокращении его диаметр уменьшается, и размер отверстия между двумя половинами клетки постепенно уменьшается.
Поскольку несвоевременное сокращение кольца или его ошибочное расположение было бы для клетки катастрофическим событием, его образование и функционирование определяются взаимодействием с двумя другими элементами цитоскелета, присутствующими при цитокинезе. Положение веретена определяет местонахождение остаточного тельца, которое, в свою очередь, обозначает место сборки сократимого кольца. Такая последовательность событий гарантирует образование кольца между обособленными наборами хромосом.
Сами хромосомы контролируют время сокращения кольца в начале анафазы. Они также служат источниками факторов, необходимых для его функционирования. Нарушения любого из упомянутых процессов предотвращает цитокинез и приводит к образованию двухъядерных клеток. Такие клетки существуют в некоторых тканях человека (например, в печени и в легком), однако они редко делятся повторно.
Так же как и разделение хромосом, процесс цитокинеза можно подразделить на несколько стадий, каждая из которых характеризуется одним или несколькими специфическими процессами. Среди этих процессов существует лишь одна точка невозвращения, которая находится в самом конце процесса. Таким образом, деление клетки полностью обратимо до тех пор, пока дочерние клетки не начнут существовать самостоятельно.
На первом этапе цитокинеза, который происходит вскоре после начала анафазы, задается положение, где в кортексе клетки должно формироваться сократимое кольцо. Этим определяется плоскость деления клетки. Далее, на этом месте собирается сократимое кольцо. Как раз во время образования кольца оно начинает сокращаться вокруг клетки, на ее поверхности возникает углубление, и начинается стадия «ингрессии» цитокинеза. По мере сжатия кольца, углубление превращается в глубокую бороздку, идущую вокруг всей клетки.
В конце концов эта бороздка переходит в перетяжку между двумя половинками материнской клетки, которые соединяются лишь тонким мостиком цитоплазмы, в основном представляющим собой остаточное тельце. После этого на заключительном этапе или на стадии «отсечения» клетка проходит точку невозвращения, и происходит разрыв мостика цитоплазмы с образованием двух независимых дочерних клеток.
Остаточное тельце представляет собой крупную структуру,
которая формируется из пучков микротрубочек, соединяющих расходящиеся в анафазе хромосомы.
В это же время вокруг клетки, непосредственно под плазматической мембраной, образуется сократимое кольцо,
представляющее собой поясок, состоящий из плотно упакованных актиновых и миозиновых филаментов.
Остаточное тельце определяет положение этого кольца, вдоль которого впоследствии клетка поделится на две. Кадры видеосъемки, иллюстрирующие процесс образования остаточного тельца в анафазе.
Стадии цитокинеза. Сигналы, генерируемые расходящимися хромосомами, индуцируют в клеточном кортексе образование сократимого кольца.
Кольцо сразу же начинает сокращаться. Это продолжается до тех пор, пока между обеими половинами клетки не останется лишь узкая перемычка, состоящая из остаточного тельца.
При разрыве этой перемычки происходит разделение двух новых клеток. Так же как и в других стадиях митоза, все описанные процессы происходят без каких-либо пауз.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Цитокинез происходит в какой фазе
Рост тела человека обусловлен увеличением размера и количества клеток, при этом последнее обеспечивается процессом деления, или митозом. Пролиферация клеток происходит под воздействием внеклеточных факторов роста, а сами клетки проходят через повторяющуюся последовательность событий, известную как клеточный цикл.
Различают четыре основные фазы клеточного цикла: G1 (пресинтетическая), S (синтетическая), G2 (постсинтетическая) и М (митотическая). Затем следует разделение цитоплазмы и плазматической мембраны, в результате чего возникают две одинаковые дочерние клетки. Фазы Gl, S и G2 входят в состав интерфазы. Репликация хромосом происходит во время синтетической фазы, или S-фазы.
Большинство клеток не подвержено активному делению, их митотическая активность подавляется во время фазы GO, входящей в состав фазы G1.
Продолжительность М-фазы составляет 30—60 мин, в то время как весь клеточный цикл проходит примерно за 20 ч. В зависимости от возраста нормальные (не опухолевые) клетки человека претерпевают до 80 митотических циклов.
Процессы клеточного цикла контролируются последовательно повторяющимися активацией и инактивацией ключевых ферментов, называемых цик дин зависимыми протеинкиназами (ЦЗК), а также их кофакторов — циклинов. При этом под воздействием фосфокиназ и фосфатаз происходят фосфорилирование и дефосфорилирование особых циклин-ЦЗК-комплексов, ответственных за начало тех или иных фаз цикла.
Кроме того, на соответствующих стадиях подобные ЦЗК-белки вызывают уплотнение хромосом, разрыв ядерной оболочки и реорганизацию микротрубочек цитоскелета в целях формирования веретена деления (митотического веретена).
G1-фаза клеточного цикла
G1-фаза — промежуточная стадия между М- и S-фазами, во время которой происходит увеличение количества цитоплазмы. Кроме того, в конце фазы G1 расположена первая контрольная точка, на которой происходят репарация ДНК и проверка условий окружающей среды (достаточно ли они благоприятны для перехода к S-фазе).
При возникновении патологий белка р53 репликация дефективной ДНК продолжается, что позволяет делящимся клеткам накапливать мутации и способствует развитию опухолевых процессов. Именно поэтому белок р53 часто называют «стражем генома».
G0-фаза клеточного цикла
Пролиферация клеток у млекопитающих возможна только при участии секретируемых другими клетками внеклеточных факторов роста, которые оказывают своё воздействие через каскадную сигнальную трансдукцию протоонкогенов. Если во время фазы G1 клетка не получает соответствующих сигналов, то она выходит из клеточного цикла и переходит в состояние G0, в котором может находиться несколько лет.
Блок G0 происходит при помощи белков — супрессоров митоза, один из которых — ретинобластомный белок (Rb-белок), кодируемый нормальными аллелями гена ретинобластомы. Данный белок прикрепляется кособым регуляторным протеинам, блокируя стимуляцию транскрипции генов, необходимых для пролиферации клеток.
Внеклеточные факторы роста разрушают блок путём активации Gl-специфических циклин-ЦЗК-комплексов, которые фосфорилируют Rb-белок и изменяют его конформацию, в результате чего разрывается связь с регуляторными белками. При этом последние активируют транскрипцию кодируемых ими генов, которые запускают процесс пролиферации.
S фаза клеточного цикла
Стандартное количество двойных спиралей ДНК в каждой клетке, соответствующее диплоидному набору одноцепочечных хромосом, принято обозначать как 2С. Набор 2С сохраняется на протяжении фазы G1 и удваивается (4С) во время S-фазы, когда синтезируется новая хромосомная ДНК.
Начиная с конца S-фазы и до М-фазы (включая фазу G2) каждая видимая хромосома содержит две плотно связанные друг с другом молекулы ДНК, называемые сестринскими хроматидами. Таким образом, в клетках человека начиная с конца S-фазы и до середины М-фазы присутствуют 23 пары хромосом (46 видимых единиц), но 4С (92) двойные спирали ядерной ДНК.
В процессе митоза происходит распределение одинаковых наборов хромосом по двум дочерним клеткам таким образом, чтобы в каждой из них содержалось по 23 пары 2С-молекул ДНК. Следует отметить, что фазы G1 и G0 — единственные фазы клеточного цикла, во время которых в клетках 46 хромосомам соответствует 2С-набор молекул ДНК.
G2-фаза клеточного цикла
Вторая контрольная точка, на которой проверяется размер клетки, находится в конце фазы G2, расположенной между S-фазой и митозом. Кроме того, на данной стадии, прежде чем перейти к митозу, происходит проверка полноты репликации и целостности ДНК. Митоз (М-фаза)
1. Профаза. Хромосомы, каждая из которых состоит из двух одинаковых хроматид, начинают уплотняться и становятся видимыми внутри ядра. На противоположных полюсах клетки вокруг двух центросом из волокон тубулина начинает образовываться веретеноподобный аппарат.
2. Прометафаза. Происходит разделение мембраны ядра. Вокруг центромер хромосом формируются кинетохоры. Волокна тубулина проникают внутрь ядра и концентрируются вблизи кинетохор, соединяя их с волокнами, исходящими из центросом.
3. Метафаза. Натяжение волокон заставляет хромосомы выстраиваться посередине в линию между полюсами веретена, формируя тем самым метафазную пластинку.
4. Анафаза. ДНК центромер, разделённая между сестринскими хроматидами, дуплицируется, хроматиды разделяются и расходятся ближе к полюсам.
6. Цитокинез. Клеточная мембрана сокращается и посередине между полюсами образуется борозда дробления, которая со временем разделяет две дочерние клетки.
Цикл центросомы
Во время фазы G1 происходит разделение пары центриолей, сцепленных с каждой центросомой. На протяжении S- и G2-фаз справа от старых центриолей формируется новая дочерняя центриоль. В начале М-фазы центросома разделяется, две дочерние центросомы расходятся к полюсам клетки.
Медицинское значение понимания клеточного цикла
Для анализа кариотипа процесс деления клетки подавляют колхицином во время метафазы.
Таксол блокирует разборку веретена деления, его используют в качестве противоопухолевого препарата.
Видео стадии и фазы клеточного цикла клетки
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Митоз и мейоз
Жизненный цикл клетки (клеточный цикл)
С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.
Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, клетка растет.
Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.
Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.
ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).
Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).
Мейоз
В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).
Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.
Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.
Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.
Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).
Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.
Бинарное деление надвое
При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.
Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Научная электронная библиотека
Юров И. Ю., Ворсанова С. Г., Воинова В. Ю., Чурносов М. И., Юров Ю. Б.,
3.4. Деление клетки
Все клетки человека проходят через цикл деления (клеточный цикл). Известны два типа деления клетки: митотческое и мейотическое, которые представлены на рисунках 6 и 7. Митоз – деление клетки, за счет которого достигается воспроизведение соматических клеток в организме. Мейоз – деление клеток, в ходе которого получаются клетки с редуцированным гаплоидным (n) набором хромосом (половые клетки). Среднее время клеточного цикла у млекопитающих составляет 17–18 часов. Клеточный цикл разделен на четыре основных стадии: G1, S (фаза синтеза ДНК), G2 и митоз (М). Первые три фазы представляют собой интерфазный период или интерфазу. Клетки, которые не делятся, находятся на стадии покоя G0.
Во время стадии G1 (примерно 9 часов) хромосомы имеют вид одиночных хроматид, клетка метаболически активна и в ней происходит синтез белков. Если клетка, находящаяся на G1 стадии, не подвергается последующему делению, то это состояние соответствует G0. Фаза синтеза (или S фаза) длится около 5 часов и характеризуется процессом репликации хромосомной ДНК. На этой стадии хромосомы состоят из двух идентичных сестринских хроматид. G2 стадия длится примерно 3 часа. Во время этой стадии клетка готовится к процессу деления. Завершение G2 соответствует концу интерфазы. Митоз длится не более 1–2 часов и является процессом образования двух генетически идентичных дочерних клеток. В свою очередь, митоз также делится на 4 стадии: профаза, метафаза, анафаза и телофаза (рис. 6).
Рис. 6. Митоз. Схематическое изображение двух пар хромосом во время митоза: а – интерфаза; б – профаза; в – метафаза; г – анафаза; д – телофаза; е – цитокинез; ж – интерфазы разделившихся клеток
Профаза – стадия, во время которой происходит постепенная конденсация (уплотнение) и спирализация хромосом, в результате чего, они имеют вид дискретных структур. Во время профазы образуется веретено деления (двуполюсное веретено, состоящее из пучков микротрубочек, которые тянутся от одного полюса к другому).
Метафаза – стадия, характеризующаяся тем, что полностью осуществляется присоединение хромосом к нитям веретена, и хромосомы собираются в экваториальной плоскости клетки, находящейся на одинаковом расстоянии от обоих полюсов веретена. На этой стадии хромосомы достигают максимальной конденсации.
Анафаза – стадия разделения сестринских хроматид и их расхождения к противоположным полюсам веретена.
Телофаза – последняя стадия митоза. Она начинается, когда все сестринские хроматиды доходят до полюсов веретена. В ходе данной фазы митоза происходит восстановление клеточного ядра и внутриядерных структур. За ней, как правило, следует цитокинез – разделение двуядерной клетки на две с одним ядром в каждой (рис. 6).
Мейоз – деление клеток, в ходе которого получаются клетки с редуцированным гаплоидным набором хромосом (половые клетки). Данный процесс включает в себя две фазы клеточного деления: мейоз 1 и мейоз 2. В ходе мейоза происходит редукция диплоидного хромосомного набора (2n) до гаплоидного (n).
Мейоз 1, в свою очередь также делится на несколько стадий: профаза I, метафаза I, анафаза I и телофаза I (рис. 7). Профаза I является комплексной стадией, которая, в свою очередь, делится на несколько этапов:
лептотена: 46 хромосом состоят из 2-х хроматид и начинают коденсироваться; эта стадия характеризует начало мейоза;
зиготена: гомологичные хромосомы спариваются своими участками – этот этап деления называется синапсом; в результате образуется тройственная структура – синаптонемальный комплекс;
пахитена: стадия завершения синапса, спаренные гомологи, состоящие из 4-х хроматид, формируют бивалент; во время этой стадии происходит кроссинговер – обмен последовательностями ДНК хромосом между несестринскими хроматидами бивалентов. Результатом этого процесса является рекомбинация генетического материала между гомологичными хромосомами, создающая новые комбинации генов в дочерних клетках;
диплотена: на этой стадии хромосомы отталкиваются друг от друга до тех пор, пока гомологи не будут соединены только участками, подверженными кроссинговеру. Такие участки называются хиазмами;
диакинез: хромосомы претерпевают наибольшее сжатие во время этой последней стадии профазы I.
Рис. 7. Мейоз I. Схематическое изображение двух пар хромосом во время мейоза I: а – профаза I; б – метафаза I; в – анафаза I; г – телофаза I; д – клетки, образующиеся в результате первого мейоза
Метафаза I характеризуется исчезновением ядерной мембраны и образованием мейотического веретена деления. Биваленты выравниваются по экваториальной плоскости клетки и их центромеры случайным образом ориентируются к противоположным полюсам. Во время анафазы I биваленты разделяются и расходятся к противоположным полюсам. В ходе телофазы I каждая хромосома из двух гаплоидных наборов достигает противоположных полюсов, и образуются две дочерние клетки, в каждой из которых по 23 хромосомы, состоящие из 2-х хроматид.
Мейоз 2 практически идентичен митотическому делению за исключением того, что в данном случае делящиеся клетки имеют гаплоидный хромосомный набор. Хромосомы выравниваются по экваториальной плоскости клетки на стадии метафазы II, хроматиды разделяются и расходятся к противоположным полюсам на стадии анафазы II, цитокинез происходит на стадии телофазы II. В результате митотического деления (мейоза 1 и 2), как правило, образуются 4 дочерние клетки с гаплоидным набором хромосом, каждая из которых генетически отличается друг от друга за счет процесса кроссинговера и случайного расхождения гомологичных хромосом.
Цитокинез происходит в какой фазе
• Фрагмопласт является аппаратом цитокинеза и представляет собой кольцо, состоящее из филаментов цитоскелета, способное расширяться к периферии клетки
• Везикулы, расположенные в середине этого двойного кольца, сливаются, образуя новую межклеточную перегородку
• Плоскость, в которой происходит рост клеточной перегородки, соответствует положению препрофазного кольца, а не средней зоны веретена деления
После деления ядра (митоза) наступает деление цитоплазмы (цитокинез). В клетках растений это совпадает с моментом закладывания новой межклеточной перегородки, положение которой определяется препрофазным кольцом.
Едва ли можно представить более различный цитокинез, чем у растений и животных. В отличие от митоза, для которого в обоих типах клеток характерно наличие веретена, основные черты цитокинеза у них различны. Цитокинез в клетках животных включает образование актинового кольца, которое сокращается, образуя борозду деления, разделяющую клетку на две.
Хотя препрофазное кольцо растений содержит актин, эта структура не сокращается и исчезает задолго до начала деления. По-видимому, особенности организации растительной клетки исключают использование сокращения кольца как средства деления, поскольку жесткость клеточной стенки не позволяет свободно изменять ее форму. Вместо этого клетки растений делятся за счет образования изнутри поперечной стенки.
В центре клетки формируется диск, ограниченный мембраной, или клеточная пластинка (незрелая перегородка), которая расширяется к периферии до смыкания со стенками материнской клетки.
События, происходящие при цитокинезе, представлены на рисунке ниже. Цитокинез начинается в поздней анафазе, когда между разделившимися хромосомами появляется цилиндрический пучок микротрубочек. Эта структура называется фрагмопласт, и она принимает участие в создании стенки, в результате которого образуются две новых клетки. У некоторых клеток фрагмопласта собираются из остатков митотического веретена.
Микротрубочки (выделены оранжевым цветом), находящиеся в двух половинах фрагмопласта, в центре перекрываются.
Там накапливаются везикулы, направляемые микротрубочками, которые сливаются вместе образуя клеточную пластинку.
Вначале фрагмопласт представляет собой узкий цилиндр,
состоящий из микротрубочек и расположенный точно посередине между ядрами, однако в дальнейшем,
по мере расширения клеточной пластинки, он также расширяется, причем везикулы всегда транспортируются к краям пластинки.
У других, специализированных клеток, у которых митоз отделяется от цитокинеза промежутком в несколько дней, они формируются из новообразованных микротрубочек, отходящих от поверхности ядер. Так же как и митотическое веретено, фрагмопласт (не смешивать с фрагмосомой) состоит из двух групп микротрубочек, расположенных между двумя наборами хромосом, (+)-концы которых в середине перекрываются. Среди микротрубочек расположены трубочки ЭПР, а также актиновые филаменты той же полярности. В каждой группе микротрубочек по направлению к (н-)-концам происходит движение везикул. Там они сливаются, а мембраны и предшественники, которые они содержат, начинают формировать новую клеточную стенку и новые мембраны, разделяющие две клетки.
На рисунке ниже представлена область делящейся клетки, где в плоскости деления находится много везикул, которые еще не начали сливаться.
Благодаря строению фрагмопласта возможно формирование новой клеточной стенки. Везикулы сливаются только в небольшой области, где сходятся плюс-концы микротрубочек, исходящие от двух концов фрагмопласта. Это позволяет новообразованной стенке принимать форму уплощенного диска (отсюда название «пластинка»). По мере слияния везикул по периферии, происходит формирование диска. Когда пластинка увеличилась в диаметре, исходный пучок микротрубочек фрагмопласта превращается в цилиндр. В течение всего последующего цитокинеза этот цилиндр продолжает расширяться, так что микротрубочки всегда расположены по краю растущей пластинки.
На первый взгляд кажется, что цилиндр микротрубочек пассивно расширяется за счет роста новой клеточной пластинки и что динамические свойства микротрубочек в этом не участвуют. Однако вещества, стабилизирующие микротрубочки, ингибируют рост пластинки. Это позволяет предполагать, что в течение роста пластинки микротрубочки должны проявлять свои динамические свойства. По-видимому, пока по внешнему краю пластинки полимеризуются новые микротрубочки, в центре, где везикулы больше не нужны, они деполимеризуются.
Поэтому основная особенность фрагмопласта состоит в том, что он представляет собой симметричную структуру, использующую свойства элементов цитоскелета для позиционирования средней линии, от которой за счет слияния везикул закладывается новая перегородка. В следующем разделе мы рассмотрим участие в этом процессе мембран и молекул клеточной стенки.
Теперь, когда мы ознакомились с процессами митоза и цитокинеза в клетках растений, мы можем оценить, насколько объединяющий их строгий позиционный контроль отличается от такового в клетках животных. В клетках животных расположение борозды деления контролируется митотическим веретеном, и обычно она расположена перпендикулярно его оси; если борозда располагается по-другому, то это приводит к катастрофе. Точная ориентация оси веретена контролируется взаимодействием его астральных микротрубочек с клеточным кортексом. У растений взаимосвязи между процессами и структурами во многом другие.
Во-первых, плоскость деления их клеток определяется задолго до образования веретена, и последнее не участвует в расположении этой плоскости. Во-вторых, именно ядро растительной клетки, а не ее веретено, движется в то место, где будет происходить деление. В-третьих, связь между ориентацией веретена и новой перегородки не носит столь тесного характера, как в клетках животных. У растений в митотической клетке ось веретена иногда располагается не перпендикулярно поперечной плоскости, которая определяется положением препрофазного кольца, и в метафазе хромосомы выстраиваются в плоскости, расположенной по отношению к ним наклонно.
Это не играет роли: новая перегородка начинает расти с тем же наклоном, однако затем происходит самокорректировка, и дальнейший рост продолжается в том же положении, которое занимало препрофазное кольцо. Все эти различия указывают на то, что клетки растений и животных по-разному координируют митоз и цитокинез.
Несмотря на существующие различия, эти процессы имеют общую черту, которая состоит в том, что в обоих случаях положение веретена определяется взаимодействием цитоскелета с клеточным кортексом. В клетках животных это осуществляется непосредственно при участии астральных микротрубочек веретена, а в клетках растений косвенным образом, за счет элементов цитоскелета, вероятно, актиновых филаментов и микротрубочек, соединяющих клеточный кортекс с ядром и сдвигающих его при подготовке к митозу.
Согласно последним представлениям, клеточный кортекс играет чрезвычайно важную роль, поскольку через него внешние факторы влияют на ориентацию деления и на относительные размеры образующихся клеток. Без наличия таких связей невозможен пространственный контроль клеточного деления, необходимый для развития организмов растений и животных.
Электронная микрофотография делящейся клетки, которая находится в процессе образования клеточной пластинки.
В плоскости деления скопилось много везикул, однако большая их часть не слилась с образованием клеточной пластинки.
Во вставке показана линия везикул при большом увеличении.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021