За что отвечает числитель и знаменатель в графике
График линейной функции, его свойства и формулы
Понятие функции
Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.
Понятие линейной функции
Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.
Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.
Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.
Если известно конкретное значение х, можно вычислить соответствующее значение у.
Для удобства результаты можно оформлять в виде таблицы:
Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.
Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.
Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.
Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».
Функция | Коэффициент «k» | Коэффициент «b» |
---|---|---|
y = 2x + 8 | k = 2 | b = 8 |
y = −x + 3 | k = −1 | b = 3 |
y = 1/8x − 1 | k = 1/8 | b = −1 |
y = 0,2x | k = 0,2 | b = 0 |
Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».
Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!
Свойства линейной функции
Построение линейной функции
В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.
Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:
В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:
Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.
В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).
В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.
Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).
Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.
При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.
Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.
Если k 0, то график функции y = kx + b выглядит так:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
Если k > 0 и b > 0, то график функции y = kx + b выглядит так:
0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Точки пересечения графика функции y = kx + b с осями координат:
Решение задач на линейную функцию
Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!
Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).
Алгебра. 9 класс
Функция обратной пропорциональности
Графиком этой функции является гипербола.
Областью определения данной функции является всё множество чисел отличных от нуля.
Возьмём функцию , х > 0, k = 2
Обратим внимание, что при неограниченном возрастании положительных значений аргумента, сами значения функции убывают и стремятся к нулю.
Такая же ситуация происходит при неограниченном уменьшении аргумента функции, значения функции возрастают и стремятся к нулю.
x | 0,25 | 0,4 | 1 | 2 | 4 | 8 |
y | 8 | 5 | 2 | 1 | 0,5 | 0,25 |
х | –0,25 | –0,4 | –1 | –2 | –4 | –8 |
y | –8 | –5 | –2 | –1 | –0,5 | –0,25 |
При x > 0 и x → +∞, то y → 0; при x 0 ось абсцисс является асимптотой функции.
Асимптотой графика функции называется прямая линия, к которой приближаются бесконечно близко точки графика функции по мере их удаления в бесконечность.
Гипербола имеет еще одну асимптоту – ось ординат.
Ось ординат является асимптотой функции при k > 0.
За что отвечает числитель и знаменатель в графике
Построение графиков дробно-линейных функций
Рассмотрим специальный класс функций, графиками которых будут гиперболы.
Дробно-линейной называют всякую функцию вида
1. ПР6: `f_1(x)=1/(x+d/c)`;
2. ПР4: `f_2(x)=((bc-ad)/c^2)/(x+d/c)`;
3. ПР5: `f_3(x)=a/c+((bc-ad)/c^2)/(x+d/c)`.
на втором – сжать его или растянуть и, возможно, отразить в зависимости от коэффициента `(bc-ad)/c^2`, а
Покажем на примере, как это нужно делать.
Построим график функции `y=-2/x` (ветви гиперболы лежат во 2-ой и 4-ой четвертях) (рис. 25).
Далее, необходимо, воспользовавшись преобразованием ПР6, сдвинуть график `y=-2/x` на две единицы влево вдоль оси абсцисс (рис. 26). Получим график `y=-2/(x+2)`. Теперь используем преобразование ПР5 и поднимаем график на рис. 26 на единицу вверх. Получим необходимый график функции
Постройте график функции
Будем выполнять построения в таком порядке:
1) Преобразуем данную функцию:
2) Построим график функции
`y=1/(x+6//5)` (ПР6, см. рис. 28).
Далее, построим график `y=(2//25)/(x+6//5)`, сжав график относительно оси абсцисс в `2//25` раз (ПР4, см. рис. 29).
3) Осталось сдвинуть график на `3//5` единиц вверх и получим окончательный график (ПР6, см. рис. 30)
Построим график функции
Будем решать данный пример в таком порядке:
1. Построим гиперболу `y=2/x` (рис. 31).
2. Воспользовавшись преобразованием ПР6, сдвинем эту гиперболу на единицу вправо (вдоль оси абсцисс) и получим график функции `y=2/(x-1)` (рис. 32).
3. Теперь воспользуемся преобразованием ПР1 для построенного в п. 2. графика. Получим график функции `y=2/(|x|-1)` (рис. 33).
4. Воспользуемся преобразованием ПР2 и получим график искомой функции `y=|2/(|x|-1)|` (рис. 34).
Дробная линейная функция на занятиях с репетитором по математике
Со временем к репетитору по математике приходит мастерство объяснений сложных понятий простым языком не в ущерб математической полноте и точности. Вырабатывается индивидуальный стиль подачи материала, речи, визуального сопровождения и оформления записей. Любой опытный репетитор расскажет урок с закрытыми глазами, ибо наперед знает, какие проблемы возникают с пониманием материала и что нужно для их разрешения. Важно подобрать правильные слова и записи, примеры для начала урока, для середины и конца, а также грамотно составить упражнения для домашнего задания.
О некоторых частных приемах работы с темой пойдет речь в данной статье.
С построения каких графиков начинает репетитор по математике?
Нужно начать с определения изучаемого понятия. Напоминаю, что дробной линейной функцией называют функцию вида . Ее построение сводится к построению самой обычной гиперболы путем известных несложных приемов преобразования графиков.
На практике, несложными они оказываются только для самого репетитора. Даже если к преподавателю приходит сильный ученик, с достаточной скоростью вычислений и преобразований, ему все равно приходится рассказывать эти приемы отдельно. Почему? В школе в 9 классе строят графики только путем сдвига и не используют методов добавления числовых множителей (методов сжатия и растяжения). Какой график используется репетитором по математике?
С чего лучше начать? Вся подготовка проводится на примере самой удобной, на мой взгляд, функции
. А что еще использовать? Тригонометрию в 9 классе изучают без графиков (а в переделанных учебниках под условия проведения ГИА по математике и вовсе не проходят). Квадратичная функция не имеет в данной теме такого же «методического веса», какой имеет корень. Почему? В 9 классе квадратный трехчлен изучается досконально и ученик вполне способен решать задачи на построение и без сдвигов. Форма
мгновенно вызывает рефлекс к раскрытию скобок, после которого можно применить правило стандартного построения графика через вершину параболы и таблицу значений. С
такой маневр выполнить не удастся и репетитору по математике будет легче мотивировать ученика на изучение общих приемов преобразований. Использование модуля y=|x| тоже не оправдывает себя, ибо он не изучается так же плотно, как корень и школьники панически его боятся.
К тому же, сам модуль (точнее его «навешивание») входит в число изучаемых преобразований.
Итак, репетитору не остается ничего более удобного и эффективного, как провести подготовку к преобразованиям с помощью квадратного корня. Нужна практика построений графиков примерно такого вида . Будем считать, что эта подготовка удалась на славу. Ребенок умеет сдвигать и даже сжимать/растягивать графики. Что дальше?
Далее стоит напомнить о том, как выглядит обратная пропорциональность и в каких четвертях располагается ее график в зависимости от знака коэффициента k.
Напомню, что для построения графика необходимо преобразовать дробь к виду
. Именно к такому, а не к
, сохраняя знаменатель. Почему? Сложно выполнять преобразования того графика, который не только состоит из кусочков, но еще и имеет асимптоты. Непрерывность используется для того, чтобы соединить две-три более-менее понятно передвинутые точки одной линией. В случае разрывной функции не сразу разберешь, какие именно точки соединять. Поэтому сжимать или растягивать гиперболу – крайне неудобно. Репетитор по математике просто обязан научить школьника обходиться одними сдвигами.
Для этого помимо выделения целой части нужно еще удалить в знаменателе коэффициент c.
Выделение целой части у дроби
Как научить выделению целой части? Репетиторы по математике не всегда адекватно оценивают уровень знаний школьника и, несмотря на отсутствие в программе подробного изучения теоремы о делении многочленов с остатком, применяют правило деления уголком. Если преподаватель берется за уголочное деление, то придется потратить на его объяснение (если конечно все аккуратно обосновывать) почти половину занятия. К сожалению, не всегда это время у репетитора имеется в наличии. Лучше вообще не вспоминать ни о каких уголках.
Существует две формы работы с учеником:
1) Репетитор показывает ему готовый алгоритм на каком-нибудь примере дробной функции.
2) Преподаватель создает условия для логического поиска этого алгоритма.
Реализация второго пути мне представляется наиболее интересной для репетиторской практики и чрезвычайно полезной для развития мышления ученика. С помощью определенных намеков и указаний часто удается подвести к обнаружению некой последовательности верных шагов. В отличие от машинального выполнения кем-то составленного плана, школьник 9 класса учится самостоятельно его искать. Естественно, что все пояснения необходимо проводить на примерах. Возьмем для этого функцию и рассмотрим комментарии репетитора к логике поиска алгоритма. Репетитор по математике спрашивает: «Что мешает нам выполнить стандартное преобразование графика
, при помощи сдвига вдоль осей? Конечно же, одновременное присутствие икса и в числителе и в знаменателе. Значит необходимо удалить его из числителя. Как это сделать при помощи тождественных преобразований? Путь один – сократить дробь. Но у нас нет равных множителей (скобок). Значит нужно попытаться создать их искусственно. Но как? Не заменишь же числитель на знаменатель без всякого тождественного перехода. Попробуем преобразовать числитель, чтобы в него включалась скобка, равная знаменателю. Поставим ее туда принудительно и «обложим» коэффициентами так, чтобы при их «воздействии» на скобку, то есть при ее раскрытии и сложении подобных слагаемых, получался бы линейный многочлен 2x+3.
Репетитор по математике вставляет пропуски для коэффициентов в виде пустых прямоугольников (как это часто используют пособия для 5 – 6 классов) и ставит задачу — заполнить их числами. Подбор следует вести слева направо, начиная с первого пропуска. Ученик должен представить себе, как он будет раскрывать скобку. Так как ее раскрытия получится только одно слагаемое с иксом, то именно его коэффициент должен быть равным старшему коэффициенту в старом числителе 2х+3. Поэтому, очевидно, что в первом квадратике оказывается число 2. Он заполнен. Репетитору по математике следует взять достаточно простую дробную линейную функцию, у которой с=1. Только после этого можно переходить к разбору примеров с неприятным видом числителя и знаменателя (в том числе и с дробными коэффициентами).
Идем дальше. Преподаватель раскрывает скобку и подписывает результат прямо над ней. Можно заштриховать соответствующую пару множителей. К «раскрытому слагаемому», необходимо добавить такое число из второго пропуска, чтобы получить свободный коэффициент старого числителя. Очевидно, что это 7.
Итог подбора:
Далее дробь разбивается на сумму отдельных дробей (обычно я обвожу дроби облачком, сравнивая их расположение с крылышками бабочки). И говорю: «Разобьем дробь бабочкой». Школьники хорошо запоминают эту фразу.
Репетитор по математике показывает весь процесс выделения целой части до вида, к которому уже можно применить алгоритм сдвига гиперболы :
Если знаменатель имеет не равный единице старший коэффициент, то ни в коем случае не нужно его там оставлять. Это принесет и репетитору и ученику лишнюю головную боль, связанную с необходимостью проведения дополнительного преобразования, Причем самого сложного: сжатия — растяжения. Для схематического построения графика прямой пропорциональности не важен вид числителя. Главное знать его знак. Тогда к нему лучше перебросить старший коэффициент знаменателя. Например, если мы работаем с функцией , то просто вынесем 3 за скобку и «поднимем» ее в числитель, конструируя в нем дробь
. Получим значительно более удобное выражение для построения:
Останется сдвинуть
на
вправо и на 2 вверх.
Если между целой частью 2 и оставшейся дробью возникает «минус», его тоже лучше занести в числитель. Иначе на определенном этапе построения придется дополнительно отображать гиперболу относительно оси Oy. Это только усложнит процесс.
Золотое правило репетитора по математике:
все неудобные коэффициенты, приводящие к симметриям, к сжатиям или растяжениям графика нужно перебросить в числитель.
Трудно описывать приемы работы с любой темой. Всегда остается ощущение некоторой недосказанности. Насколько удалось рассказать о дробной линейной функции — судить Вам. Присылайте Ваши комментарии и отзывы к статье (их можно написать в окошке, которое Вы видите внизу страницы). Я обязательно их опубликую.
Колпаков А.Н. Репетитор по математике Москва. Строгино. Методики для репетиторов.
Построение графиков функций
Понятие функции
Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида область определения выглядит так
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Понятие графика функции
Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.
График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.
Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.
Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.
В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.
Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:
Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.
Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.
Исследование функции
Важные точки графика функции y = f(x):
Стационарные точки — точки, в которых производная функции f(x) равна нулю.
Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.
Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.
Нули функции — это значения аргумента, при которых функция равна нулю.
Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.
Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:
Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.
Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.
Схема построения графика функции:
У нас есть отличные курсы по математике для учеников с 1 по 11 классы!
Построение графика функции
Чтобы понять, как строить графики функций, потренируемся на примерах.
Задача 1. Построим график функции
Упростим формулу функции:
Задача 2. Построим график функции
Выделим в формуле функции целую часть:
График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции
Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.
Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.
Вспомним, как параметры a, b и c определяют положение параболы.
Ветви вниз, следовательно, a 0.
Точка пересечения с осью Oy — c = 0.
Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.
Ветви вниз, следовательно, a 0.
Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b
x | y |
0 | -1 |
1 | 2 |
x | y |
0 | 2 |
1 | 1 |
x | y |
0 | 0 |
1 | 2 |
k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.
Задача 5. Построить график функции
Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.
Нули функции: 3, 2, 6.
Промежутки знакопостоянства функции определим с помощью метода интервалов.
Вертикальные асимптоты: x = 0, x = 4.
Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.
Вот так выглядит график:
Задача 6. Построить графики функций:
б)
г)
д)
Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.
а)
Преобразование в одно действие типа f(x) + a.
Сдвигаем график вверх на 1:
б)
Сдвигаем график вправо на 1:
Сдвигаем график вправо на 1:
Сдвигаем график вверх на 2:
г)
Преобразование в одно действие типа
Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:
д)
Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.
Сжимаем график в два раза вдоль оси абсцисс:
Сдвигаем график влево на 1/2 вдоль оси абсцисс:
Отражаем график симметрично относительно оси абсцисс: