За что отвечает дискриминант в параболе
Дискриминант
Дискриминантом квадратного трехчлена называют выражение \(b^<2>-4ac\), где \(a, b\) и \(c\) – коэффициенты данного трехчлена.
Например, для трехчлена \(3x^2+2x-7\), дискриминант будет равен \(2^2-4\cdot3\cdot(-7)=4+84=88\). А для трехчлена \(x^2-5x+11\), он будет равен \((-5)^2-4\cdot1\cdot11=25-44=-19\).
Дискриминант и корни квадратного уравнения
Значение дискриминанта показывает количество корней квадратного уравнения:
— если \(D\) положителен – уравнение будет иметь два корня;
— если \(D\) равен нулю – только один корень;
— если \(D\) отрицателен – корней нет.
Если дискриминант положителен
В этом случае корень из него – это некоторое положительное число, а значит \(x_<1>\) и \(x_<2>\) будут различны по значению, ведь в первой формуле \(\sqrt
Пример: Найдите корни уравнения \(x^2+2x-3=0\)
Решение:
Вычисляем дискриминант по формуле \(D=b^2-4ac\)
Найдем корни уравнения
Получили два различных корня из-за разных знаков перед \(\sqrt
Если дискриминант равен нулю
А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.
То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.
Пример: Найдите корни уравнения \(x^2-4x+4=0\)
Решение:
Вычисляем дискриминант по формуле \(D=b^2-4ac\)
Находим корни уравнения
Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.
Если дискриминант отрицателен
В этом случае корень из дискриминанта извлечь нельзя (т.к. квадратный корень из отрицательного числа – невычислим), а значит и корни квадратного уравнения мы вычислить не можем.
Пример: Найдите корни уравнения \(x^2+x+3=0\)
Решение
Вычисляем дискриминант по формуле \(D=b^2-4ac\)
Находим корни уравнения
Оба корня содержат невычислимое выражение \(\sqrt<-11>\), значит, и сами не вычислимы
То есть, отсутствие корней у квадратного уравнения с отрицательным дискриминантом – не чья-то случайная придумка. Это не потому что «в учебнике так написано», а действительно правда: невозможно найти такое число, чтоб при подстановке его вместо икса в выражение \(x^2+x+3\) получился ноль.
Матхак: заметим, что если вы решаете обычное квадратное уравнение или неравенство и получаете отрицательный дискриминант, стоит проверить решение еще раз, так как это не частая ситуация в школьном курсе математики.
Ну, а на графиках все просто: нет корней – нет точек пересечения с осью икс!
От чего зависит вид графика функции
Функция вида y = a*x 2 + b*x + c, где a, b, c – некоторые вещественные числа, причем а отлично от нуля, а x и y – переменные, называется квадратичной функцией. Графиком квадратичной функции y = a*x 2 + b*x + c является линия, называемая в математике параболой. Общий вид параболы представлен на рисунке ниже.
График квадратичной функции
Исследуем расположение графика квадратичной функции, в зависимости от формы и вида квадратного трехчлена. Первым критерием, влияющим на общий вид графика квадратичной функции, является знак при старшем коэффициенте.
Если при старшем коэффициенте в квадратном трехчлене стоит знак «плюс», то парабола будет иметь ветви направленные вверх. Если при старшем коэффициенте в квадратном трехчлене стоит знак «минус», то парабола будет иметь ветви направленные вниз.
Следующим критерием является значение дискриминанта квадратного уравнения.
Формула корней квадратного уравнения a*x 2 + b*x+ c = 0.
Если дискриминант больше нуля, то квадратное уравнение имеет два корня: (x = (-b ± √D)/(2*a)). Если дискриминант равен нулю, то квадратное уравнение имеет один корень: (x = (-b/(2*a)). Если дискриминант отрицателен, то квадратное уравнение не имеет корней.
Корнем квадратного уравнения a*x 2 + b*x + c = 0 называют любое значение переменной х, такое, что квадратный трехчлен a*x 2 + b*x + c обращается в нуль. Обращение в нуль значение функции равносильно тому, что график функции будет в этой точке пересекать ось Ох.
Следовательно, в зависимости от, того какое будет значение дискриминанта, вершина параболы будет расположена относительно оси координат одним из следующих трех способов: ниже оси Ох, на оси Ох, выше оси Ох. На следующем рисунке показаны основные расположения графика квадратичной функции, в зависимости от перечисленных выше двух критериев.
Квадратичная функция (парабола)
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
y | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
После этого по точкам строили график:
Параболу y = ax 2 + bx + c мы не станем строить каждый раз «по точкам» — для выпускника школы это просто несолидно. Ведь нам надо знать закономерности поведения данной функции. А эти закономерности таковы.
1. Знак коэффициента a отвечает за направление ветвей. При a > 0 ветви направлены вверх, при a 2 с равными по модулю, но противоположными по знаку значениями a.
2. Абсолютная величина коэффициента a отвечает за «раскрыв» параболы. Чем больше |a|, тем у́же парабола (больше прижата к оси Y ). Наоборот, чем меньше |a|, тем шире парабола (больше прижата к оси X).
3. Абсцисса вершины параболы y = ax 2 + bx + c находится по формуле:
Для нахождения ординаты вершины y0 удобнее всего подставить x0 в уравнение параболы. Но вообще, полезно помнить, что
где D = b 2 − 4ac — дискриминант.
4. Точки пересечения параболы y = ax 2 + bx + c с осью X находятся с помощью решения квадратного уравнения ax 2 + bx + c = 0. Если дискриминант равен нулю, то парабола касается оси X. Если дискриминант меньше нуля, то парабола не пересекает ось X.
5. Точка пересечения с осью Y находится легко: мы просто подставляем x = 0 в уравнение параболы. Получается точка (0, c).
А теперь покажем, как с помощью графика функции y = ax 2 + bx + c решать квадратные неравенства.
1. Часто на тестировании мы предлагаем решить неравенство
x 2 2 и отметим все значения x, для которых y 2 − 3x − 10 ≥ 0.
Графиком функции y = x 2 − 3x − 10 служит парабола, ветви которой направлены вверх. Решая квадратное уравнение x 2 − 3x − 10 = 0, находим x1 = −2 и x2 = 5 — в этих точках парабола пересекает ось X. Нарисуем схематично нашу параболу:
Мы видим, что при x ∈ (−2; 5) значения функции отрицательны (график проходит ниже оси X). В точках −2 и 5 функция обращается в нуль, а при x 5 значения функции положительны. Следовательно, наше неравенство выполняется при .
Обратите внимание, что для решения неравенства нам достаточно было схематично изобразить параболу. Ось Y вообще не понадобилась!
3. Ещё одно неравенство: x 2 + 2x + 4 > 0.
Ветви параболы y = x 2 + 2x + 4 направлены вверх. Дискриминант отрицателен, т. е. уравнение x 2 + 2x + 4 = 0 не имеет корней. Стало быть, нет и точек пересечения параболы с осью X.
Раз ветви параболы направлены вверх и она не пересекает ось X — значит, парабола расположена над осью X.
Получается, что значения функции положительны при всех возможных x. Иными словами, решения нашего неравенства — это все действительные числа.
Ответ: .
Квадратные неравенства являются неотъемлемой частью ЕГЭ. Разберём типичные примеры из банка заданий ЕГЭ.
4. Завиcимоcть объeма cпроcа q (тыc. руб.) на продукцию предприятия-монополиcта от цены p (тыc. руб.) задаeтcя формулой q = 100 − 10p. Выручка предприятия за меcяц r (в тыc. руб.) вычиcляетcя по формуле r(p) = q · p. Определите наибольшую цену p, при которой меcячная выручка r(p) cоcтавит не менее 240 тыc. руб. Ответ приведите в тыc. руб.
Подставим выражение для q в формулу выручки:
r(p) = qp = (100 − 10p)p = 100p − 10p 2
Выручка должна быть не менее (то есть больше или равна) 240 тысяч рублей. Поскольку цена p уже выражена в тысячах рублей, мы можем записать это условие в виде неравенства:
Переносим всё вправо и делим на 10:
Для схематичного построения параболы находим корни уравнения p 2 − 10p + 24 = 0. Они равны 4 и 6. Остаётся сделать рисунок.
Решением нашего неравенства служит отрезок [4; 6]. Нас просили найти наибольшее p. Оно равно 6.
Итак, требуется, чтобы выполнялось неравенство h(t) ≥ 3. Подставляем сюда выражение для h:
Собираем всё справа:
Корни соответствующего уравнения 5t 2 −8t+1,4 = 0 равны t1 = 0,2 и t2 = 1,4. Как дальше действовать — мы знаем.
Таким образом, через t1 = 0,2 секунды после начала полёта мяч оказался на высоте 3 метра. Мяч продолжал лететь вверх, высота увеличивалась; затем началось снижение, высота уменьшалась, и в момент времени t = 1,4 секунды снова стала равна трём метрам над землей.
Получается, что мяч находился на высоте не менее трёх метров в течение t2 − t1 = 1,2 секунд. В бланк ответов вписываем десятичную дробь 1,2.
Согласно условию, зависимость температуры нагревательного элемента от времени определяется формулой:
T(t) = 1400 + 200t − 10t 2
В нормальном режиме работы прибора должно выполняться неравенство T ≤ 1760, или
1400 + 200t − 10t 2 ≤ 1760
Переносим всё вправо и делим на 10:
Находим t1 = 2, t2 = 18 и делаем рисунок:
Получаем решения нашего неравенства:
Остаётся понять: в какой же момент отключать прибор? Для этого надо представить физическую картину процесса.
Мы включаем прибор в момент времени t = 0. Температура нагревателя повышается и при t = 2 мин достигает 1760 К. Затем повышение температуры продолжается, в результате чего прибор может испортиться. Поэтому ясно, что отключать его надо при t = 2.
Квадратичная функция и ее график
В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.
Итак.
Функция вида , где
0″ title=»a<>0″/>
называется квадратичной функцией.
В уравнении квадратичной функции:
Графиком квадратичной функции является квадратичная парабола, которая для функции имеет вид:
Внимание! Если в уравнении квадратичной функции старший коэффициент , то график квадратичной функции имеет ровно такую же форму, как график функции
при любых значениях остальных коэффициентов.
График функции имеет вид:
Для нахождения координат базовых точек составим таблицу:
Обратите внимание, что график функции симметричен графику функции
относительно оси ОХ.
Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты точек пересечения графика функции с осью ОХ, нужно решить уравнение
.
В случае квадратичной функции нужно решить квадратное уравнение
.
В процессе решения квадратного уравнения мы находим дискриминант: , который определяет число корней квадратного уравнения.
И здесь возможны три случая:
1. Если ,то уравнение
не имеет решений, и, следовательно, квадратичная парабола
не имеет точек пересечения с осью ОХ. Если
0″ title=»a>0″/>
,то график функции выглядит как-то так:
2. Если ,то уравнение
имеет одно решение, и, следовательно, квадратичная парабола
имеет одну точку пересечения с осью ОХ. Если
0″ title=»a>0″/>
,то график функции выглядит примерно так:
,
Если 0″ title=»a>0″/>
,то график функции выглядит примерно так:
Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.
Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.
Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы с осью OY, нужно в уравнение параболы вместо х подставить ноль:
.
То есть точка пересечения параболы с осью OY имеет координаты (0;c).
Итак, основные параметры графика квадратичной функции показаны на рисунке:
Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.
1. Функция задана формулой .
Рассмотрим общий алгоритм построения графика квадратичной параболы на примере построения графика функции
1. Направление ветвей параболы.
Так как 0″ title=»a=2>0″/>
,ветви параболы направлены вверх.
2. Найдем дискриминант квадратного трехчлена
0″ title=»D=b^2-4ac=9-4*2*(-5)=49>0″/>
Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.
Для того, чтобы найти их координаты, решим уравнение:
,
3. Координаты вершины параболы:
4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.
Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:
Этот способ можно несколько упростить.
1. Найдем координаты вершины параболы.
2. Найдем координаты точек, стоящих справа и слева от вершины.
Воспользуемся результатами построения графика функции
Кррдинаты вершины параболы
Ближайшие к вершине точки, расположенные справа имеют абсциссы соответственно 0;1;2
Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их в таблицу:
Нанесем эти точки на координатную плоскость и соединим плавной линией:
Построим для примера график функции .
Вспомним линейные преобразования графиков функций. Чтобы построить график функции , нужно
Выделим в уравнении функции полный квадрат:
Следовательно, координаты вершины параболы: . Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):
Построим для примера график функции y=(x-2)(x+1)
(х-2)(х+1)=0, отсюда
2. Координаты вершины параболы:
3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.
Нанесем эти точки на координатную плоскость и построим график:
График квадратичной функции.
Перед вами график квадратичной функции вида .
Кликните по чертежу.
Подвигайте движки.
Исследуйте зависимость
— ширины графика функции от значения коэффициента
,
— сдвига графика функции вдоль оси
от значения
,
— сдвига графика функции вдоль оси
от значения
— направления ветвей параболы от знака коэффициента
— координат вершины параболы от значений
и
:
И.В. Фельдман, репетитор по математике.